Pub Date : 2016-08-01DOI: 10.7508/IJND.2016.03.005
Ali Ghamartale, Rahmatollah Saboori, S. Sabbaghi
A high pressure drop happens when heavy oil with high viscosity moves through the oil pipeline. A variety of methods to avoid this pressure drop is available. One of which is injection of chemicals to reduce the viscosity and ultimately reduce pressure drop. Using the Pipesim software, the effect of dispersion of nano and microparticles into the oil has been simulated to study the amount of the pressure drop pipelines. The effects of the parameters such as the type and concentration of particles, temperature, oil rate, inside diameter of pipe and the flow type were examined. Simulating the experimental data by the software, gives promising experimental results. The results show that the copper micro-particles with 0.1 wt% concentrations have the lowest pressure drop per unit length. At low temperatures the effect of concentration of micro particle is important and at high temperatures effects of temperature is dominant. It is noteworthy that in higher rates, the presence of any amount of particles has a favorable impact on the pressure drop. For laminar and turbulent flow, pressure drop will decrease when the oil viscosity decreases. On the contrary for transient flow, pressure drop will increase when the viscosity reduces.
{"title":"The effect of micro/nano-particles on pressure drop in Oil pipeline: Simulation","authors":"Ali Ghamartale, Rahmatollah Saboori, S. Sabbaghi","doi":"10.7508/IJND.2016.03.005","DOIUrl":"https://doi.org/10.7508/IJND.2016.03.005","url":null,"abstract":"A high pressure drop happens when heavy oil with high viscosity moves through the oil pipeline. A variety of methods to avoid this pressure drop is available. One of which is injection of chemicals to reduce the viscosity and ultimately reduce pressure drop. Using the Pipesim software, the effect of dispersion of nano and microparticles into the oil has been simulated to study the amount of the pressure drop pipelines. The effects of the parameters such as the type and concentration of particles, temperature, oil rate, inside diameter of pipe and the flow type were examined. Simulating the experimental data by the software, gives promising experimental results. The results show that the copper micro-particles with 0.1 wt% concentrations have the lowest pressure drop per unit length. At low temperatures the effect of concentration of micro particle is important and at high temperatures effects of temperature is dominant. It is noteworthy that in higher rates, the presence of any amount of particles has a favorable impact on the pressure drop. For laminar and turbulent flow, pressure drop will decrease when the oil viscosity decreases. On the contrary for transient flow, pressure drop will increase when the viscosity reduces.","PeriodicalId":14081,"journal":{"name":"international journal of nano dimension","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79301085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-08-01DOI: 10.7508/IJND.2016.03.002
G. Allaedini, S. M. Tasirin, P. Aminayi, Z. Yaakob, M. Talib
This review paper provides researcherwith a comprehensive information about the Carbon Nano tubes and the catalyst parameters that influences theproduction and morphology of the of Carbon Nano tubes.Carbon nanotubes, referred to as CNTs, are one of the most important materials used in electrical, mechanical, thermal, chemical and textile industries. Since discovery of CNTs in 1991, many scientists, research groups, and industries have attempted to attain large scale production of CNTs, considering the costs and yields. Catalyst plays an important role in the production of CNTs. In this review various factors that affect CNT production via using different catalysts are reviewed. Factors which are important when choosing a suitable catalyst are also discussed
{"title":"Carbon nanotubes via different catalysts and the important factors that affect their production: A review on catalyst preferences","authors":"G. Allaedini, S. M. Tasirin, P. Aminayi, Z. Yaakob, M. Talib","doi":"10.7508/IJND.2016.03.002","DOIUrl":"https://doi.org/10.7508/IJND.2016.03.002","url":null,"abstract":"This review paper provides researcherwith a comprehensive information about the Carbon Nano tubes and the catalyst parameters that influences theproduction and morphology of the of Carbon Nano tubes.Carbon nanotubes, referred to as CNTs, are one of the most important materials used in electrical, mechanical, thermal, chemical and textile industries. Since discovery of CNTs in 1991, many scientists, research groups, and industries have attempted to attain large scale production of CNTs, considering the costs and yields. Catalyst plays an important role in the production of CNTs. In this review various factors that affect CNT production via using different catalysts are reviewed. Factors which are important when choosing a suitable catalyst are also discussed","PeriodicalId":14081,"journal":{"name":"international journal of nano dimension","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85532736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-08-01DOI: 10.7508/IJND.2016.03.003
S. Farhadi, Gholamali Nadri, M. Javanmard
In this paper, an energetic coordination compound namely pentamminenitratocobalt(III) nitrate, [Co(NH3)5(NO3)](NO3)2, was used as a new precursor for the preparation of Co3O4 nanoparticles. The results showed that the complex is easily decomposed into the Co3O4 nanoparticles at low temperature (200 °C) without employing a surfactant or solvent and any complicated equipment. The product was characterized by differential scanning calorimetry (DSC), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX). Optical and magnetic properties of the product were studied by UV-visible (UV-vis) spectroscopy and a vibrating sample magnetometer (VSM), respectively. FT-IR, XRD and EDS analyses confirmed the formation of highly pure spinel-type Co3O4 phase with cubic structure. TEM images showed that the Co3O4 nanoparticles are approximately in the range of 10 to 24 nm with a mean size of around 17 nm. The optical spectrum of the Co3O4 nanoparticles revealed the presence of two band gaps at 3.45 and 2.20 eV which are blue-shifted relative to reported values for the bulk sample. The magnetic measurement of the product showed a weak ferromagnetic order at room temperature.
{"title":"[Co(NH3)5(NO3)](NO3)2 as an energetic coordination precursor for the preparation of Co3O4 nanoparticles at low temperature","authors":"S. Farhadi, Gholamali Nadri, M. Javanmard","doi":"10.7508/IJND.2016.03.003","DOIUrl":"https://doi.org/10.7508/IJND.2016.03.003","url":null,"abstract":"In this paper, an energetic coordination compound namely pentamminenitratocobalt(III) nitrate, [Co(NH3)5(NO3)](NO3)2, was used as a new precursor for the preparation of Co3O4 nanoparticles. The results showed that the complex is easily decomposed into the Co3O4 nanoparticles at low temperature (200 °C) without employing a surfactant or solvent and any complicated equipment. The product was characterized by differential scanning calorimetry (DSC), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX). Optical and magnetic properties of the product were studied by UV-visible (UV-vis) spectroscopy and a vibrating sample magnetometer (VSM), respectively. FT-IR, XRD and EDS analyses confirmed the formation of highly pure spinel-type Co3O4 phase with cubic structure. TEM images showed that the Co3O4 nanoparticles are approximately in the range of 10 to 24 nm with a mean size of around 17 nm. The optical spectrum of the Co3O4 nanoparticles revealed the presence of two band gaps at 3.45 and 2.20 eV which are blue-shifted relative to reported values for the bulk sample. The magnetic measurement of the product showed a weak ferromagnetic order at room temperature.","PeriodicalId":14081,"journal":{"name":"international journal of nano dimension","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76517751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-08-01DOI: 10.7508/IJND.2016.03.007
S. Madani, K. Zare, M. Ghoranneviss
The effect of temperature variation on the growth of Carbon Nanotubes (CNTs) using Thermal Chemical Vapor Deposition (TCVD) is presented. Nickel and Cobalt (Ni-Co) thin films on Silicon (Si) substrates were used as catalysts in TCVD technique. Acetylene gas was used in CNTs growth process at the controlled temperature ranges from 850-1000 C. Catalysts and CNTs characterization was carried out using Atomic Force Microscopy (AFM), Energy Dispersive X-ray (EDX), Field Emission Scanning Electron Microscopy (FESEM) and Raman spectroscopy. It was found that the CNTs diameters increased with the temperature. The CNTs diameters were continually increased from 70 nm to 180 nm in the temperature range. In addition, the degree of crystallinity of the grown CNTs decreased.
{"title":"Role of growth temperature in CVD synthesis of Carbon nanotubes from Ni-Co bimetallic catalysts","authors":"S. Madani, K. Zare, M. Ghoranneviss","doi":"10.7508/IJND.2016.03.007","DOIUrl":"https://doi.org/10.7508/IJND.2016.03.007","url":null,"abstract":"The effect of temperature variation on the growth of Carbon Nanotubes (CNTs) using Thermal Chemical Vapor Deposition (TCVD) is presented. Nickel and Cobalt (Ni-Co) thin films on Silicon (Si) substrates were used as catalysts in TCVD technique. Acetylene gas was used in CNTs growth process at the controlled temperature ranges from 850-1000 C. Catalysts and CNTs characterization was carried out using Atomic Force Microscopy (AFM), Energy Dispersive X-ray (EDX), Field Emission Scanning Electron Microscopy (FESEM) and Raman spectroscopy. It was found that the CNTs diameters increased with the temperature. The CNTs diameters were continually increased from 70 nm to 180 nm in the temperature range. In addition, the degree of crystallinity of the grown CNTs decreased.","PeriodicalId":14081,"journal":{"name":"international journal of nano dimension","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72970399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-08-01DOI: 10.7508/IJND.2016.03.009
E. Mostafa, Kiani Gholamreza, Shahriar Farhad, Boroomandnasab Saeed
In this work, hierarchical WO 3 core-shell microspheres were synthesized via a facile template-free precipitation method. Gas sensing properties of the synthesized powder to acetone and some other volatile organic compounds were comparatively investigated with commercial WO 3 nanoparticles. The synthesized and commercial powders were characterized by X-ray diffraction, scanning electron microscopy, particle size distribution analysis, Brunauer–Emmett–Teller and Barrette-Joyner-Halenda techniques. Gas sensors were fabricated by deposition of powders between/on interdigitated electrodes via sedimentation approach. The results show that both sensors are sufficiently sensitive to detect 1.8 ppm of acetone; diabetes diagnosis threshold in human exhaled breath. Indeed, the hierarchical based one is highly sensitive and more selective to acetone.
{"title":"ACETONE SENSING PROPERTIES OF HIERARCHICAL WO3 CORE-SHELL MICROSPHERES IN COMPARISON WITH COMMERCIAL NANOPARTICLES","authors":"E. Mostafa, Kiani Gholamreza, Shahriar Farhad, Boroomandnasab Saeed","doi":"10.7508/IJND.2016.03.009","DOIUrl":"https://doi.org/10.7508/IJND.2016.03.009","url":null,"abstract":"In this work, hierarchical WO 3 core-shell microspheres were synthesized via a facile template-free precipitation method. Gas sensing properties of the synthesized powder to acetone and some other volatile organic compounds were comparatively investigated with commercial WO 3 nanoparticles. The synthesized and commercial powders were characterized by X-ray diffraction, scanning electron microscopy, particle size distribution analysis, Brunauer–Emmett–Teller and Barrette-Joyner-Halenda techniques. Gas sensors were fabricated by deposition of powders between/on interdigitated electrodes via sedimentation approach. The results show that both sensors are sufficiently sensitive to detect 1.8 ppm of acetone; diabetes diagnosis threshold in human exhaled breath. Indeed, the hierarchical based one is highly sensitive and more selective to acetone.","PeriodicalId":14081,"journal":{"name":"international journal of nano dimension","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81135317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-08-01DOI: 10.7508/IJND.2016.03.010
F. Khodadadeh, P. A. Azar, Mohamad Saber Tehrani, N. Assi
This paper reports the synthesis and characterization of photocatalyst CdS nanoparticles for investigation of photocatalytic degradation of 2,4,6-trichlorophenol. CdS nanoparticles were synthesized by the microwave-assisted sol-gel method and characterized by various techniques such as X-ray diffraction, filed emission scanning electron microscopy, energy dispersive spectroscopy, Fourier transform infrared spectroscopy and UV-visible spectrophotometer. The average crystallite size was found to be 46 nm. The influences of catalyst amount, contaminant concentration, and pH of the reaction solution were evaluated and optimized. Highest degradation was obtained after 3hours UV-C light irradiation. The kinetic was evaluated in different contaminant concentrations under optimized conditions. It showed that the 2,4,6-trichlorophenol degradation reactions follow pseudo first order kinetic.
{"title":"Photocatalytic degradation of 2, 4, 6-Ttrichlorophenol with CdS nanoparticles synthesis by microwave-assisted sol-gel method","authors":"F. Khodadadeh, P. A. Azar, Mohamad Saber Tehrani, N. Assi","doi":"10.7508/IJND.2016.03.010","DOIUrl":"https://doi.org/10.7508/IJND.2016.03.010","url":null,"abstract":"This paper reports the synthesis and characterization of photocatalyst CdS nanoparticles for investigation of photocatalytic degradation of 2,4,6-trichlorophenol. CdS nanoparticles were synthesized by the microwave-assisted sol-gel method and characterized by various techniques such as X-ray diffraction, filed emission scanning electron microscopy, energy dispersive spectroscopy, Fourier transform infrared spectroscopy and UV-visible spectrophotometer. The average crystallite size was found to be 46 nm. The influences of catalyst amount, contaminant concentration, and pH of the reaction solution were evaluated and optimized. Highest degradation was obtained after 3hours UV-C light irradiation. The kinetic was evaluated in different contaminant concentrations under optimized conditions. It showed that the 2,4,6-trichlorophenol degradation reactions follow pseudo first order kinetic.","PeriodicalId":14081,"journal":{"name":"international journal of nano dimension","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78956303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-08-01DOI: 10.7508/IJND.2016.03.004
Razieh Habibpour, R. Vaziri
In this study, the structures, the IR spectroscopy, and the electronic properties of Au n Cu m (n+m≤5) bimetallic clusters were studied and compared with those of pure gold and copper clusters using the generalized gradient approximation (GGA) and exchange correlation density functional theory (DFT). The study of an O 2 -Au n Cu m system is important to identify the promotion effects of each of the two metals and their effect in catalysts, sensors, energy sources, or many other applications. This study also demonstrated that the O 2 molecule preferred to adsorb at the Cu site rather than at the Au site in bimetallic clusters. O 2 adsorption at a bridge site is energetically more favored over the other sites (1- both oxygen atoms are bonded to the same substrate atom 2- O 2 is connected to a Cu atom through a single bond) for oxygen adsorption on these clusters. Further, it was concluded that after the adsorption of the O 2 molecule on the bimetallic clusters, the Au-Cu interaction is strengthened and the O-O interaction is weakened; the reactivity improvement of the oxygen molecule was clear.
本文采用广义梯度近似(GGA)和交换相关密度泛函理论(DFT)研究了Au n Cu m (n+m≤5)双金属团簇的结构、红外光谱和电子性质,并与纯金和纯铜团簇进行了比较。o2 -Au和Cu - m体系的研究对于确定这两种金属的促进作用及其在催化剂、传感器、能源或许多其他应用中的作用是重要的。该研究还表明,在双金属簇中,o2分子更倾向于吸附在Cu位点而不是Au位点。o2在桥上的吸附在能量上比其他位置(1-两个氧原子都与同一个底物原子相连;2- o2通过单键与Cu原子相连)更有利于氧在这些簇上的吸附。进一步得出o2分子吸附在双金属团簇上后,Au-Cu相互作用增强,O-O相互作用减弱;氧分子的反应性改善是明显的。
{"title":"Investigation of structural and electronic properties of small Au n Cu m (n+m≤5) nano-clusters for Oxygen adsorption","authors":"Razieh Habibpour, R. Vaziri","doi":"10.7508/IJND.2016.03.004","DOIUrl":"https://doi.org/10.7508/IJND.2016.03.004","url":null,"abstract":"In this study, the structures, the IR spectroscopy, and the electronic properties of Au n Cu m (n+m≤5) bimetallic clusters were studied and compared with those of pure gold and copper clusters using the generalized gradient approximation (GGA) and exchange correlation density functional theory (DFT). The study of an O 2 -Au n Cu m system is important to identify the promotion effects of each of the two metals and their effect in catalysts, sensors, energy sources, or many other applications. This study also demonstrated that the O 2 molecule preferred to adsorb at the Cu site rather than at the Au site in bimetallic clusters. O 2 adsorption at a bridge site is energetically more favored over the other sites (1- both oxygen atoms are bonded to the same substrate atom 2- O 2 is connected to a Cu atom through a single bond) for oxygen adsorption on these clusters. Further, it was concluded that after the adsorption of the O 2 molecule on the bimetallic clusters, the Au-Cu interaction is strengthened and the O-O interaction is weakened; the reactivity improvement of the oxygen molecule was clear.","PeriodicalId":14081,"journal":{"name":"international journal of nano dimension","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89536327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-08-01DOI: 10.7508/IJND.2016.03.001
Raffaele Conte
Bioactive products from snail slime of “Helix” specie have potential applications in preventing and/or treating several human diseases and in cancer diagnosis. However, the poor pharmacokinetics characteristics of these natural compounds limit their use. Nanotechnology offers promising solutions for the enhanced formulation of these molecules through the synthesis of nanosized drug delivery systems. These vectors are characterized by facilitated transport across the biological barriers, enhanced bioavailability, targeted delivery and the capacity to protect sensitive compounds from biological and environmental degradation. Overall, this review focus on the description of bioactive natural substances derived from snails belonging to the genus helix and their successfully combinations with nanosized vectors.
{"title":"Recent advances on nano delivery of Helix mucus pharmacologically active components","authors":"Raffaele Conte","doi":"10.7508/IJND.2016.03.001","DOIUrl":"https://doi.org/10.7508/IJND.2016.03.001","url":null,"abstract":"Bioactive products from snail slime of “Helix” specie have potential applications in preventing and/or treating several human diseases and in cancer diagnosis. However, the poor pharmacokinetics characteristics of these natural compounds limit their use. Nanotechnology offers promising solutions for the enhanced formulation of these molecules through the synthesis of nanosized drug delivery systems. These vectors are characterized by facilitated transport across the biological barriers, enhanced bioavailability, targeted delivery and the capacity to protect sensitive compounds from biological and environmental degradation. Overall, this review focus on the description of bioactive natural substances derived from snails belonging to the genus helix and their successfully combinations with nanosized vectors.","PeriodicalId":14081,"journal":{"name":"international journal of nano dimension","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87595974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-08-01DOI: 10.7508/IJND.2016.03.008
A. Ghasemi̇, E. Binaeian, H. Tayebi, Yasna Modanlou Jouybari
Adsorption of CO2 on the surface of Single-wall zigzag (5,0) and armchair (4,4) carbon nanotubes (SWCNTs) were studied through using density functional theory (DFT) calculations. Optimizations of geometric were performed at the B3PW91 level of 6-311++G** method standard basis set using GAUSSIAN 03 package of program [1]. Structural models were optimized and adsorption energies, band gap, charge transfer and dipole momentum were obtained to investigate the nuclear magnetic resonance (NMR) and Nuclear Quadrupole Resonance (NQR) spectroscopy parameters for (CO2-CNTs) model of zigzag (5,0) and armchair (4,4) SWCNTs. Comparison of the results of the zigzag and armchair models with calculated chemical shielding, electric filed gradient tensors at the sites of carbon on the Surface and open ended revealed that CO2 adsorption has a dramatic effect on the electronic structure of SWCNTs and the more adsorption on the surface is about -1.5747eV SWCNT-S (5, 0) nanotube.
{"title":"CO2 adsorption on the surface and open ended of Single wall carbon nanotubes (SWCNTs): A Comparative study","authors":"A. Ghasemi̇, E. Binaeian, H. Tayebi, Yasna Modanlou Jouybari","doi":"10.7508/IJND.2016.03.008","DOIUrl":"https://doi.org/10.7508/IJND.2016.03.008","url":null,"abstract":"Adsorption of CO2 on the surface of Single-wall zigzag (5,0) and armchair (4,4) carbon nanotubes (SWCNTs) were studied through using density functional theory (DFT) calculations. Optimizations of geometric were performed at the B3PW91 level of 6-311++G** method standard basis set using GAUSSIAN 03 package of program [1]. Structural models were optimized and adsorption energies, band gap, charge transfer and dipole momentum were obtained to investigate the nuclear magnetic resonance (NMR) and Nuclear Quadrupole Resonance (NQR) spectroscopy parameters for (CO2-CNTs) model of zigzag (5,0) and armchair (4,4) SWCNTs. Comparison of the results of the zigzag and armchair models with calculated chemical shielding, electric filed gradient tensors at the sites of carbon on the Surface and open ended revealed that CO2 adsorption has a dramatic effect on the electronic structure of SWCNTs and the more adsorption on the surface is about -1.5747eV SWCNT-S (5, 0) nanotube.","PeriodicalId":14081,"journal":{"name":"international journal of nano dimension","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81519392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-08-01DOI: 10.7508/IJND.2016.03.006
Omid Ramezani Azghandi, M. Maghrebi, A. Teymourtash
In this paper, multi-wall carbon nanotubes (MWCNTs), gold nanoparticles (GNp) and glucose oxidase (GOD) was developed for the specific detection of glucose. MWCNTs were chemically modified with the H2SO4–HNO3 pretreatment to introduce carboxyl groups which were used to interact with the amino groups of poly(allylamine) (PAA) and cysteamine via 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide cross-linking reaction, respectively. A cleaned Pt electrode was immersed in PAA, MWCNTs, cysteamine and GNp, respectively, followed by the adsorption of GOD, assembling the one layer of films on the surface of Pt electrode (GOD/GNp/MWCNTs/Pt electrode) and was used as working electrodes (anode) along with a platinum auxiliary electrode and the reference electrode Ag/AgCl (cathode). Working electrode was containing the Phosphate-buffered saline (PBS) with PH = 4, 6 and 8 enzyme. Glucose concentration and PBS pH design has been tested and analyzed by QUALTEK-4 software measure. According to the performed experiments and software analysis, with increasing concentration, the flow rate of current production is increased and pH deviance from neutral range reduces the flow. Optimal conditions was obtained in concentrations 1 mmol/lit and pH =6, respectively. After confirmation tests in optimum conditions, the rate of production was obtained, 21.67 mA, which with respect to the expected error rate of application, it was calculated to be 8.1% . This error rate demonstrates that the accuracy of tests is with high sensitivity and accuracy.
本文采用多壁碳纳米管(MWCNTs)、金纳米颗粒(GNp)和葡萄糖氧化酶(GOD)制备葡萄糖特异性检测材料。采用H2SO4-HNO3预处理对MWCNTs进行化学修饰,引入羧基,分别通过1-乙基-3-(3-二甲氨基丙基)碳二亚胺/ n -羟基琥珀酰亚胺交联反应与聚烯丙胺(PAA)和半胱胺的氨基相互作用。将清洗后的Pt电极分别浸入PAA、MWCNTs、半胱胺和GNp中,然后吸附GOD,在Pt电极(GOD/GNp/MWCNTs/Pt电极)表面组装成一层薄膜,与铂辅助电极和参比电极Ag/AgCl(阴极)一起作为工作电极(阳极)。工作电极含有PH = 4、6和8酶的磷酸缓冲盐水(PBS)。葡萄糖浓度和PBS pH设计通过QUALTEK-4软件测量进行测试和分析。实验结果和软件分析表明,随着浓度的增加,产电流的流量增加,pH值偏离中性范围会降低流量。最佳条件为浓度为1 mmol/lit和pH =6。在最佳条件下进行确认试验,得到的产率为21.67 mA,相对于应用的预期误差率计算为8.1%。这一错误率说明测试的准确性具有较高的灵敏度和准确性。
{"title":"Modification of Glucose biosensor using Pt/MWCNTs electrode and optimization by application of taguchi method","authors":"Omid Ramezani Azghandi, M. Maghrebi, A. Teymourtash","doi":"10.7508/IJND.2016.03.006","DOIUrl":"https://doi.org/10.7508/IJND.2016.03.006","url":null,"abstract":"In this paper, multi-wall carbon nanotubes (MWCNTs), gold nanoparticles (GNp) and glucose oxidase (GOD) was developed for the specific detection of glucose. MWCNTs were chemically modified with the H2SO4–HNO3 pretreatment to introduce carboxyl groups which were used to interact with the amino groups of poly(allylamine) (PAA) and cysteamine via 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide cross-linking reaction, respectively. A cleaned Pt electrode was immersed in PAA, MWCNTs, cysteamine and GNp, respectively, followed by the adsorption of GOD, assembling the one layer of films on the surface of Pt electrode (GOD/GNp/MWCNTs/Pt electrode) and was used as working electrodes (anode) along with a platinum auxiliary electrode and the reference electrode Ag/AgCl (cathode). Working electrode was containing the Phosphate-buffered saline (PBS) with PH = 4, 6 and 8 enzyme. Glucose concentration and PBS pH design has been tested and analyzed by QUALTEK-4 software measure. According to the performed experiments and software analysis, with increasing concentration, the flow rate of current production is increased and pH deviance from neutral range reduces the flow. Optimal conditions was obtained in concentrations 1 mmol/lit and pH =6, respectively. After confirmation tests in optimum conditions, the rate of production was obtained, 21.67 mA, which with respect to the expected error rate of application, it was calculated to be 8.1% . This error rate demonstrates that the accuracy of tests is with high sensitivity and accuracy.","PeriodicalId":14081,"journal":{"name":"international journal of nano dimension","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90669165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}