首页 > 最新文献

International Journal of Environmental Analytical Chemistry最新文献

英文 中文
Assessment of Cd, Cu, Pb, and Zn concentrations in leather by ICP-MS: a multivariate analysis of an eco-friendly approach 用ICP-MS评估皮革中Cd、Cu、Pb和Zn的浓度:一种环保方法的多变量分析
4区 化学 Q3 CHEMISTRY, ANALYTICAL Pub Date : 2023-10-23 DOI: 10.1080/03067319.2023.2267976
Bernardo Otavio Germer, Fabiana Luvizon Germer, Bruno Luís Ferreira, Thebny Thaíse Moro, Tatiane de Andrade Maranhão, Eduardo Sidinei Chaves
ABSTRACTDue to the metal-complex dyes used in tannery industries, potentially toxic metals can be present in leather. However, publications regarding metal determination in leather are scarce, and most sample preparation procedures are still time-consuming. Therefore, a simple and straightforward sample preparation approach using ultrasound-assisted extraction (UAE) was proposed for the determination of Cd, Cu, Pb and Zn in leather samples by ICP-MS. A full factorial design 23 was used to investigate the extraction conditions. Fitted conditions were obtained at a ratio of 100 mg: 1.0 mL (sample:HNO3 14.0 mol L−1), ultrasound-assisted extraction time of 55 min at 75 ± 3°C. The method´s accuracy was evaluated through the comparison of results with those obtained using microwave-assisted digestion (MWAD) approach. The UAE results were statistically similar to the MWAD, according to the Student t-test (α = 0.05) and linear regression analysis. Limits of detection (LOD), at mg kg−1 range, and method precision (RSD <11%) were suitable for the analytes´ determination in leather. The proposed method was successfully applied to analyse 18 different leather samples. The results were < 0.3 to 53.19 mg kg−1 for Cd, <0.2 to 484.61 mg kg−1 for Cu, <0.02 to 211.31 mg kg−1 for Pb and < 0.02 to 379.22 mg kg−1 for Zn, respectively. The proposed method is simple and faster than the traditional acid digestion sample preparation. Moreover, according to green analytical chemistry, the method scored 82 points on the Eco-Scale, confirming the proposed method as environmentally friendly.KEYWORDS: Leathermetalsmultivariate analysisultrasound-assisted extraction AcknowledgmentsThe authors are thankful to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for their financial support. B.O.G, B.L.F and T.T.M have scholarships from CNPq, and F.L.G has a scholarship from CAPES. E.S.C. has a research scholarship from CNPq. The authors are also thankful to Flaticon (https://www.flaticon.com) and Canva (https://www.canva.com) for the icons used in the Figures.Disclosure statementNo potential conflict of interest was reported by the authors.Data availability statementAll data generated or analysed during this study are included in this article.Additional informationFundingThis work was funded by the Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq [Grant ID: 421245/2018-2].
由于制革工业中使用的金属络合染料,可能会在皮革中存在潜在的有毒金属。然而,关于皮革中金属测定的出版物很少,而且大多数样品制备程序仍然很耗时。因此,提出了一种简单、直接的超声辅助萃取(UAE)制样方法,用于ICP-MS法测定皮革样品中的Cd、Cu、Pb和Zn。采用全因子设计23考察提取条件。条件为100 mg: 1.0 mL(样品:HNO3 14.0 mol L−1),超声辅助提取时间为55 min,温度为75±3℃。通过与微波辅助消化法(MWAD)的结果比较,评价了该方法的准确性。根据学生t检验(α = 0.05)和线性回归分析,UAE的结果与MWAD的结果在统计学上相似。检出限(LOD)在mg kg−1范围内,方法精密度(RSD <11%)适用于皮革中分析物的测定。该方法成功地应用于18种不同皮革样品的分析。Cd < 0.3 ~ 53.19 mg kg - 1, Cu <0.2 ~ 484.61 mg kg - 1, Pb <0.02 ~ 211.31 mg kg - 1, Zn <0.02 ~ 379.22 mg kg - 1。与传统的酸消化样品制备方法相比,该方法操作简单,速度快。此外,根据绿色分析化学,该方法在生态尺度上得到82分,证实了该方法是环保的。致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢B.O.G, B.L.F和T.T.M获得了CNPq的奖学金,F.L.G获得了CAPES的奖学金。esc有CNPq的研究奖学金。作者还感谢Flaticon (https://www.flaticon.com)和Canva (https://www.canva.com)在图中使用的图标。披露声明作者未报告潜在的利益冲突。数据可用性声明本研究过程中产生或分析的所有数据均包含在本文中。本研究由Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq资助[资助ID: 421245/2018-2]。
{"title":"Assessment of Cd, Cu, Pb, and Zn concentrations in leather by ICP-MS: a multivariate analysis of an eco-friendly approach","authors":"Bernardo Otavio Germer, Fabiana Luvizon Germer, Bruno Luís Ferreira, Thebny Thaíse Moro, Tatiane de Andrade Maranhão, Eduardo Sidinei Chaves","doi":"10.1080/03067319.2023.2267976","DOIUrl":"https://doi.org/10.1080/03067319.2023.2267976","url":null,"abstract":"ABSTRACTDue to the metal-complex dyes used in tannery industries, potentially toxic metals can be present in leather. However, publications regarding metal determination in leather are scarce, and most sample preparation procedures are still time-consuming. Therefore, a simple and straightforward sample preparation approach using ultrasound-assisted extraction (UAE) was proposed for the determination of Cd, Cu, Pb and Zn in leather samples by ICP-MS. A full factorial design 23 was used to investigate the extraction conditions. Fitted conditions were obtained at a ratio of 100 mg: 1.0 mL (sample:HNO3 14.0 mol L−1), ultrasound-assisted extraction time of 55 min at 75 ± 3°C. The method´s accuracy was evaluated through the comparison of results with those obtained using microwave-assisted digestion (MWAD) approach. The UAE results were statistically similar to the MWAD, according to the Student t-test (α = 0.05) and linear regression analysis. Limits of detection (LOD), at mg kg−1 range, and method precision (RSD <11%) were suitable for the analytes´ determination in leather. The proposed method was successfully applied to analyse 18 different leather samples. The results were < 0.3 to 53.19 mg kg−1 for Cd, <0.2 to 484.61 mg kg−1 for Cu, <0.02 to 211.31 mg kg−1 for Pb and < 0.02 to 379.22 mg kg−1 for Zn, respectively. The proposed method is simple and faster than the traditional acid digestion sample preparation. Moreover, according to green analytical chemistry, the method scored 82 points on the Eco-Scale, confirming the proposed method as environmentally friendly.KEYWORDS: Leathermetalsmultivariate analysisultrasound-assisted extraction AcknowledgmentsThe authors are thankful to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for their financial support. B.O.G, B.L.F and T.T.M have scholarships from CNPq, and F.L.G has a scholarship from CAPES. E.S.C. has a research scholarship from CNPq. The authors are also thankful to Flaticon (https://www.flaticon.com) and Canva (https://www.canva.com) for the icons used in the Figures.Disclosure statementNo potential conflict of interest was reported by the authors.Data availability statementAll data generated or analysed during this study are included in this article.Additional informationFundingThis work was funded by the Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq [Grant ID: 421245/2018-2].","PeriodicalId":13973,"journal":{"name":"International Journal of Environmental Analytical Chemistry","volume":"37 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135366738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adsorption of Cd 2+ from aqueous solution onto composites based on powdered activated carbon and Maghnia clay adsorbents: experimental design, kinetic, equilibrium and thermodynamic study 粉末活性炭和磁石粘土复合材料吸附水中Cd +的实验设计、动力学、平衡和热力学研究
4区 化学 Q3 CHEMISTRY, ANALYTICAL Pub Date : 2023-10-23 DOI: 10.1080/03067319.2023.2267450
Souhila Ait Hamoudi, Loubna Nouri, Nedjma Khelifa, Sabra Hemidouche, Aissa Khelifi, Amel Boudjemaa, Khaldoun Bachari
ABSTRACTCadmium and other heavy metals in landfills pose significant health and environmental risks due to their leaching potential into soil and groundwater when in contact with water or moisture. In this study, we synthesised two composites, composite I (C(I)) and composite II (C(II)), using Algerian clay and coconut shell-derived activated carbon. These composites are intended for controlled landfill waste management. The components are mixed at varying mass percentages, effectively adsorbing cadmium (Cd2+) from aqueous solutions. We conducted a parametric adsorption study using an experimental design. Cd2+ removal is more effective with composite C(II), reaching a Qmax of 163 mg.g−1 and an improved R of 59% at 25°C, while C(I) achieves a Qmax of 131 mg.g−1 and an R of 47%. The pH study indicated significant adsorption in the pH range [6–8]. The experiment utilised a screening design to optimise Cd2+ adsorption and establish the response surface. The coded variable Xi ranged from −1 (low) to + 1 (high) such as pH (X1: 2–6), temperature (X2: 25–45°C), composite mass (X3: 0.5–2.5 g.L−1), stirring speed (X4: 20–180 Oscillation/min), equilibrium time (X5: 60–120 min), and initial solution concentration (X6: 25–225 mg.L−1). The optimal values for X1, X4, and X6 were found to be 6, 180 Oscillation/min, and 185 mg.L−1, respectively.KEYWORDS: Heavy metal removalsoil remediationenvironmental contaminantssustainable materialsscreening design Author contributionS.AIT HAMOUDI performed the experiment, discussed the results, and prepared the manuscript. L.NOURI and S.HEMIDOUCHE discussed the results and prepared the experimental design. N.KHELIFA discussed the results. A.KHELIFI, A.BOUDJEMAA, K.BACHARI. Funding and supervision and corrected the manuscript. All authors read and approved the final manuscript.Disclosure statementNo potential conflict of interest was reported by the author(s).Supplementary dataSupplemental data for this article can be accessed online at https://doi.org/10.1080/03067319.2023.2267450.
摘要垃圾填埋场中的镉和其他重金属在与水或湿气接触时可能会浸出到土壤和地下水中,从而对健康和环境造成重大风险。在这项研究中,我们合成了两种复合材料,复合材料I (C(I))和复合材料II (C(II)),使用阿尔及利亚粘土和椰子壳衍生的活性炭。这些复合材料用于控制垃圾填埋场废物管理。这些组分以不同的质量百分比混合,有效地吸附水溶液中的镉(Cd2+)。我们采用实验设计进行了参数吸附研究。复合C(II)对Cd2+的去除效果更好,Qmax可达163 mg。在25°C时,R提高了59%,而C(I)的Qmax为131 mg。g−1和47%的R。pH研究表明,在pH范围内有显著的吸附作用[6-8]。实验采用筛选设计优化Cd2+吸附,建立响应面。X1、X4和X6的最佳值分别为6、180振荡/min和185 mg。分别L−1。关键词:重金属去除土壤修复环境污染物可持续材料筛选设计AIT HAMOUDI进行了实验,讨论了结果,并准备了手稿。L.NOURI和S.HEMIDOUCHE讨论了实验结果并准备了实验设计。N.KHELIFA讨论了结果。A.khelifi, a.boudjemaa, k.bachari。资助和监督并批改稿件。所有作者都阅读并批准了最终的手稿。披露声明作者未报告潜在的利益冲突。本文的补充数据可以在线访问https://doi.org/10.1080/03067319.2023.2267450。
{"title":"Adsorption of Cd <sup>2+</sup> from aqueous solution onto composites based on powdered activated carbon and Maghnia clay adsorbents: experimental design, kinetic, equilibrium and thermodynamic study","authors":"Souhila Ait Hamoudi, Loubna Nouri, Nedjma Khelifa, Sabra Hemidouche, Aissa Khelifi, Amel Boudjemaa, Khaldoun Bachari","doi":"10.1080/03067319.2023.2267450","DOIUrl":"https://doi.org/10.1080/03067319.2023.2267450","url":null,"abstract":"ABSTRACTCadmium and other heavy metals in landfills pose significant health and environmental risks due to their leaching potential into soil and groundwater when in contact with water or moisture. In this study, we synthesised two composites, composite I (C(I)) and composite II (C(II)), using Algerian clay and coconut shell-derived activated carbon. These composites are intended for controlled landfill waste management. The components are mixed at varying mass percentages, effectively adsorbing cadmium (Cd2+) from aqueous solutions. We conducted a parametric adsorption study using an experimental design. Cd2+ removal is more effective with composite C(II), reaching a Qmax of 163 mg.g−1 and an improved R of 59% at 25°C, while C(I) achieves a Qmax of 131 mg.g−1 and an R of 47%. The pH study indicated significant adsorption in the pH range [6–8]. The experiment utilised a screening design to optimise Cd2+ adsorption and establish the response surface. The coded variable Xi ranged from −1 (low) to + 1 (high) such as pH (X1: 2–6), temperature (X2: 25–45°C), composite mass (X3: 0.5–2.5 g.L−1), stirring speed (X4: 20–180 Oscillation/min), equilibrium time (X5: 60–120 min), and initial solution concentration (X6: 25–225 mg.L−1). The optimal values for X1, X4, and X6 were found to be 6, 180 Oscillation/min, and 185 mg.L−1, respectively.KEYWORDS: Heavy metal removalsoil remediationenvironmental contaminantssustainable materialsscreening design Author contributionS.AIT HAMOUDI performed the experiment, discussed the results, and prepared the manuscript. L.NOURI and S.HEMIDOUCHE discussed the results and prepared the experimental design. N.KHELIFA discussed the results. A.KHELIFI, A.BOUDJEMAA, K.BACHARI. Funding and supervision and corrected the manuscript. All authors read and approved the final manuscript.Disclosure statementNo potential conflict of interest was reported by the author(s).Supplementary dataSupplemental data for this article can be accessed online at https://doi.org/10.1080/03067319.2023.2267450.","PeriodicalId":13973,"journal":{"name":"International Journal of Environmental Analytical Chemistry","volume":"2002 36","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135413356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient removal of amoxycillin antibiotics onto magnetic graphene oxide: adsorption performance, mechanism, and regeneration exploration 磁性氧化石墨烯对阿莫西林抗生素的高效去除:吸附性能、机理及再生探索
4区 化学 Q3 CHEMISTRY, ANALYTICAL Pub Date : 2023-10-17 DOI: 10.1080/03067319.2023.2266698
Sulieman Ibraheem Shelash Al-Ha-Wary, Reena Gupta, I. B. Sapaev, Khulood H. Oudaha, Mays Jassim Abdalkareem, Ali Alsalamy, Ahmed Hussien Radie Alawadi, Fatemeh Zisti, Hossein Moein, Davoud Balarak
ABSTRACTThe present study was done to synthesise an adsorbent, i.e. magnetic graphene oxide (MGO) nanocomposite, which was performed based on a facile precipitation method and was utilised in experiments for removing amoxycillin (AMX). The characteristics of the prepared adsorbent were defined based on commonly utilised analyses (SEM, XRD, BET, TEM, FTIR, VSM, and pHpzc). According to kinetic studies, the PSO model was found as an applicable model for describing data. Moreover, the two-step diffusion process, i.e. diffusion in the boundary layer and the porous structures, was perceived for the evaluated process based on the IPD model. The isotherm models, including Langmuir, Freundlich, Temkin, and D–R, were employed for fitting data and calculating AMX adsorption capacity, among which Langmuir was the best one; using this model, the maximum adsorption capacities for MGO were 91.4, 103.9, 112.3, and 122.5 mg/g, which were achieved at 20, 30, 40, and 50°C. In addition, a feasible, spontaneous, and endothermic process was found for the adsorption of AMX ions, according to thermodynamic studies. The highest percentage of removal (100%) was obtained for the initial concentration of 25 mg/L at 50°C using the adsorbent dose of 1.5 g/L at a pH of 5 and a contact time of 90 min. The values of 74.4 m2/g and 27.74 emu/g were detected for the specific surface area and saturation magnetisation values of the MGO, respectively. The overall results were representative of the suitability of the MGO as an adsorbent for removing AMX from aqueous media.KEYWORDS: Amoxycillinmagnetic graphene oxideadsorption isothermadsorption kineticsthermodynamic AcknowledgmentsThe authors would like to thank Zahedan University of Medical Sciences for financial support and assistance in performing the experimental work of this research (code: 10490).Disclosure statementNo potential conflict of interest was reported by the author(s).
摘要本研究采用易沉淀法合成磁性氧化石墨烯纳米复合材料,并将其用于去除阿莫西林(AMX)的实验。通过SEM、XRD、BET、TEM、FTIR、VSM和pHpzc等常用分析方法确定了所制备吸附剂的特性。通过动力学研究,发现PSO模型是一种适用于数据描述的模型。此外,基于IPD模型的评估过程可以感知到边界层和多孔结构中的两步扩散过程。采用Langmuir、Freundlich、Temkin、D-R等温模型拟合数据,计算AMX吸附量,其中Langmuir模型效果最好;该模型在20、30、40和50℃条件下,对MGO的最大吸附量分别为91.4、103.9、112.3和122.5 mg/g。此外,根据热力学研究,发现了一种可行的、自发的、吸热的AMX离子吸附过程。在50℃条件下,吸附剂浓度为25 mg/L,吸附剂剂量为1.5 g/L, pH为5,接触时间为90 min,吸附剂的去除率最高(100%)。MGO的比表面积和饱和磁化率分别为74.4 m2/g和27.74 emu/g。总体结果代表了MGO作为吸附剂从水介质中去除AMX的适用性。致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢披露声明作者未报告潜在的利益冲突。
{"title":"Efficient removal of amoxycillin antibiotics onto magnetic graphene oxide: adsorption performance, mechanism, and regeneration exploration","authors":"Sulieman Ibraheem Shelash Al-Ha-Wary, Reena Gupta, I. B. Sapaev, Khulood H. Oudaha, Mays Jassim Abdalkareem, Ali Alsalamy, Ahmed Hussien Radie Alawadi, Fatemeh Zisti, Hossein Moein, Davoud Balarak","doi":"10.1080/03067319.2023.2266698","DOIUrl":"https://doi.org/10.1080/03067319.2023.2266698","url":null,"abstract":"ABSTRACTThe present study was done to synthesise an adsorbent, i.e. magnetic graphene oxide (MGO) nanocomposite, which was performed based on a facile precipitation method and was utilised in experiments for removing amoxycillin (AMX). The characteristics of the prepared adsorbent were defined based on commonly utilised analyses (SEM, XRD, BET, TEM, FTIR, VSM, and pHpzc). According to kinetic studies, the PSO model was found as an applicable model for describing data. Moreover, the two-step diffusion process, i.e. diffusion in the boundary layer and the porous structures, was perceived for the evaluated process based on the IPD model. The isotherm models, including Langmuir, Freundlich, Temkin, and D–R, were employed for fitting data and calculating AMX adsorption capacity, among which Langmuir was the best one; using this model, the maximum adsorption capacities for MGO were 91.4, 103.9, 112.3, and 122.5 mg/g, which were achieved at 20, 30, 40, and 50°C. In addition, a feasible, spontaneous, and endothermic process was found for the adsorption of AMX ions, according to thermodynamic studies. The highest percentage of removal (100%) was obtained for the initial concentration of 25 mg/L at 50°C using the adsorbent dose of 1.5 g/L at a pH of 5 and a contact time of 90 min. The values of 74.4 m2/g and 27.74 emu/g were detected for the specific surface area and saturation magnetisation values of the MGO, respectively. The overall results were representative of the suitability of the MGO as an adsorbent for removing AMX from aqueous media.KEYWORDS: Amoxycillinmagnetic graphene oxideadsorption isothermadsorption kineticsthermodynamic AcknowledgmentsThe authors would like to thank Zahedan University of Medical Sciences for financial support and assistance in performing the experimental work of this research (code: 10490).Disclosure statementNo potential conflict of interest was reported by the author(s).","PeriodicalId":13973,"journal":{"name":"International Journal of Environmental Analytical Chemistry","volume":"127 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136034545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detection of microplastic contamination in table salts in Padang City, Indonesia, and control strategies for choosing healthy salt 印尼巴东市食盐中微塑料污染检测及健康盐选择控制策略
4区 化学 Q3 CHEMISTRY, ANALYTICAL Pub Date : 2023-10-16 DOI: 10.1080/03067319.2023.2268523
Deswati Deswati, Buty Kurnia Hamzani, Yulizar Yusuf, Wiya Elsa Fitri, Adewirli Putra
ABSTRACTThe purpose of this study was to observe the shape, colour, size, type of polymer, and abundance of MPs in various brands of salt commonly consumed by people in the city of Padang, Indonesia. A 50 g salt sample was digested using 30% hydrogen peroxide at 60°C for 30 minutes to degrade organic contaminants. Samples from nine brands of sea salt and one brand of mountain salt investigated were found to be contaminated with MPs with an abundance of MPs (microplastics) ranging from 30 ± 10 to 510 ± 10 particles kg−1. The most dominant shapes, colours, and sizes found were fragments (73%), black (44%), and sizes 101–300 µm (27%). The results of this study can be used as information to help develop effective control of MP pollution and as reference data for issuing policies related to quality parameters for limiting MP content in salt products. It is therefore important to choose healthy salt, that has minimal MP contamination to reduce MP exposure.KEYWORDS: Microplastics (MPs)MPs pollution controlpolymer typesalt contaminationsalt quality Disclosure statementNo potential conflict of interest was reported by the author(s).
摘要本研究的目的是观察印度尼西亚巴东市人们常食用的不同品牌盐的形状、颜色、大小、聚合物类型和MPs的丰度。取50 g盐样品,用30%过氧化氢在60℃条件下消化30分钟,降解有机污染物。9个品牌的海盐和1个品牌的山盐样品被发现被MPs污染,MPs(微塑料)丰度在30±10到510±10颗粒kg−1之间。最主要的形状、颜色和大小是碎片(73%)、黑色(44%)和101-300微米(27%)。本研究结果可作为制定有效控制盐产品中MP污染的信息,并为制定限制盐产品中MP含量的质量参数相关政策提供参考数据。因此,重要的是选择健康的盐,以减少MP污染,以减少MP暴露。关键词:微塑料(MPs)MPs污染控制聚合物类型盐污染盐质量披露声明作者未报告潜在利益冲突。
{"title":"Detection of microplastic contamination in table salts in Padang City, Indonesia, and control strategies for choosing healthy salt","authors":"Deswati Deswati, Buty Kurnia Hamzani, Yulizar Yusuf, Wiya Elsa Fitri, Adewirli Putra","doi":"10.1080/03067319.2023.2268523","DOIUrl":"https://doi.org/10.1080/03067319.2023.2268523","url":null,"abstract":"ABSTRACTThe purpose of this study was to observe the shape, colour, size, type of polymer, and abundance of MPs in various brands of salt commonly consumed by people in the city of Padang, Indonesia. A 50 g salt sample was digested using 30% hydrogen peroxide at 60°C for 30 minutes to degrade organic contaminants. Samples from nine brands of sea salt and one brand of mountain salt investigated were found to be contaminated with MPs with an abundance of MPs (microplastics) ranging from 30 ± 10 to 510 ± 10 particles kg−1. The most dominant shapes, colours, and sizes found were fragments (73%), black (44%), and sizes 101–300 µm (27%). The results of this study can be used as information to help develop effective control of MP pollution and as reference data for issuing policies related to quality parameters for limiting MP content in salt products. It is therefore important to choose healthy salt, that has minimal MP contamination to reduce MP exposure.KEYWORDS: Microplastics (MPs)MPs pollution controlpolymer typesalt contaminationsalt quality Disclosure statementNo potential conflict of interest was reported by the author(s).","PeriodicalId":13973,"journal":{"name":"International Journal of Environmental Analytical Chemistry","volume":"184 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136142094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pb(II) removal using calcium silicates synthesised from industrial wastes: process optimisation and kinetic modelling 利用工业废料合成的硅酸钙去除铅(II):工艺优化和动力学建模
4区 化学 Q3 CHEMISTRY, ANALYTICAL Pub Date : 2023-10-16 DOI: 10.1080/03067319.2023.2264202
T. Aravind Kumar, P. Hari Prasad Reddy
ABSTRACTThis study investigates the potential of calcium silicates (CS) synthesised from granite and marble waste as an adsorbent for sustainable waste management. A simple and chemical-free synthesis method was adopted in the preparation of CS. X-ray diffraction, scanning electron microscopy, zeta potential and particle size distribution techniques were used for the characterisation of CS. As Pb(II) and its derivatives from various industrial effluents exercise significant negative impact on the environment and human health, an attempt was made to remove Pb(II) by adsorption process. Batch experiments were conducted to evaluate the feasibility of removal of pb(II) using CS. The zeta potential value of −83.7 mV and the mean particle size of 916 nm for the prepared CS can enhance adsorption process. The analysis of various adsorption kinetic models reveals that pseudo second order kinetic model exhibited a favourable level of agreement with kinetic data (R2 = 0.999). Response surface methodology utilising central composite design was employed to evaluate various process parameters, such as initial Pb(II) concentration, pH, adsorbent dosage and sonication time on adsorption process. Results from 30 experimental runs performed in accordance with model recommendations concluded that the effect of selected parameters with an R2 value of 0.937 was adequate for the current study. In order to assess the goodness of fit and statistical significance of the model’s performance, ANOVA and Lack of Fit (LOF) tests were conducted. The findings show that Pb(II) can be easily removed from the aqueous solutions using CS as an adsorbent under optimal experimental conditions of 100 mg/l Pb(II) initial concentration, 2 g/l adsorbent dosage, pH of 8 and a sonication time of 45 min.KEYWORDS: Adsorptioncalcium silicatekinetic studiesleadoptimization AcknowledgmentsThe authors would like to thank Dr M Raja Vishwanathan, Associate Professor, Humanities and Social Science, National Institute of technology, Warangal for proofreading the manuscript.Author contributionT Aravind Kumar: Conceptualization, Data curation, Investigation, Methodology, Writing – original draft. P Hari Prasad Reddy: Supervision, Project administration, Resources, Writing – review & editing.Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementThe authors declare that the relevant data supporting the findings of the study are available in the article and supplementary data.Additional informationFundingThe authors reported that there is no funding associated with the work featured in this article.
摘要本研究探讨了从花岗岩和大理石废物中合成的硅酸钙(CS)作为可持续废物管理吸附剂的潜力。采用简单、无化学反应的合成方法制备了CS。利用x射线衍射、扫描电镜、zeta电位和粒径分布技术对CS进行了表征。由于各种工业废水中的铅(II)及其衍生物对环境和人体健康产生了重大的负面影响,因此尝试采用吸附法去除Pb(II)。进行了批量实验,评价了CS去除铅(II)的可行性。所制备的CS的zeta电位值为−83.7 mV,平均粒径为916 nm,可以增强吸附过程。对各种吸附动力学模型的分析表明,拟二级动力学模型与动力学数据具有较好的一致性(R2 = 0.999)。采用中心复合设计的响应面法评价了初始浓度、pH、吸附剂投加量和超声时间等工艺参数对吸附过程的影响。根据模型建议进行的30次实验运行结果表明,所选参数的R2值为0.937,对当前研究的影响是足够的。为了评估模型性能的拟合优度和统计显著性,进行了方差分析和缺乏拟合(LOF)检验。结果表明,在Pb(II)初始浓度为100 mg/l、吸附剂用量为2 g/l、pH = 8、超声处理时间为45 min的条件下,CS作为吸附剂可较好地去除Pb(II)。作者要感谢M Raja Vishwanathan博士,瓦朗加尔国家技术研究所人文与社会科学副教授,对手稿的校对。作者贡献:Aravind Kumar:概念化,数据管理,调查,方法论,写作-原稿。P Hari Prasad Reddy:监督,项目管理,资源,写作-审查和编辑。披露声明作者未报告潜在的利益冲突。数据可得性声明作者声明在文章和补充数据中可获得支持研究结果的相关数据。附加信息资金:作者报告说,没有与本文所述工作相关的资金。
{"title":"Pb(II) removal using calcium silicates synthesised from industrial wastes: process optimisation and kinetic modelling","authors":"T. Aravind Kumar, P. Hari Prasad Reddy","doi":"10.1080/03067319.2023.2264202","DOIUrl":"https://doi.org/10.1080/03067319.2023.2264202","url":null,"abstract":"ABSTRACTThis study investigates the potential of calcium silicates (CS) synthesised from granite and marble waste as an adsorbent for sustainable waste management. A simple and chemical-free synthesis method was adopted in the preparation of CS. X-ray diffraction, scanning electron microscopy, zeta potential and particle size distribution techniques were used for the characterisation of CS. As Pb(II) and its derivatives from various industrial effluents exercise significant negative impact on the environment and human health, an attempt was made to remove Pb(II) by adsorption process. Batch experiments were conducted to evaluate the feasibility of removal of pb(II) using CS. The zeta potential value of −83.7 mV and the mean particle size of 916 nm for the prepared CS can enhance adsorption process. The analysis of various adsorption kinetic models reveals that pseudo second order kinetic model exhibited a favourable level of agreement with kinetic data (R2 = 0.999). Response surface methodology utilising central composite design was employed to evaluate various process parameters, such as initial Pb(II) concentration, pH, adsorbent dosage and sonication time on adsorption process. Results from 30 experimental runs performed in accordance with model recommendations concluded that the effect of selected parameters with an R2 value of 0.937 was adequate for the current study. In order to assess the goodness of fit and statistical significance of the model’s performance, ANOVA and Lack of Fit (LOF) tests were conducted. The findings show that Pb(II) can be easily removed from the aqueous solutions using CS as an adsorbent under optimal experimental conditions of 100 mg/l Pb(II) initial concentration, 2 g/l adsorbent dosage, pH of 8 and a sonication time of 45 min.KEYWORDS: Adsorptioncalcium silicatekinetic studiesleadoptimization AcknowledgmentsThe authors would like to thank Dr M Raja Vishwanathan, Associate Professor, Humanities and Social Science, National Institute of technology, Warangal for proofreading the manuscript.Author contributionT Aravind Kumar: Conceptualization, Data curation, Investigation, Methodology, Writing – original draft. P Hari Prasad Reddy: Supervision, Project administration, Resources, Writing – review & editing.Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementThe authors declare that the relevant data supporting the findings of the study are available in the article and supplementary data.Additional informationFundingThe authors reported that there is no funding associated with the work featured in this article.","PeriodicalId":13973,"journal":{"name":"International Journal of Environmental Analytical Chemistry","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136142510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing radioactivity and hazards: analysis of soil, water, and coal samples near a coal-fired thermal power plant and their implications for human health and the environment 评估放射性和危害:对燃煤火力发电厂附近土壤、水和煤炭样本的分析及其对人类健康和环境的影响
4区 化学 Q3 CHEMISTRY, ANALYTICAL Pub Date : 2023-10-16 DOI: 10.1080/03067319.2023.2267995
S. Yeasmin, S. K. Das, M. M. Mahfuz Siraz, M. S. Rahman
ABSTRACTThe combustion of coal poses significant risks, increasing the radioactive burden on the atmosphere and affecting the health of individuals near coal mines and coal-fired thermal power plants (CFTPPs). A detailed study was conducted within a 3 km radius surrounding the site of Barapukuria Coal Mine Company Limited (BCMCL), Bangladesh’s premier operational coal-fired thermal power plant, during which 50 soil samples, 50 water samples, and 21 coal samples were collected from a variety of locations inside and beyond the BCMCL boundaries, and these samples were then analysed for radioactivity using a high-purity germanium detector. The range of activity concentrations of 226Ra, 232Th, and 40K in the studied soil, water and coal samples were 24–47, 30–76, and 340–570 Bqkg−1; 1.6–2.9, 1.1–3.8, and 53–92 Bqkg−1; 19–57, 20–97, and 78–170 Bqkg−1 respectively. The majority of hazard indices, including absorbed dose rate, gamma index, effective dose, and excess lifetime cancer risk, associated with soil samples were higher than the world average. This indicates that long-term exposure to terrestrial ionising radiation is unsafe for coal miners and the local community. The quantitative measurements of this study have important implications for planning larger and more modern coal-fired power plants. Additionally, the study’s results underscore the need for municipal officials to impose restrictions and closely monitor the release of fly ash in the vicinity of coal-fired power plants. Furthermore, there is a crucial need to monitor the health of workers and locals living near the power plant to safeguard against potential health risks.KEYWORDS: Coal-fired power plantsoilnatural radioactivityHPGehazard parameters Disclosure statementNo potential conflict of interest was reported by the author(s).Author contributionsAll authors contributed to the study’s conception and design. [Selina Yeasmin] collected the samples that were studied in the research. [M.M. Mahfuz Siraz] performed sample measurement and data analysis. [Selina Yeasmin] and [M.M. Mahfuz Siraz] prepared the first draft of the manuscript. The research was carried out under the keen supervision of [M.S. Rahman] and [S.K. Das]. The final manuscript has been read and approved by all authors.Consent to participateNo humans or experimental animals were subjects in this research.Consent to publishAll authors have consented to publish the results of the research.Data availability statementAll data and materials from which the study results have been derived are available and can be provided upon request.Ethical approvalWe declare that the manuscript complies with all the ethical standards that need to be met and follows all the rules of good scientific practice.Additional informationFundingThe authors declare that no funds, grants, or other support were received during the preparation of this manuscript.
摘要煤的燃烧具有重大的风险,增加了大气的放射性负担,影响了煤矿和燃煤热电厂附近人群的健康。在孟加拉国主要的燃煤火力发电厂巴拉普库里亚煤矿有限公司(BCMCL)周围3公里半径范围内进行了详细的研究,在此期间,从BCMCL边界内外的不同地点收集了50个土壤样本、50个水样和21个煤样,然后使用高纯度锗探测器对这些样本进行了放射性分析。土壤、水和煤样品中226Ra、232Th和40K的活度浓度范围分别为24 ~ 47、30 ~ 76和340 ~ 570 Bqkg−1;1.6-2.9、1.1-3.8、53-92 Bqkg−1;Bqkg−1分别为19 ~ 57、20 ~ 97和78 ~ 170。土壤样品的吸收剂量率、γ指数、有效剂量和终生癌症风险等危害指标均高于世界平均水平。这表明长期暴露于地面电离辐射对煤矿工人和当地社区是不安全的。这项研究的定量测量对规划更大、更现代化的燃煤电厂具有重要意义。此外,研究结果强调,市政官员有必要施加限制,并密切监测燃煤电厂附近的粉煤灰排放。此外,至关重要的是需要监测居住在电厂附近的工人和当地人的健康状况,以防范潜在的健康风险。关键词:燃煤电厂;土壤;自然放射性;环境危害参数披露声明作者未报告潜在利益冲突。所有作者都对研究的构思和设计做出了贡献。Selina Yeasmin收集了研究中研究的样本。[M.M.Mahfuz Siraz]进行了样品测量和数据分析。[Selina Yeasmin]和[M.M.Mahfuz Siraz]准备了手稿的初稿。这项研究是在ms . ms .的密切监督下进行的[拉赫曼]和[S.K.Das)。最后的手稿已被所有作者阅读并批准。同意参与本研究没有人类或实验动物作为研究对象。同意发表所有作者都同意发表研究结果。数据可用性声明得出研究结果的所有数据和材料均可获得,并可应要求提供。伦理审批我们声明,本文符合所有需要满足的伦理标准,并遵循所有良好科学实践的规则。作者声明在撰写本文期间没有收到任何资金、资助或其他支持。
{"title":"Assessing radioactivity and hazards: analysis of soil, water, and coal samples near a coal-fired thermal power plant and their implications for human health and the environment","authors":"S. Yeasmin, S. K. Das, M. M. Mahfuz Siraz, M. S. Rahman","doi":"10.1080/03067319.2023.2267995","DOIUrl":"https://doi.org/10.1080/03067319.2023.2267995","url":null,"abstract":"ABSTRACTThe combustion of coal poses significant risks, increasing the radioactive burden on the atmosphere and affecting the health of individuals near coal mines and coal-fired thermal power plants (CFTPPs). A detailed study was conducted within a 3 km radius surrounding the site of Barapukuria Coal Mine Company Limited (BCMCL), Bangladesh’s premier operational coal-fired thermal power plant, during which 50 soil samples, 50 water samples, and 21 coal samples were collected from a variety of locations inside and beyond the BCMCL boundaries, and these samples were then analysed for radioactivity using a high-purity germanium detector. The range of activity concentrations of 226Ra, 232Th, and 40K in the studied soil, water and coal samples were 24–47, 30–76, and 340–570 Bqkg−1; 1.6–2.9, 1.1–3.8, and 53–92 Bqkg−1; 19–57, 20–97, and 78–170 Bqkg−1 respectively. The majority of hazard indices, including absorbed dose rate, gamma index, effective dose, and excess lifetime cancer risk, associated with soil samples were higher than the world average. This indicates that long-term exposure to terrestrial ionising radiation is unsafe for coal miners and the local community. The quantitative measurements of this study have important implications for planning larger and more modern coal-fired power plants. Additionally, the study’s results underscore the need for municipal officials to impose restrictions and closely monitor the release of fly ash in the vicinity of coal-fired power plants. Furthermore, there is a crucial need to monitor the health of workers and locals living near the power plant to safeguard against potential health risks.KEYWORDS: Coal-fired power plantsoilnatural radioactivityHPGehazard parameters Disclosure statementNo potential conflict of interest was reported by the author(s).Author contributionsAll authors contributed to the study’s conception and design. [Selina Yeasmin] collected the samples that were studied in the research. [M.M. Mahfuz Siraz] performed sample measurement and data analysis. [Selina Yeasmin] and [M.M. Mahfuz Siraz] prepared the first draft of the manuscript. The research was carried out under the keen supervision of [M.S. Rahman] and [S.K. Das]. The final manuscript has been read and approved by all authors.Consent to participateNo humans or experimental animals were subjects in this research.Consent to publishAll authors have consented to publish the results of the research.Data availability statementAll data and materials from which the study results have been derived are available and can be provided upon request.Ethical approvalWe declare that the manuscript complies with all the ethical standards that need to be met and follows all the rules of good scientific practice.Additional informationFundingThe authors declare that no funds, grants, or other support were received during the preparation of this manuscript.","PeriodicalId":13973,"journal":{"name":"International Journal of Environmental Analytical Chemistry","volume":"76 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136142891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative study on the role of single- and double-cathode in electro-Fenton process for treatment of Reactive Orange 16 dye bearing wastewaters 电fenton法处理活性橙16染料废水中单、双阴极作用的比较研究
4区 化学 Q3 CHEMISTRY, ANALYTICAL Pub Date : 2023-10-15 DOI: 10.1080/03067319.2023.2264786
Imran Ahmad, Debolina Basu
ABSTRACTThe study presents the single- and dual-cathode electro-Fenton (DCEF) treatment of the Reactive Orange 16 (RO16) azo dye-bearing synthetic wastewater. Initially, the effect of operational parameters, i.e. initial [RO16] dye, [Fe+2] iron catalyst, [NaCl] electrolyte, operational pH, and current density (ρ), on the performance of the electro-Fenton (EF) process was evaluated with the application of low-cost stainless steel (SS) electrodes. At the optimum condition ([RO16] = 150 mg/L, [Fe+2] = 0.4 mM/L, [NaCl] = 0.4 M/L, pH = 3.5, ρ = 20 mA/cm2), with a total electrolysis time of 40 min, the colour (RD) and COD (RC) removals were observed to be 92.023% and 83.344%, respectively. Further, the process was upgraded by providing an additional activated graphite plate (AGP) cathode (dual cathodes), and the results indicated a significant reduction (40 min to 25 min) in the electrolysis time, with a drop in electrical energy (2.51 kW/m3 to 1.47 kW/m3). This consequently reduced the operational cost ($3.42/m3 to $1.23/m3) of the lab-scale DCEF process. The XPS analysis showed enhancement in H2O2 concentration at the surface of the additional AGP cathode. The cyclic voltammetry (CV) test confirmed the complete mineralisation of RO16 dye and the formation of intermediate products. The insight mechanism of the conventional and upgraded processes was also explored for the generated sludge and formed products using FTIR and quantum chemical (QC) analysis. The results showed that the DCEF process was highly efficient, low-cost, and an environmentally compatible technology for the treatment of dye-bearing industrial effluents.KEYWORDS: Electro-Fenton processdouble-cathode applicationactivated graphite plateXPS-analysiscyclic voltammetryquantum chemistry AcknowledgmentsThe authors appreciate the Civil Engineering Department, Motilal Nehru National Institute of Technology Allahabad, for providing the laboratory facility.Disclosure statementNo potential conflict of interest was reported by the author(s).Authors’ contributionsImran Ahmad: Conceptualisation, Data curation, Formal analysis, Investigation, Methodology, Project administration, Software, Validation, Visualisation, Writing – Original draft. Debolina Basu: Conceptualisation, Supervision, Reviewing, and Editing.Data availability statementAll data generated or analysed in the current study are included in the manuscript.
摘要研究了单、双阴极电fenton (DCEF)处理活性橙16 (RO16)偶氮染料合成废水。首先,通过应用低成本不锈钢(SS)电极,评估了初始[RO16]染料、[Fe+2]铁催化剂、[NaCl]电解质、操作pH和电流密度(ρ)对电fenton (EF)工艺性能的影响。在最佳电解条件([RO16] = 150 mg/L, [Fe+2] = 0.4 mM/L, [NaCl] = 0.4 M/L, pH = 3.5, ρ = 20 mA/cm2)下,总电解时间为40 min,颜色(RD)和COD (RC)去除率分别为92.023%和83.344%。此外,通过提供额外的活化石墨板(AGP)阴极(双阴极),该工艺得到了升级,结果表明,电解时间显著缩短(40分钟至25分钟),电能下降(2.51 kW/m3至1.47 kW/m3)。因此,这降低了实验室规模DCEF工艺的运营成本(3.42美元/立方米至1.23美元/立方米)。XPS分析表明,附加的AGP阴极表面H2O2浓度增强。循环伏安(CV)试验证实了RO16染料的完全矿化和中间产物的形成。利用FTIR和量子化学(QC)分析,探讨了传统工艺和升级工艺对产生的污泥和形成的产物的洞察机制。结果表明,DCEF工艺是一种高效、低成本、环保的染料工业废水处理技术。关键词:电fenton工艺双阴极应用活性石墨平台电化学分析循环伏安法量子化学致谢作者感谢阿拉哈巴德尼赫鲁国立理工学院土木工程系提供的实验室设施。披露声明作者未报告潜在的利益冲突。作者贡献:simran Ahmad:概念化,数据管理,形式分析,调查,方法论,项目管理,软件,验证,可视化,写作-原稿。Debolina Basu:概念,监督,审查和编辑。数据可用性声明当前研究中产生或分析的所有数据都包含在手稿中。
{"title":"Comparative study on the role of single- and double-cathode in electro-Fenton process for treatment of Reactive Orange 16 dye bearing wastewaters","authors":"Imran Ahmad, Debolina Basu","doi":"10.1080/03067319.2023.2264786","DOIUrl":"https://doi.org/10.1080/03067319.2023.2264786","url":null,"abstract":"ABSTRACTThe study presents the single- and dual-cathode electro-Fenton (DCEF) treatment of the Reactive Orange 16 (RO16) azo dye-bearing synthetic wastewater. Initially, the effect of operational parameters, i.e. initial [RO16] dye, [Fe+2] iron catalyst, [NaCl] electrolyte, operational pH, and current density (ρ), on the performance of the electro-Fenton (EF) process was evaluated with the application of low-cost stainless steel (SS) electrodes. At the optimum condition ([RO16] = 150 mg/L, [Fe+2] = 0.4 mM/L, [NaCl] = 0.4 M/L, pH = 3.5, ρ = 20 mA/cm2), with a total electrolysis time of 40 min, the colour (RD) and COD (RC) removals were observed to be 92.023% and 83.344%, respectively. Further, the process was upgraded by providing an additional activated graphite plate (AGP) cathode (dual cathodes), and the results indicated a significant reduction (40 min to 25 min) in the electrolysis time, with a drop in electrical energy (2.51 kW/m3 to 1.47 kW/m3). This consequently reduced the operational cost ($3.42/m3 to $1.23/m3) of the lab-scale DCEF process. The XPS analysis showed enhancement in H2O2 concentration at the surface of the additional AGP cathode. The cyclic voltammetry (CV) test confirmed the complete mineralisation of RO16 dye and the formation of intermediate products. The insight mechanism of the conventional and upgraded processes was also explored for the generated sludge and formed products using FTIR and quantum chemical (QC) analysis. The results showed that the DCEF process was highly efficient, low-cost, and an environmentally compatible technology for the treatment of dye-bearing industrial effluents.KEYWORDS: Electro-Fenton processdouble-cathode applicationactivated graphite plateXPS-analysiscyclic voltammetryquantum chemistry AcknowledgmentsThe authors appreciate the Civil Engineering Department, Motilal Nehru National Institute of Technology Allahabad, for providing the laboratory facility.Disclosure statementNo potential conflict of interest was reported by the author(s).Authors’ contributionsImran Ahmad: Conceptualisation, Data curation, Formal analysis, Investigation, Methodology, Project administration, Software, Validation, Visualisation, Writing – Original draft. Debolina Basu: Conceptualisation, Supervision, Reviewing, and Editing.Data availability statementAll data generated or analysed in the current study are included in the manuscript.","PeriodicalId":13973,"journal":{"name":"International Journal of Environmental Analytical Chemistry","volume":"143 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135759665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Removal of Th(IV) from groundwater by adsorption onto nano-Kaolin and nano-Kaolin/MnFe 2 O 4 composite 纳米高岭土和纳米高岭土/ mnfe2o4复合材料对地下水中Th(IV)的吸附研究
4区 化学 Q3 CHEMISTRY, ANALYTICAL Pub Date : 2023-10-09 DOI: 10.1080/03067319.2023.2263385
Jaafar Jaaferh, Fawwaz I. Khalili, Ahmad S. Masadeh
ABSTRACTThe adsorption of Th(IV) ions by nano-Kaolin and nano-Kaolin/MnFe2O4 composite were studied as a function of pH, sorbent mass, time, and temperature. Kinetic data was fitted to pseudo second-order model, and the maximum value of the adsorption capacity of the monolayer (qm) for nano-Kaolin and nano-Kaolin/MnFe2O4 was at pH 3. The Langmuir, Freundlich, and Dubinin–Radushkevich isotherm equations were fitted to the adsorption data and the proper constants were calculated. From adsorption isotherms at different temperatures, ΔH° (endothermic), ΔG° (favourable), and ΔS° (positive) were calculated.KEYWORDS: Adsorptionmanganese ferritenano-Kaolin (R)nano-Kaolin/MnFe2O4 (RC)U(VI)Th(IV) Disclosure statementNo potential conflict of interest was reported by the author(s).
摘要研究了纳米高岭土和纳米高岭土/MnFe2O4复合材料对Th(IV)离子的吸附性能与pH、吸附剂质量、时间和温度的关系。动力学数据拟合为准二阶模型,纳米高岭土和纳米高岭土/MnFe2O4的单层吸附量(qm)在pH为3时达到最大值。拟合了Langmuir、Freundlich和Dubinin-Radushkevich等温线方程,并计算了相应的吸附常数。根据不同温度下的吸附等温线,计算出ΔH°(吸热)、ΔG°(有利)和ΔS°(正)。关键词:吸附;铁酸锰-纳米高岭土(R)纳米高岭土/MnFe2O4 (RC)U(VI)Th(IV)披露声明作者未报告潜在利益冲突。
{"title":"Removal of Th(IV) from groundwater by adsorption onto nano-Kaolin and nano-Kaolin/MnFe <sub>2</sub> O <sub>4</sub> composite","authors":"Jaafar Jaaferh, Fawwaz I. Khalili, Ahmad S. Masadeh","doi":"10.1080/03067319.2023.2263385","DOIUrl":"https://doi.org/10.1080/03067319.2023.2263385","url":null,"abstract":"ABSTRACTThe adsorption of Th(IV) ions by nano-Kaolin and nano-Kaolin/MnFe2O4 composite were studied as a function of pH, sorbent mass, time, and temperature. Kinetic data was fitted to pseudo second-order model, and the maximum value of the adsorption capacity of the monolayer (qm) for nano-Kaolin and nano-Kaolin/MnFe2O4 was at pH 3. The Langmuir, Freundlich, and Dubinin–Radushkevich isotherm equations were fitted to the adsorption data and the proper constants were calculated. From adsorption isotherms at different temperatures, ΔH° (endothermic), ΔG° (favourable), and ΔS° (positive) were calculated.KEYWORDS: Adsorptionmanganese ferritenano-Kaolin (R)nano-Kaolin/MnFe2O4 (RC)U(VI)Th(IV) Disclosure statementNo potential conflict of interest was reported by the author(s).","PeriodicalId":13973,"journal":{"name":"International Journal of Environmental Analytical Chemistry","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135146648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
One-pot/one-step synthesis of Bi 2 O 3 /ZnO/Pd nanocomposite for preconcentration and determination of some heavy metal ions in different samples 一锅一步法合成bi2o3 /ZnO/Pd纳米复合材料,用于不同样品中重金属离子的富集和测定
4区 化学 Q3 CHEMISTRY, ANALYTICAL Pub Date : 2023-10-09 DOI: 10.1080/03067319.2023.2262393
Hamidreza Haghgoo Qezelje, Maryam Rajabi, Alireza Shirmahi, Sayeh Ghanbari-Adivi, Ahmad Hosseini-Bandegharaei, Alireza Asghari, Yasaman Sedaghat, Mohammad Bazregar, Fatemeh Memarian
ABSTRACTIn this contribution, a new green eco-friendly synthesised nanocomposite (Bi2O3/ZnO/Pd) was fabricated by one-pot/one-step method, using ultrasonic waves. The nanocomposite was used for pre-concentration of some heavy metals, i.e. cadmium (II), lead (II), and copper (II), exploiting ultrasound-assisted dispersive micro solid phase extraction (UA-D-μ-SPE) method, before their determination by flame atomic absorption spectroscopy (FAAS). The adsorbent synthesis was confirmed by XRD, SEM, BET, TEM, EDS, and TGA analyses. The central composite design (CCD) method was employed to optimise various parameters affecting the extraction of heavy metals. The effective parameters in the adsorption process, viz. the amount of adsorbent (16 mg), pH of the sample solution (6.2), and adsorption time (4 min), were optimised. The type and the concentration of eluting agent (HCl solution) was investigated as one parameter at a time. Impressive parameters in the desorption stage such as the volume and concentration of eluting solution (400 μL of 0.8 mol L−1 HCl) and desorption time (2.5 min) were optimised. In the best extraction conditions for cadmium (II), lead (II), and copper (II), the limits of detection (LODs) were 0.75, 2.1, and 0.90 ng mL−1; the limits of quantification (LOQs) were 2.5, 7.0, and 3.0 ng mL−1; the linear dynamic ranges (LDRs) were 2.5–100, 7.0–600, and 3.0–250 ng mL−1; preconcentration factors (PF) were 24.10, 25.20, and 25.39; and the relative standard deviations (RSDs%) were 3.7, 4.1, and 3.8 (n = 5), respectively. Additionally, the adsorbent had the ability to extract metals up to 8 times without a significant decrease in the extraction percentages. The adsorbent was successfully used in the determination of cadmium (II), lead (II), and copper (II) ions in different food, biological, cosmetic, and water samples.KEYWORDS: Bi2O3/ZnO/Pdheavy metal ionsUA-D-μ-SPEFAASfood sampleswater samples Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementThe data will be made available upon request.Supplementary materialSupplemental data for this article can be accessed online at https://doi.org/10.1080/03067319.2023.2262393.Additional informationFundingWe want to take this opportunity to appreciate the support of Semnan University’s Chemistry Faculty for supporting this work [Grant 1671110].
在此基础上,利用超声波,采用一锅一步法制备了一种绿色环保的纳米复合材料(Bi2O3/ZnO/Pd)。采用超声辅助分散微固相萃取(UA-D-μ-SPE)法对镉(II)、铅(II)、铜(II)等重金属进行预富集,然后采用火焰原子吸收光谱法(FAAS)进行测定。通过XRD、SEM、BET、TEM、EDS、TGA等分析证实了吸附剂的合成。采用中心复合设计(CCD)方法对影响重金属提取的各参数进行优化。优化了吸附剂用量(16 mg)、样品溶液pH(6.2)、吸附时间(4 min)等吸附过程的有效参数。同时考察了洗脱剂(盐酸溶液)的种类和浓度。优化了洗脱液的体积、浓度(400 μL / 0.8 mol L−1 HCl)和洗脱时间(2.5 min)。在最佳提取条件下,镉(II)、铅(II)和铜(II)的检出限(lod)分别为0.75、2.1和0.90 ng mL−1;定量限(loq)分别为2.5、7.0和3.0 ng mL−1;线性动态范围(ldr)分别为2.5 ~ 100、7.0 ~ 600和3.0 ~ 250 ng mL−1;预浓缩因子(PF)分别为24.10、25.20和25.39;相对标准偏差(rsd %)分别为3.7、4.1和3.8 (n = 5)。此外,吸附剂有能力提取金属高达8次而不显着降低提取率。该吸附剂成功地用于食品、生物、化妆品和水样中镉(II)、铅(II)和铜(II)离子的测定。关键词:Bi2O3/ZnO/ pd重金属离子sua - d -μ- spefaas食品样品水样披露声明作者未报告潜在利益冲突。数据可用性声明数据可应要求提供。补充材料本文的补充数据可以在https://doi.org/10.1080/03067319.2023.2262393.Additional上获得。我们想借此机会感谢Semnan大学化学系对这项工作的支持[Grant 1671110]。
{"title":"One-pot/one-step synthesis of Bi <sub>2</sub> O <sub>3</sub> /ZnO/Pd nanocomposite for preconcentration and determination of some heavy metal ions in different samples","authors":"Hamidreza Haghgoo Qezelje, Maryam Rajabi, Alireza Shirmahi, Sayeh Ghanbari-Adivi, Ahmad Hosseini-Bandegharaei, Alireza Asghari, Yasaman Sedaghat, Mohammad Bazregar, Fatemeh Memarian","doi":"10.1080/03067319.2023.2262393","DOIUrl":"https://doi.org/10.1080/03067319.2023.2262393","url":null,"abstract":"ABSTRACTIn this contribution, a new green eco-friendly synthesised nanocomposite (Bi2O3/ZnO/Pd) was fabricated by one-pot/one-step method, using ultrasonic waves. The nanocomposite was used for pre-concentration of some heavy metals, i.e. cadmium (II), lead (II), and copper (II), exploiting ultrasound-assisted dispersive micro solid phase extraction (UA-D-μ-SPE) method, before their determination by flame atomic absorption spectroscopy (FAAS). The adsorbent synthesis was confirmed by XRD, SEM, BET, TEM, EDS, and TGA analyses. The central composite design (CCD) method was employed to optimise various parameters affecting the extraction of heavy metals. The effective parameters in the adsorption process, viz. the amount of adsorbent (16 mg), pH of the sample solution (6.2), and adsorption time (4 min), were optimised. The type and the concentration of eluting agent (HCl solution) was investigated as one parameter at a time. Impressive parameters in the desorption stage such as the volume and concentration of eluting solution (400 μL of 0.8 mol L−1 HCl) and desorption time (2.5 min) were optimised. In the best extraction conditions for cadmium (II), lead (II), and copper (II), the limits of detection (LODs) were 0.75, 2.1, and 0.90 ng mL−1; the limits of quantification (LOQs) were 2.5, 7.0, and 3.0 ng mL−1; the linear dynamic ranges (LDRs) were 2.5–100, 7.0–600, and 3.0–250 ng mL−1; preconcentration factors (PF) were 24.10, 25.20, and 25.39; and the relative standard deviations (RSDs%) were 3.7, 4.1, and 3.8 (n = 5), respectively. Additionally, the adsorbent had the ability to extract metals up to 8 times without a significant decrease in the extraction percentages. The adsorbent was successfully used in the determination of cadmium (II), lead (II), and copper (II) ions in different food, biological, cosmetic, and water samples.KEYWORDS: Bi2O3/ZnO/Pdheavy metal ionsUA-D-μ-SPEFAASfood sampleswater samples Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementThe data will be made available upon request.Supplementary materialSupplemental data for this article can be accessed online at https://doi.org/10.1080/03067319.2023.2262393.Additional informationFundingWe want to take this opportunity to appreciate the support of Semnan University’s Chemistry Faculty for supporting this work [Grant 1671110].","PeriodicalId":13973,"journal":{"name":"International Journal of Environmental Analytical Chemistry","volume":"84 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135141954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of organochlorine pesticides in contaminated soil by GC-MS/MS using accelerated solvent extraction as a green sample preparation 加速溶剂萃取-气相色谱-质谱联用技术分析污染土壤中有机氯农药
4区 化学 Q3 CHEMISTRY, ANALYTICAL Pub Date : 2023-10-09 DOI: 10.1080/03067319.2023.2264191
Nam Vu-Duc, Thuy Minh-Le, Xuyen Nguyen-Thi, Cam Tu Vu, Van-Hoi Bui, Hong An Vu-Thi, Dinh Binh Chu
ABSTRACTOrganochlorine pesticides (OCPs), persistent organic pollutants, in the contaminated soil have been analysed by a gas chromatography-tandem mass spectrometry (MS) in this work. OCPs were extracted with a mixture of dichloromethane and n-hexane by using accelerated solvent extraction at elevated temperature and high pressure. The extractant was concentrated by a rotary vacuum evaporator and cleaned up by silica gel solid phase extraction. OCPs were then separated by a gas chromatography in combination with an electron impact ionisation MS in MS/MS mode. The limit of detection, limit of quantification and other important parameters of the GC-EI-MS/MS analytical method, such as repeatability, recovery and so on, have been investigated and presented. Limit of detection and limit of quantification have been achieved from 0.005 ng g−1 (p,p’-DDE) to 0.405 ng g−1 (dieldrin) and 0.016 ng g−1 to 1.216 ng g−1, respectively. The repeatability of this method was achieved below 8.3% and 13.7% for short- and long-term stability. Recovery of all OCPs ranged from 78.1% ± 1.5% to 117.5% ± 3.2%. The developed analytical method was validated by spiking experiments in the real samples. The validated method has been then used for the analysis of OCPs in the soil samples that were collected from the contaminated areas in Vietnam. Results showed the presence of hexachlorocyclohexane isomers and p-p’-DDT in all analysed samples at elevated levels.KEYWORDS: Organochlorine pesticidesGC-MS/MScontaminated soil samplesaccelerated solvent extractionsilica gel clean-up Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis research is funded by the National Foundation for Science and Technology Development (Nafosted) under the grant number [104.04-2018.331].
摘要采用气相色谱-串联质谱联用技术对污染土壤中的持久性有机污染物有机氯农药进行了分析。以二氯甲烷和正己烷为溶剂,采用加速溶剂萃取法,在高温高压条件下提取ocp。萃取剂经旋转真空蒸发器浓缩,硅胶固相萃取净化。然后用气相色谱法结合电子冲击电离质谱法在质谱/质谱模式下分离OCPs。对GC-EI-MS/MS分析方法的检出限、定量限及重复性、回收率等重要参数进行了研究。检测限和定量限分别为0.005 ~ 0.405 ng g−1 (p,p′-DDE)和0.016 ng g−1 ~ 1.216 ng g−1。该方法短期和长期稳定性的重复性分别低于8.3%和13.7%。所有ocp的回收率为78.1%±1.5% ~ 117.5%±3.2%。在实际样品中进行了峰化实验,验证了所建立的分析方法。该验证方法随后被用于分析从越南污染地区收集的土壤样品中的ocp。结果显示,六氯环己烷异构体和p-p ' -滴滴涕在所有分析样本中均处于较高水平。关键词:有机氯农药;气相色谱-质谱联用/质谱联用污染土壤样品;加速溶剂萃取-硅胶净化;本研究由国家科学技术发展基金资助,批准号[104.04-2018.331]。
{"title":"Analysis of organochlorine pesticides in contaminated soil by GC-MS/MS using accelerated solvent extraction as a green sample preparation","authors":"Nam Vu-Duc, Thuy Minh-Le, Xuyen Nguyen-Thi, Cam Tu Vu, Van-Hoi Bui, Hong An Vu-Thi, Dinh Binh Chu","doi":"10.1080/03067319.2023.2264191","DOIUrl":"https://doi.org/10.1080/03067319.2023.2264191","url":null,"abstract":"ABSTRACTOrganochlorine pesticides (OCPs), persistent organic pollutants, in the contaminated soil have been analysed by a gas chromatography-tandem mass spectrometry (MS) in this work. OCPs were extracted with a mixture of dichloromethane and n-hexane by using accelerated solvent extraction at elevated temperature and high pressure. The extractant was concentrated by a rotary vacuum evaporator and cleaned up by silica gel solid phase extraction. OCPs were then separated by a gas chromatography in combination with an electron impact ionisation MS in MS/MS mode. The limit of detection, limit of quantification and other important parameters of the GC-EI-MS/MS analytical method, such as repeatability, recovery and so on, have been investigated and presented. Limit of detection and limit of quantification have been achieved from 0.005 ng g−1 (p,p’-DDE) to 0.405 ng g−1 (dieldrin) and 0.016 ng g−1 to 1.216 ng g−1, respectively. The repeatability of this method was achieved below 8.3% and 13.7% for short- and long-term stability. Recovery of all OCPs ranged from 78.1% ± 1.5% to 117.5% ± 3.2%. The developed analytical method was validated by spiking experiments in the real samples. The validated method has been then used for the analysis of OCPs in the soil samples that were collected from the contaminated areas in Vietnam. Results showed the presence of hexachlorocyclohexane isomers and p-p’-DDT in all analysed samples at elevated levels.KEYWORDS: Organochlorine pesticidesGC-MS/MScontaminated soil samplesaccelerated solvent extractionsilica gel clean-up Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis research is funded by the National Foundation for Science and Technology Development (Nafosted) under the grant number [104.04-2018.331].","PeriodicalId":13973,"journal":{"name":"International Journal of Environmental Analytical Chemistry","volume":"394 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135094551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Environmental Analytical Chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1