Pub Date : 2024-11-09eCollection Date: 2024-01-01DOI: 10.2147/IJN.S488369
Xin Wu, Xinyu Wang, Haiyan Zhang, Hang Chen, Haisheng He, Yi Lu, Zongguang Tai, Jianming Chen, Wei Wu
Purpose: The clinical use of paclitaxel (PTX) in cancer treatment is limited by its poor water solubility, significant toxicity, and adverse effects. This study aimed to propose a straightforward and efficient approach to enhance PTX loading and stability, thereby offering insights for targeted therapy against tumors.
Patients and methods: We synthesized a paclitaxel palmitate (PTX-PA) prodrug by conjugating palmitic acid (PA) to PTX and encapsulating it into liposomal vehicles using a nano delivery system. Subsequently, we investigated the in vitro and in vivo performance as well as the underlying mechanisms of PTX-PA liposomes (PTX-PA-L).
Results: PTX had a remarkable antitumor effect in vivo and significantly decreased the myelosuppressive toxicity of PTX. Moreover, the introduction of PA increased the lipid solubility of PTX, forming a phospholipid bilayer as a membrane stabilizer, prolonging the circulation time of the drug and indirectly increasing the accumulation of liposomes at the tumor site. Our in vivo imaging experiments demonstrated that PTX-PA-L labeled with DiR has greater stability in vivo than blank liposomes and that PTX-PA-L can target drugs to the tumor site and efficiently release PTX to exert antitumor effects. In a mouse model, the concentration of PTX at the tumor site in the PTX-PA-L group was approximately twofold greater than that of Taxol. However, in a nude mouse model, the concentration of PTX at the tumor site in the PTX-PA-L group was only approximately 0.8-fold greater than that of Taxol. Furthermore, the originally observed favorable pharmacodynamics in normal mice were reversed following immunosuppression. This may be caused by differences in esterase distribution and immunity.
Conclusion: This prodrug technology combined with liposomes is a simple and effective therapeutic strategy with promising developmental prospects in tumor-targeted therapy owing to its ability to convert PTX into a long-circulating nano drug with low toxicity, high pharmacodynamics, and good stability in vivo.
{"title":"Enhanced in vivo Stability and Antitumor Efficacy of PEGylated Liposomes of Paclitaxel Palmitate Prodrug.","authors":"Xin Wu, Xinyu Wang, Haiyan Zhang, Hang Chen, Haisheng He, Yi Lu, Zongguang Tai, Jianming Chen, Wei Wu","doi":"10.2147/IJN.S488369","DOIUrl":"10.2147/IJN.S488369","url":null,"abstract":"<p><strong>Purpose: </strong>The clinical use of paclitaxel (PTX) in cancer treatment is limited by its poor water solubility, significant toxicity, and adverse effects. This study aimed to propose a straightforward and efficient approach to enhance PTX loading and stability, thereby offering insights for targeted therapy against tumors.</p><p><strong>Patients and methods: </strong>We synthesized a paclitaxel palmitate (PTX-PA) prodrug by conjugating palmitic acid (PA) to PTX and encapsulating it into liposomal vehicles using a nano delivery system. Subsequently, we investigated the in vitro and in vivo performance as well as the underlying mechanisms of PTX-PA liposomes (PTX-PA-L).</p><p><strong>Results: </strong>PTX had a remarkable antitumor effect in vivo and significantly decreased the myelosuppressive toxicity of PTX. Moreover, the introduction of PA increased the lipid solubility of PTX, forming a phospholipid bilayer as a membrane stabilizer, prolonging the circulation time of the drug and indirectly increasing the accumulation of liposomes at the tumor site. Our in vivo imaging experiments demonstrated that PTX-PA-L labeled with DiR has greater stability in vivo than blank liposomes and that PTX-PA-L can target drugs to the tumor site and efficiently release PTX to exert antitumor effects. In a mouse model, the concentration of PTX at the tumor site in the PTX-PA-L group was approximately twofold greater than that of Taxol. However, in a nude mouse model, the concentration of PTX at the tumor site in the PTX-PA-L group was only approximately 0.8-fold greater than that of Taxol. Furthermore, the originally observed favorable pharmacodynamics in normal mice were reversed following immunosuppression. This may be caused by differences in esterase distribution and immunity.</p><p><strong>Conclusion: </strong>This prodrug technology combined with liposomes is a simple and effective therapeutic strategy with promising developmental prospects in tumor-targeted therapy owing to its ability to convert PTX into a long-circulating nano drug with low toxicity, high pharmacodynamics, and good stability in vivo.</p>","PeriodicalId":14084,"journal":{"name":"International Journal of Nanomedicine","volume":"19 ","pages":"11539-11560"},"PeriodicalIF":6.6,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561736/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142619607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-09eCollection Date: 2024-01-01DOI: 10.2147/IJN.S473270
Lixin Xie, Lihua Feng, Xiaomin Tang, Yunping Xu, Hengyi Xu, Yang Liu
Purpose: To evaluate the therapeutic effect of oral administration of Lactiplantibacillus plantarum P101 (P101) on skeletal injury in young rats exposed to titanium dioxide nanoparticles (TiO2 NPs), and explore the potential mechanism.
Methods: Four-week-old male rats were orally administration to TiO2 NPs and supplemented with P101 2 hours later for 4 weeks. The growth and development, food intake, bone metabolism and serum inflammatory markers of the rats were evaluated. Their tibias were observed and evaluated using microcomputed tomography (micro-CT), tartrate-resistant acid phosphatase (TRAP) staining, immunohistochemistry (IHC) and real-time quantitative PCR (RT-qPCR). We observed the tibia growth plate using safranin and fast green staining. 16S rDNA sequence analysis of fecal samples was performed to observe changes in the gut microbiota.
Results: Our results showed that TiO2 NPs can lead to bone growth inhibition and osteoporosis, induce intestinal flora imbalance, and induce inflammation in young rats. Further mechanistic studies suggested that TiO2 NPs disrupts intestinal flora and increases serum IL-1β levels, which increased the expression of RANKL in bone, thereby enhancing osteoclast differentiation and function, leading to bone loss. Through a P101 supplementation experiment, we found that P101 ameliorated the inflammation and osteoporosis on bone caused by TiO2 NPs.
Conclusion: This study showed that the mechanism by which P101 alleviates bone damage caused by TiO2 NPs may be through restoring intestinal microbial homeostasis and inhibiting inflammatory response.
{"title":"<i>Lactiplantibacillus plantarum</i> P101 Ameliorates TiO<sub>2</sub> NP-Induced Bone Injury in Young Rats by Remodeling the Gut Microbiota and Inhibiting the Production of Pro-Inflammatory Cytokines.","authors":"Lixin Xie, Lihua Feng, Xiaomin Tang, Yunping Xu, Hengyi Xu, Yang Liu","doi":"10.2147/IJN.S473270","DOIUrl":"10.2147/IJN.S473270","url":null,"abstract":"<p><strong>Purpose: </strong>To evaluate the therapeutic effect of oral administration of <i>Lactiplantibacillus plantarum</i> P101 (P101) on skeletal injury in young rats exposed to titanium dioxide nanoparticles (TiO<sub>2</sub> NPs), and explore the potential mechanism.</p><p><strong>Methods: </strong>Four-week-old male rats were orally administration to TiO<sub>2</sub> NPs and supplemented with P101 2 hours later for 4 weeks. The growth and development, food intake, bone metabolism and serum inflammatory markers of the rats were evaluated. Their tibias were observed and evaluated using microcomputed tomography (micro-CT), tartrate-resistant acid phosphatase (TRAP) staining, immunohistochemistry (IHC) and real-time quantitative PCR (RT-qPCR). We observed the tibia growth plate using safranin and fast green staining. 16S rDNA sequence analysis of fecal samples was performed to observe changes in the gut microbiota.</p><p><strong>Results: </strong>Our results showed that TiO<sub>2</sub> NPs can lead to bone growth inhibition and osteoporosis, induce intestinal flora imbalance, and induce inflammation in young rats. Further mechanistic studies suggested that TiO<sub>2</sub> NPs disrupts intestinal flora and increases serum IL-1β levels, which increased the expression of RANKL in bone, thereby enhancing osteoclast differentiation and function, leading to bone loss. Through a P101 supplementation experiment, we found that P101 ameliorated the inflammation and osteoporosis on bone caused by TiO<sub>2</sub> NPs.</p><p><strong>Conclusion: </strong>This study showed that the mechanism by which P101 alleviates bone damage caused by TiO<sub>2</sub> NPs may be through restoring intestinal microbial homeostasis and inhibiting inflammatory response.</p>","PeriodicalId":14084,"journal":{"name":"International Journal of Nanomedicine","volume":"19 ","pages":"11593-11609"},"PeriodicalIF":6.6,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11559424/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142619532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purpose: Based on nanomedicine strategies, this study employed cucurbit[7]uril (Q[7]) as the macromolecular carrier to synthesize nanocomplex drug delivery system for chlorogenic acid (CGA). The nanocomplex drug delivery system is intended to overcome the unsatisfactory biocompatibility and bioavailability of CGA and realizing its potential role in long-term osteoporosis (OP) medication.
Methods: The nanocomplex was synthesized by the reflux stirring method. The chemical structure of the nanocomplex was characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction analysis (XRD), UV-visible spectrophotometry (UV-vis), zeta potential analysis and transmission electronic microscope (TEM). The Cell Counting Kit-8 (CCK-8) assay, Live/Dead staining assay, and cytoskeleton staining were conducted to testify the biocompatibility of the nanocomplex. The release assay, Ferric Reducing Ability of Plasma (Frap) assay and Reactive oxygen species (ROS) staining were implemented to evaluate the release profile of CGA as well as its remaining antioxidative levels.
Results: CGA and Q[7] formed hydrogen bonding through an exclusion interaction, with the binding ratio more than 1:1. The nanocomplex had a crystalline and spherical-like structure and improved thermal stability. The nanocomplex demonstrated better biocompatibility than free CGA. The release profile of CGA from the nanocomplex was much steadier, and 70% of CGA was released in 5 days. The CGA released from the nanocomplex maintained its antioxidative properties at high levels and effectively eliminated the accumulated ROS in MC3T3-E1 cells under oxidative stress.
Conclusion: Q[7] has been demonstrated to be an ideal nanocarrier for CGA and the nanocomplex delivery system holds the potential for the long-term medication strategy of OP.
{"title":"Chlorogenic Acid-Cucurbit[n]uril Nanocomplex Delivery System: Synthesis and Evaluations for Potential Applications in Osteoporosis Medication.","authors":"Yunqing Jiang, Haowen Qi, Mingjuan Wang, Kai Chen, Chen Chen, Haifeng Xie","doi":"10.2147/IJN.S485581","DOIUrl":"10.2147/IJN.S485581","url":null,"abstract":"<p><strong>Purpose: </strong>Based on nanomedicine strategies, this study employed cucurbit[7]uril (Q[7]) as the macromolecular carrier to synthesize nanocomplex drug delivery system for chlorogenic acid (CGA). The nanocomplex drug delivery system is intended to overcome the unsatisfactory biocompatibility and bioavailability of CGA and realizing its potential role in long-term osteoporosis (OP) medication.</p><p><strong>Methods: </strong>The nanocomplex was synthesized by the reflux stirring method. The chemical structure of the nanocomplex was characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction analysis (XRD), UV-visible spectrophotometry (UV-vis), zeta potential analysis and transmission electronic microscope (TEM). The Cell Counting Kit-8 (CCK-8) assay, Live/Dead staining assay, and cytoskeleton staining were conducted to testify the biocompatibility of the nanocomplex. The release assay, Ferric Reducing Ability of Plasma (Frap) assay and Reactive oxygen species (ROS) staining were implemented to evaluate the release profile of CGA as well as its remaining antioxidative levels.</p><p><strong>Results: </strong>CGA and Q[7] formed hydrogen bonding through an exclusion interaction, with the binding ratio more than 1:1. The nanocomplex had a crystalline and spherical-like structure and improved thermal stability. The nanocomplex demonstrated better biocompatibility than free CGA. The release profile of CGA from the nanocomplex was much steadier, and 70% of CGA was released in 5 days. The CGA released from the nanocomplex maintained its antioxidative properties at high levels and effectively eliminated the accumulated ROS in MC3T3-E1 cells under oxidative stress.</p><p><strong>Conclusion: </strong>Q[7] has been demonstrated to be an ideal nanocarrier for CGA and the nanocomplex delivery system holds the potential for the long-term medication strategy of OP.</p>","PeriodicalId":14084,"journal":{"name":"International Journal of Nanomedicine","volume":"19 ","pages":"11577-11592"},"PeriodicalIF":6.6,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11559225/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142619465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08eCollection Date: 2024-01-01DOI: 10.2147/IJN.S479741
Ang Li, Xushan Cai, Dong Li, Yimin Yu, Chengyu Liu, Jie Shen, Jiaqi You, Jianou Qiao, Feng Wang
Background: Lung metastasis is a leading cause of cancer-related death. mRNA-based cancer vaccines have been demonstrated to be effective at inhibiting tumor growth. Intranasal immunization has emerged as a more effective method of inducing local immune responses against cancer cells in the lungs.
Methods: An innovative layered double hydroxide- and 5-OP-RU-based mRNA nanovaccine (Mg/Al LDH-5-OP-RU/mRNA) was synthesized via coprecipitation. The particle size distribution and zeta potential were measured, and the nanovaccine was observed by transmission electron microscopy. The functions and properties of the nanovaccine were evaluated via an mRNA-targeted delivery assay and measurement of dendritic cell (DC) and mucosa-associated invariant T (MAIT) cell maturation and activation. In addition, the cytotoxicity, antigen-specific T cell activation, cytokines, protective ability, and therapeutic ability of the nanovaccine were assessed in a mouse tumor model. Further, the immune cell composition was evaluated in tumors.
Results: The Mg/Al LDH-5-OP-RU/mRNA nanovaccine was efficiently delivered into lung-draining mediastinal lymph nodes (MLNs), and it activated dendritic cells (DCs) and mucosa-associated invariant T (MAIT) cells after intranasal administration. Moreover, the optimized dual-activating mRNA nanovaccine efficiently transfected DC cells and expressed antigen proteins in DC cells. An HPV-associated tumor model revealed that the intranasal delivery of the Mg/Al LDH-5-OP-RU/E7 mRNA nanovaccine significantly prevented the lung metastasis of tumors and had a therapeutic effect on established metastatic tumor nodules in the lungs. Mechanistically, the enhanced activation of DC and MAIT cells induced by the Mg/Al LDH-5-OP-RU/E7 mRNA nanovaccine increased the production of immune-stimulating cytokines and decreased the secretion of immunosuppressive cytokines, which led to the expansion and activation of memory T cells targeting the E7 antigen, a reduction in the population of neutrophils, and differentiation of tumor -associated macrophages to the M1 phenotype in the lungs.
Conclusion: These results highlight the potential of the innovative nasal mRNA nanovaccine for both preventing and treating tumor metastasis in the lungs.
背景:基于 mRNA 的癌症疫苗已被证实能有效抑制肿瘤生长。鼻内免疫已成为诱导针对肺部癌细胞的局部免疫反应的更有效方法:方法:通过共沉淀法合成了一种创新的基于层状双氢氧化物和 5-OP-RU 的 mRNA 纳米疫苗(Mg/Al LDH-5-OP-RU/mRNA)。测量了纳米疫苗的粒度分布和 zeta 电位,并用透射电子显微镜观察了纳米疫苗。通过 mRNA 靶向递送试验以及树突状细胞(DC)和粘膜相关不变 T 细胞(MAIT)成熟和活化的测量,对纳米疫苗的功能和特性进行了评估。此外,还在小鼠肿瘤模型中评估了纳米疫苗的细胞毒性、抗原特异性 T 细胞活化、细胞因子、保护能力和治疗能力。此外,还评估了肿瘤中免疫细胞的组成:结果:Mg/Al LDH-5-OP-RU/mRNA纳米疫苗能有效地输送到肺引流纵隔淋巴结(MLNs),鼻内给药后能激活树突状细胞(DCs)和粘膜相关不变性T细胞(MAIT)。此外,优化的双激活 mRNA 纳米疫苗还能有效转染 DC 细胞,并在 DC 细胞中表达抗原蛋白。HPV相关肿瘤模型显示,鼻内给药Mg/Al LDH-5-OP-RU/E7 mRNA纳米疫苗可显著阻止肿瘤的肺转移,并对肺部已形成的转移性肿瘤结节有治疗作用。从机理上讲,Mg/Al LDH-5-OP-RU/E7 mRNA纳米疫苗增强了DC和MAIT细胞的活化,增加了免疫刺激细胞因子的产生,减少了免疫抑制细胞因子的分泌,从而导致肺部靶向E7抗原的记忆T细胞的扩增和活化、中性粒细胞数量的减少以及肿瘤相关巨噬细胞向M1表型的分化:这些结果凸显了创新性鼻腔 mRNA 纳米疫苗在预防和治疗肺部肿瘤转移方面的潜力。
{"title":"Nasal mRNA Nanovaccine with Key Activators of Dendritic and MAIT Cells for Effective Against Lung Tumor Metastasis in Mice Model.","authors":"Ang Li, Xushan Cai, Dong Li, Yimin Yu, Chengyu Liu, Jie Shen, Jiaqi You, Jianou Qiao, Feng Wang","doi":"10.2147/IJN.S479741","DOIUrl":"https://doi.org/10.2147/IJN.S479741","url":null,"abstract":"<p><strong>Background: </strong>Lung metastasis is a leading cause of cancer-related death. mRNA-based cancer vaccines have been demonstrated to be effective at inhibiting tumor growth. Intranasal immunization has emerged as a more effective method of inducing local immune responses against cancer cells in the lungs.</p><p><strong>Methods: </strong>An innovative layered double hydroxide- and 5-OP-RU-based mRNA nanovaccine (Mg/Al LDH-5-OP-RU/mRNA) was synthesized via coprecipitation. The particle size distribution and zeta potential were measured, and the nanovaccine was observed by transmission electron microscopy. The functions and properties of the nanovaccine were evaluated via an mRNA-targeted delivery assay and measurement of dendritic cell (DC) and mucosa-associated invariant T (MAIT) cell maturation and activation. In addition, the cytotoxicity, antigen-specific T cell activation, cytokines, protective ability, and therapeutic ability of the nanovaccine were assessed in a mouse tumor model. Further, the immune cell composition was evaluated in tumors.</p><p><strong>Results: </strong>The Mg/Al LDH-5-OP-RU/mRNA nanovaccine was efficiently delivered into lung-draining mediastinal lymph nodes (MLNs), and it activated dendritic cells (DCs) and mucosa-associated invariant T (MAIT) cells after intranasal administration. Moreover, the optimized dual-activating mRNA nanovaccine efficiently transfected DC cells and expressed antigen proteins in DC cells. An HPV-associated tumor model revealed that the intranasal delivery of the Mg/Al LDH-5-OP-RU/E7 mRNA nanovaccine significantly prevented the lung metastasis of tumors and had a therapeutic effect on established metastatic tumor nodules in the lungs. Mechanistically, the enhanced activation of DC and MAIT cells induced by the Mg/Al LDH-5-OP-RU/E7 mRNA nanovaccine increased the production of immune-stimulating cytokines and decreased the secretion of immunosuppressive cytokines, which led to the expansion and activation of memory T cells targeting the E7 antigen, a reduction in the population of neutrophils, and differentiation of tumor -associated macrophages to the M1 phenotype in the lungs.</p><p><strong>Conclusion: </strong>These results highlight the potential of the innovative nasal mRNA nanovaccine for both preventing and treating tumor metastasis in the lungs.</p>","PeriodicalId":14084,"journal":{"name":"International Journal of Nanomedicine","volume":"19 ","pages":"11479-11497"},"PeriodicalIF":6.6,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11556332/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142619657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Introduction: The photo-activated thermo/gas antimicrobial nanocomposite hydrogel, Gel/PDA@BNN6, is composed of the nitric oxide (NO) carrier N, N'-di-sec-butyl-N, N'-dinitroso-p-phenylenediamine (BNN6), photothermal (PTT) material polydopamine nanoparticles (PDA NPs), and methacrylate gelatin (GelMA). This hydrogel can release NO gas in a stable and controlled manner, generating a localized photothermal effect when exposed to near-infrared laser light. This dual action promotes the healing of full-thickness skin wounds that are infected.
Methods: Gel/PDA@BNN6 was developed, and both in vitro and in vivo experiments were carried out to evaluate its structure, physicochemical properties, antibacterial effects, effectiveness in promoting infected wound healing, and biocompatibility.
Results: Gel/PDA@BNN6 was successfully synthesized, exhibiting a porous three-dimensional lattice structure and excellent mechanical properties. It demonstrated highly efficient photothermal conversion, controllable nitric oxide delivery, strong bactericidal effects, and minimal cytotoxicity in vitro. In vivo, Gel/PDA@BNN6, when used with NIR therapy, showed significant anti-inflammatory effects, promoted collagen deposition, and stimulated vascular neoangiogenesis, which accelerated wound closure. Additionally, it displayed superior biocompatibility.
Discussion: Gel/PDA@BNN6 has shown an explicit curative effect for infected wound healing, suggesting it has a good chance of being an antimicrobial dressing in the future.
{"title":"Controlled Nitric Oxide-Releasing Nanovehicles for Enhanced Infected Wound Healing: A Study on PDA@BNN6 Encapsulated in GelMA Hydrogel.","authors":"Jing Yang, Donghui Jia, Jialu Qiao, Ximing Peng, Chuchao Zhou, Yanqing Yang","doi":"10.2147/IJN.S486640","DOIUrl":"https://doi.org/10.2147/IJN.S486640","url":null,"abstract":"<p><strong>Introduction: </strong>The photo-activated thermo/gas antimicrobial nanocomposite hydrogel, Gel/PDA@BNN6, is composed of the nitric oxide (NO) carrier N, N'-di-sec-butyl-N, N'-dinitroso-p-phenylenediamine (BNN6), photothermal (PTT) material polydopamine nanoparticles (PDA NPs), and methacrylate gelatin (GelMA). This hydrogel can release NO gas in a stable and controlled manner, generating a localized photothermal effect when exposed to near-infrared laser light. This dual action promotes the healing of full-thickness skin wounds that are infected.</p><p><strong>Methods: </strong>Gel/PDA@BNN6 was developed, and both in vitro and in vivo experiments were carried out to evaluate its structure, physicochemical properties, antibacterial effects, effectiveness in promoting infected wound healing, and biocompatibility.</p><p><strong>Results: </strong>Gel/PDA@BNN6 was successfully synthesized, exhibiting a porous three-dimensional lattice structure and excellent mechanical properties. It demonstrated highly efficient photothermal conversion, controllable nitric oxide delivery, strong bactericidal effects, and minimal cytotoxicity in vitro. In vivo, Gel/PDA@BNN6, when used with NIR therapy, showed significant anti-inflammatory effects, promoted collagen deposition, and stimulated vascular neoangiogenesis, which accelerated wound closure. Additionally, it displayed superior biocompatibility.</p><p><strong>Discussion: </strong>Gel/PDA@BNN6 has shown an explicit curative effect for infected wound healing, suggesting it has a good chance of being an antimicrobial dressing in the future.</p>","PeriodicalId":14084,"journal":{"name":"International Journal of Nanomedicine","volume":"19 ","pages":"11499-11516"},"PeriodicalIF":6.6,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11556330/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142619511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Introduction: Squamous non-small cell lung carcinoma (sqNSCLC) is associated with a poorer prognosis and limited treatment options. Sintilizumab combined with chemotherapy is used as first-line treatment for advanced sqNSCLC. However, the efficacy and safety of sintilimab combined with nanoparticle albumin-bound paclitaxel-based chemotherapy for severe squamous NSCLC remain to be unknown in clinical studies.
Methods: Patients with confirmed unresectable stage III/IV sqNSCLC were retrospectively collected between July 1st, 2019, and December 31st. According to performance status (PS) scores, these patients received first-line sintilimab plus nab-PTX-based chemotherapy were divided into severe (PS=2) and non-severe groups (PS=0-1). The treatment regimen was repeated every 3 weeks for a maximum of six cycles, or until unacceptable toxicity occurred. The primary endpoint of this study was to assess progression free survival (PFS), with secondary endpoints including the objective response rate (ORR), adverse events (AEs) and disease control rate (DCR).
Results: Among 367 patients with unresectable stage III/IV sqNSCLC, 28 male patients, with a median age of 65.5 years, received first-line sintilimab plus nab-PTX-based chemotherapy. These patients were divided into a severe group (11 patients) and a non-severe group (17 patients). The severe group had a significantly higher incidence of chronic obstructive pulmonary disease (COPD) compared to the non-severe group (54.5% vs 11.8%, p = 0.03). The two groups had a similar median number of treatment cycles and safety profiles. Although the severe group showed higher ORR (63.6% vs 47.1%) and DCR (100% vs 76.5%) than the non-severe group, these differences were not statistically significant. Median PFS and Kaplan-Meier curves were also comparable between the groups.
Conclusion: Sintilimab combined with nab-PTX-based chemotherapy was effective and well tolerated in a small sample of severe lung squamous cell carcinoma population. This combination may offer a potential treatment option for these patients.
简介:鳞状非小细胞肺癌(sqNSCLC)预后较差,治疗方案有限。辛替利单抗联合化疗是晚期鳞状非小细胞肺癌的一线治疗方法。然而,在临床研究中,辛替利单抗联合纳米颗粒白蛋白结合紫杉醇化疗治疗重度鳞状NSCLC的疗效和安全性仍是未知数:回顾性收集2019年7月1日至12月31日期间确诊为不可切除的III/IV期sqNSCLC患者。根据表现状态(PS)评分,这些接受一线辛替利单抗加 nab-PTX 化疗的患者被分为重症组(PS=2)和非重症组(PS=0-1)。治疗方案每 3 周重复一次,最多 6 个周期,或直到出现不可接受的毒性。该研究的主要终点是评估无进展生存期(PFS),次要终点包括客观反应率(ORR)、不良事件(AE)和疾病控制率(DCR):在367名无法切除的III/IV期sqNSCLC患者中,有28名男性患者接受了一线辛替利单抗加nab-PTX化疗,中位年龄为65.5岁。这些患者被分为重症组(11 人)和非重症组(17 人)。重症组的慢性阻塞性肺病(COPD)发病率明显高于非重症组(54.5% vs 11.8%,P = 0.03)。两组的治疗周期中位数和安全性相似。虽然重度组的 ORR(63.6% vs 47.1%)和 DCR(100% vs 76.5%)高于非重度组,但这些差异并无统计学意义。两组的中位 PFS 和 Kaplan-Meier 曲线也相当:结论:辛替利单抗联合基于 nab-PTX 的化疗在小样本重度肺鳞癌患者中有效且耐受性良好。结论:辛替利单抗联合 nab-PTX 化疗在小样本重症肺鳞癌患者中疗效显著,耐受性良好,这种联合疗法可为这些患者提供一种潜在的治疗选择。
{"title":"Sintilimab Combined with Nanoparticle Albumin-Bound Paclitaxel-Based Chemotherapy in Severe Locally Advanced or Metastatic Squamous NSCLC Showed Good Efficacy and Safety: A Pilot Retrospective Analysis.","authors":"Yonghong Zhong, Yanxiong Mao, Xiaofang Fu, Huaqiong Huang","doi":"10.2147/IJN.S484765","DOIUrl":"https://doi.org/10.2147/IJN.S484765","url":null,"abstract":"<p><strong>Introduction: </strong>Squamous non-small cell lung carcinoma (sqNSCLC) is associated with a poorer prognosis and limited treatment options. Sintilizumab combined with chemotherapy is used as first-line treatment for advanced sqNSCLC. However, the efficacy and safety of sintilimab combined with nanoparticle albumin-bound paclitaxel-based chemotherapy for severe squamous NSCLC remain to be unknown in clinical studies.</p><p><strong>Methods: </strong>Patients with confirmed unresectable stage III/IV sqNSCLC were retrospectively collected between July 1<sup>st</sup>, 2019, and December 31<sup>st</sup>. According to performance status (PS) scores, these patients received first-line sintilimab plus nab-PTX-based chemotherapy were divided into severe (PS=2) and non-severe groups (PS=0-1). The treatment regimen was repeated every 3 weeks for a maximum of six cycles, or until unacceptable toxicity occurred. The primary endpoint of this study was to assess progression free survival (PFS), with secondary endpoints including the objective response rate (ORR), adverse events (AEs) and disease control rate (DCR).</p><p><strong>Results: </strong>Among 367 patients with unresectable stage III/IV sqNSCLC, 28 male patients, with a median age of 65.5 years, received first-line sintilimab plus nab-PTX-based chemotherapy. These patients were divided into a severe group (11 patients) and a non-severe group (17 patients). The severe group had a significantly higher incidence of chronic obstructive pulmonary disease (COPD) compared to the non-severe group (54.5% vs 11.8%, p = 0.03). The two groups had a similar median number of treatment cycles and safety profiles. Although the severe group showed higher ORR (63.6% vs 47.1%) and DCR (100% vs 76.5%) than the non-severe group, these differences were not statistically significant. Median PFS and Kaplan-Meier curves were also comparable between the groups.</p><p><strong>Conclusion: </strong>Sintilimab combined with nab-PTX-based chemotherapy was effective and well tolerated in a small sample of severe lung squamous cell carcinoma population. This combination may offer a potential treatment option for these patients.</p>","PeriodicalId":14084,"journal":{"name":"International Journal of Nanomedicine","volume":"19 ","pages":"11433-11444"},"PeriodicalIF":6.6,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555032/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142619679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07eCollection Date: 2024-01-01DOI: 10.2147/IJN.S477001
Marwa H Abdallah, Seham Shawky, Mona M Shahien, Hemat El-Sayed El-Horany, Enas Haridy Ahmed, Shaimaa El-Housiny
Introduction: Atorvastatin (ATV), a medication used to reduce cholesterol levels, possesses properties that can counteract the damaging effects of free radicals and reduce inflammation. However, the administration of ATV orally is associated with low systemic bioavailability due to its limited capacity to dissolve in water and significant first-pass effect. This study aimed to assess the appropriateness of employing nano-vesicles for transdermal administration of ATV in order to enhance its anti-inflammatory effects.
Methods: ATV-loaded transethosomes (ATV-TEs) were optimized using the 33 Box-Behnken design. The ATV-TEs that were created were evaluated for their vesicle size, encapsulation efficiency (% EE), and percent release of drug. The optimum formulation was integrated into a hydroxypropyl methylcellulose (HPMC) emulsion-based gel (ATV-TEs emulgel) using jojoba oil. ATV-TEs emulgel was examined for its physical characteristics, ex vivo permeability, histological, and anti-inflammatory effect in a rat model of inflamed paw edema.
Results: The optimized transethosomes exhibited a vesicle size of 158.00 nm and an encapsulation efficiency of 80.14 ± 1.42%. Furthermore, the use of transethosomal vesicles effectively prolonged the release of ATV for a duration of 24 hours, in contrast to the pure drug suspension. In addition, the transethosomal emulgel loaded with ATV exhibited a 3.8-fold increase in the transdermal flow of ATV, in comparison to the pure drug suspension. ATV-TEs emulgel demonstrated a strong anti-inflammatory impact in the carrageenan-induced paw edema model.
Discussion: This was evident from the significant reduction in paw edema, which was equivalent to the effect of the standard anti-inflammatory medicine, Diclofenac sodium.
Conclusion: In summary, transethosomes, as a whole, might potentially serve as an effective method for delivering drugs via the skin. This could improve the ability of ATV to reduce inflammation by increasing its absorption through the skin.
{"title":"Development and Evaluation of Nano-Vesicular Emulsion-Based Gel as a Promising Approach for Dermal Atorvastatin Delivery Against Inflammation.","authors":"Marwa H Abdallah, Seham Shawky, Mona M Shahien, Hemat El-Sayed El-Horany, Enas Haridy Ahmed, Shaimaa El-Housiny","doi":"10.2147/IJN.S477001","DOIUrl":"https://doi.org/10.2147/IJN.S477001","url":null,"abstract":"<p><strong>Introduction: </strong>Atorvastatin (ATV), a medication used to reduce cholesterol levels, possesses properties that can counteract the damaging effects of free radicals and reduce inflammation. However, the administration of ATV orally is associated with low systemic bioavailability due to its limited capacity to dissolve in water and significant first-pass effect. This study aimed to assess the appropriateness of employing nano-vesicles for transdermal administration of ATV in order to enhance its anti-inflammatory effects.</p><p><strong>Methods: </strong>ATV-loaded transethosomes (ATV-TEs) were optimized using the 3<sup>3</sup> Box-Behnken design. The ATV-TEs that were created were evaluated for their vesicle size, encapsulation efficiency (% EE), and percent release of drug. The optimum formulation was integrated into a hydroxypropyl methylcellulose (HPMC) emulsion-based gel (ATV-TEs emulgel) using jojoba oil. ATV-TEs emulgel was examined for its physical characteristics, ex vivo permeability, histological, and anti-inflammatory effect in a rat model of inflamed paw edema.</p><p><strong>Results: </strong>The optimized transethosomes exhibited a vesicle size of 158.00 nm and an encapsulation efficiency of 80.14 ± 1.42%. Furthermore, the use of transethosomal vesicles effectively prolonged the release of ATV for a duration of 24 hours, in contrast to the pure drug suspension. In addition, the transethosomal emulgel loaded with ATV exhibited a 3.8-fold increase in the transdermal flow of ATV, in comparison to the pure drug suspension. ATV-TEs emulgel demonstrated a strong anti-inflammatory impact in the carrageenan-induced paw edema model.</p><p><strong>Discussion: </strong>This was evident from the significant reduction in paw edema, which was equivalent to the effect of the standard anti-inflammatory medicine, Diclofenac sodium.</p><p><strong>Conclusion: </strong>In summary, transethosomes, as a whole, might potentially serve as an effective method for delivering drugs via the skin. This could improve the ability of ATV to reduce inflammation by increasing its absorption through the skin.</p>","PeriodicalId":14084,"journal":{"name":"International Journal of Nanomedicine","volume":"19 ","pages":"11415-11432"},"PeriodicalIF":6.6,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552413/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142619627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Introduction: Deep, second- and third-degree burn injuries may lead to irreversible damage to the traumatized tissue and to coagulation or thrombosis of the microvessels, further compromising wound healing. Engineered, morphologically gradient drug-eluting nanofiber dressings promote wound healing by mimicking tissue structure and providing sustained drug delivery, which is particularly beneficial for wound management.
Methods: This study exploited a resorbable, radially aligned nanofiber dressing that provides the sustained gradient release of metformin at the wound site using a pin-ring electrospinning technique and a differential membrane-thickness approach.
Results: The experimental results suggested that the electrospun nanofibrous dressings exhibited uniform and radially oriented fiber distributions. In vitro, these dressings offered an extended release of metformin for 30 d. The incorporation of water-soluble metformin significantly enhanced the hydrophilicity of the nanofiber membranes. Moreover, the in vivo burn-wound-healing model of rats showed that the radially aligned gradient metformin-eluting poly(lactic-co-glycolic acid) (PLGA) nanofibers exhibited significantly superior healing capability compared to the pristine PLGA, metformin-eluting, and control dressings. Histological images showed that the mesh/nanofibers produced no adverse effects.
Conclusion: The findings in this study emphasize the potential of resorbable, radially aligned nanofiber dressings as advanced wound care solutions, offering broad applicability and meaningful clinical impact.
{"title":"Engineered, Radially Aligned, Gradient-Metformin-Eluting Nanofiber Dressings Accelerate Burn-Wound Healing.","authors":"Shih-Heng Chen, Hsiao-Jui Kuo, Pang-Yun Chou, Chia-Hsuan Tsai, Shih-Hsien Chen, Yi-Chen Yao, Shih-Jung Liu","doi":"10.2147/IJN.S492244","DOIUrl":"https://doi.org/10.2147/IJN.S492244","url":null,"abstract":"<p><strong>Introduction: </strong>Deep, second- and third-degree burn injuries may lead to irreversible damage to the traumatized tissue and to coagulation or thrombosis of the microvessels, further compromising wound healing. Engineered, morphologically gradient drug-eluting nanofiber dressings promote wound healing by mimicking tissue structure and providing sustained drug delivery, which is particularly beneficial for wound management.</p><p><strong>Methods: </strong>This study exploited a resorbable, radially aligned nanofiber dressing that provides the sustained gradient release of metformin at the wound site using a pin-ring electrospinning technique and a differential membrane-thickness approach.</p><p><strong>Results: </strong>The experimental results suggested that the electrospun nanofibrous dressings exhibited uniform and radially oriented fiber distributions. In vitro, these dressings offered an extended release of metformin for 30 d. The incorporation of water-soluble metformin significantly enhanced the hydrophilicity of the nanofiber membranes. Moreover, the in vivo burn-wound-healing model of rats showed that the radially aligned gradient metformin-eluting poly(lactic-co-glycolic acid) (PLGA) nanofibers exhibited significantly superior healing capability compared to the pristine PLGA, metformin-eluting, and control dressings. Histological images showed that the mesh/nanofibers produced no adverse effects.</p><p><strong>Conclusion: </strong>The findings in this study emphasize the potential of resorbable, radially aligned nanofiber dressings as advanced wound care solutions, offering broad applicability and meaningful clinical impact.</p>","PeriodicalId":14084,"journal":{"name":"International Journal of Nanomedicine","volume":"19 ","pages":"11463-11477"},"PeriodicalIF":6.6,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552508/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142619544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07eCollection Date: 2024-01-01DOI: 10.2147/IJN.S479125
Tao Tan, Weiyi Chang, Tian Long Wang, Wei Chen, Xiaobing Chen, Chunmiao Yang, Dongsheng Yang
Purpose: The poor delivery and limited penetration of nanoparticles into breast cancer tumors remain essential challenges for effective anticancer therapy. This study aimed to design a promising nanoplatform with efficient tumor targeting and penetration capability for effective breast cancer therapy.
Methods: A pH-sensitive mitoxantrone (MTO) and copper ion-loaded nanosystem functionalized with cyclic CRGDfK and r9 peptide (TPRN-CM) was rationally designed for chemo-chemodynamic combination therapy. TPRN-CM would be quiescent in blood circulation with the CRGDfK peptide on the surface of the nanoparticle to improve its targeting to the tumor. Then, the structure of TPRN-CM changes in the acidic tumor microenvironment, and the r9 peptide can be exposed to make a surface charge reversal to promote deep penetration in the tumor and facilitate their internalization by cancer cells, which was characterized using transmission electron microscopy, dynamic light scattering, flame atomic absorption, etc. The drug release behavior, anti-tumor effects in vivo and in vitro, and the biosafety of the nanoplatform were evaluated.
Results: TPRN-CM exhibited remarkable capability to load MTO and Cu2+ with good stability in serum. It can achieve pH-responsive charge reversal, MTO, and Cu2+ release, and can further generate toxic hydroxyl radicals in the presence of glutathione (GSH) and H2O2. In vitro experiments demonstrated that this nanoplatform significantly inhibited proliferation, migration, invasion activities and 3D-tumorsphere growth. In vivo experiments suggested that rationally designed TPRN-CM can be effectively delivered to breast cancer tumors with deep tumor penetration, thereby resulting in a notable reduction in tumor growth and suppression of lung metastasis without causing any apparent side effects.
Conclusion: The constructed TPRN-CM nanoplatform integrated tumor targeting, tumor penetration, drug-responsive release, and chemo-chemodynamic combination therapy, thereby providing an intelligent drug delivery strategy to improve the efficacy of breast cancer treatment.
{"title":"pH-Responsive Charge-Reversal Smart Nanoparticles for Co-Delivery of Mitoxantrone and Copper Ions to Enhance Breast Cancer Chemo-Chemodynamic Combination Therapy.","authors":"Tao Tan, Weiyi Chang, Tian Long Wang, Wei Chen, Xiaobing Chen, Chunmiao Yang, Dongsheng Yang","doi":"10.2147/IJN.S479125","DOIUrl":"https://doi.org/10.2147/IJN.S479125","url":null,"abstract":"<p><strong>Purpose: </strong>The poor delivery and limited penetration of nanoparticles into breast cancer tumors remain essential challenges for effective anticancer therapy. This study aimed to design a promising nanoplatform with efficient tumor targeting and penetration capability for effective breast cancer therapy.</p><p><strong>Methods: </strong>A pH-sensitive mitoxantrone (MTO) and copper ion-loaded nanosystem functionalized with cyclic CRGDfK and r9 peptide (TPRN-CM) was rationally designed for chemo-chemodynamic combination therapy. TPRN-CM would be quiescent in blood circulation with the CRGDfK peptide on the surface of the nanoparticle to improve its targeting to the tumor. Then, the structure of TPRN-CM changes in the acidic tumor microenvironment, and the r9 peptide can be exposed to make a surface charge reversal to promote deep penetration in the tumor and facilitate their internalization by cancer cells, which was characterized using transmission electron microscopy, dynamic light scattering, flame atomic absorption, etc. The drug release behavior, anti-tumor effects in vivo and in vitro, and the biosafety of the nanoplatform were evaluated.</p><p><strong>Results: </strong>TPRN-CM exhibited remarkable capability to load MTO and Cu<sup>2+</sup> with good stability in serum. It can achieve pH-responsive charge reversal, MTO, and Cu<sup>2+</sup> release, and can further generate toxic hydroxyl radicals in the presence of glutathione (GSH) and H<sub>2</sub>O<sub>2</sub>. In vitro experiments demonstrated that this nanoplatform significantly inhibited proliferation, migration, invasion activities and 3D-tumorsphere growth. In vivo experiments suggested that rationally designed TPRN-CM can be effectively delivered to breast cancer tumors with deep tumor penetration, thereby resulting in a notable reduction in tumor growth and suppression of lung metastasis without causing any apparent side effects.</p><p><strong>Conclusion: </strong>The constructed TPRN-CM nanoplatform integrated tumor targeting, tumor penetration, drug-responsive release, and chemo-chemodynamic combination therapy, thereby providing an intelligent drug delivery strategy to improve the efficacy of breast cancer treatment.</p>","PeriodicalId":14084,"journal":{"name":"International Journal of Nanomedicine","volume":"19 ","pages":"11445-11462"},"PeriodicalIF":6.6,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552415/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142619660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06eCollection Date: 2024-01-01DOI: 10.2147/IJN.S475872
Lihua Yu, Chunxia Zhang, Jie Yang, Lu Li
Purpose: The primary goals of endodontic therapy are to eliminate microbes and prevent reinfection. Persistent root canal infections and failure of root canal therapy are primarily attributed to the presence of bacteria, particularly E. faecalis. Chemical irrigants play a crucial role in complementing mechanical instrumentation in ensuring adequate disinfection. However, current techniques and available irrigants are limited in their ability to achieve optimal sterilization of the root canal system. In this study, we developed a novel material called La@PCDs by combining CQD-PVA and lanthanum for root canal irrigation.
Methods: A one-pot hydrothermal method was used to prepare composites of lanthanum and CQD-PVA (La@PCDs). Scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy and the particle size were employed to characterize La@PCDs. ROS generation was evaluated by measuring the fluorescence intensity emitted at 525 nm from 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA). In vitro experiments were conducted to assess the effectiveness of the nanoparticles in combating Enterococcus faecalis and eradicating in situ biofilm eradication in root canal. Furthermore, cytotoxicity assessments were carried out to demonstrate the safety of La@PCDs.
Results: SEM and FTIR results showed that La@PCDs were successfully prepared and exhibiting a homogeneous size distribution and irregular morphology. ROS assessment demonstrated that La@PCDs have a synergistic effect, promoting the production of a large number of ROS. This effect only occurred under acidic PH conditions. The inherent acidity in the biofilm microenvironment can act as internal stimulus. In vitro experiments revealed superior antibacterial efficiency under acidic conditions without causing significant cytotoxicity compared to the commonly used NaClO irrigant. The biosafety of La@PCDs was confirmed.
Conclusion: Compared to existing materials, these nanoparticles exhibit favorable antibacterial and anti-biofilm properties, along with improved biocompatibility. These findings emphasize the potential of the integrated La@PCDs as a promising option for enhancing root canal irrigation and disinfection.
{"title":"A Novel pH-Responsive Nano-Sized Lanthanum-Doped Polyvinyl Alcohol-Carbon Quantum Dot Composite for Root Canal Irrigation.","authors":"Lihua Yu, Chunxia Zhang, Jie Yang, Lu Li","doi":"10.2147/IJN.S475872","DOIUrl":"https://doi.org/10.2147/IJN.S475872","url":null,"abstract":"<p><strong>Purpose: </strong>The primary goals of endodontic therapy are to eliminate microbes and prevent reinfection. Persistent root canal infections and failure of root canal therapy are primarily attributed to the presence of bacteria, particularly E. faecalis. Chemical irrigants play a crucial role in complementing mechanical instrumentation in ensuring adequate disinfection. However, current techniques and available irrigants are limited in their ability to achieve optimal sterilization of the root canal system. In this study, we developed a novel material called La@PCDs by combining CQD-PVA and lanthanum for root canal irrigation.</p><p><strong>Methods: </strong>A one-pot hydrothermal method was used to prepare composites of lanthanum and CQD-PVA (La@PCDs). Scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy and the particle size were employed to characterize La@PCDs. ROS generation was evaluated by measuring the fluorescence intensity emitted at 525 nm from 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA). In vitro experiments were conducted to assess the effectiveness of the nanoparticles in combating Enterococcus faecalis and eradicating in situ biofilm eradication in root canal. Furthermore, cytotoxicity assessments were carried out to demonstrate the safety of La@PCDs.</p><p><strong>Results: </strong>SEM and FTIR results showed that La@PCDs were successfully prepared and exhibiting a homogeneous size distribution and irregular morphology. ROS assessment demonstrated that La@PCDs have a synergistic effect, promoting the production of a large number of ROS. This effect only occurred under acidic PH conditions. The inherent acidity in the biofilm microenvironment can act as internal stimulus. In vitro experiments revealed superior antibacterial efficiency under acidic conditions without causing significant cytotoxicity compared to the commonly used NaClO irrigant. The biosafety of La@PCDs was confirmed.</p><p><strong>Conclusion: </strong>Compared to existing materials, these nanoparticles exhibit favorable antibacterial and anti-biofilm properties, along with improved biocompatibility. These findings emphasize the potential of the integrated La@PCDs as a promising option for enhancing root canal irrigation and disinfection.</p>","PeriodicalId":14084,"journal":{"name":"International Journal of Nanomedicine","volume":"19 ","pages":"11343-11356"},"PeriodicalIF":6.6,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11550707/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142619445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}