Recent improvements in molecular treatment and gene therapy led to discovering novel cancer remedies. Antisense LNA GapmeRs is a state-of-the-art molecular research field for diagnosing and treating various cancer types. Acute myeloid leukemia (AML) is a heterogeneous hematopoietic malignancy defined by the rapid accumulation and malignant proliferation of immature myeloid progenitors. SOX12 is a new potential target for acute myeloid leukemia. In this study, SOX12 was blocked by antisense LNA GapmeRs (ALG) in human AML cell lines (KG1 and M07e). Cells were transfected with Gapmer anti-SOX12 at 24, 48, and 72 h post-transfection. Transfection efficiency was assessed by a fluorescent microscope. Furthermore, evaluation of SOX12, TWIST1, CTNNB1, CASP3, and CASP9 expression was performed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). Cell viability was determined by MTT assay. SOX12 expression was decreased remarkably in the ALG group. Moreover, SOX12 knockdown was associated with a decrease in TWIST1 and CTNNB1 expression. Besides, downregulation of SOX12 in both cell lines could induce apoptosis, probably through upregulation of CASP3 and CASP9. The findings reveal that SOX12 knockdown could be a new target for reducing AML cells proliferation through antisense therapy approach.
{"title":"Knockdown of SOX12 Expression Induced Apoptotic Factors is Associated with TWIST1 and CTNNB1 Expression in Human Acute Myeloid Leukemia Cells.","authors":"Arezou Dabiri, Mohammadreza Sharifi, Akram Sarmadi","doi":"10.22088/IJMCM.BUMS.10.4.249","DOIUrl":"https://doi.org/10.22088/IJMCM.BUMS.10.4.249","url":null,"abstract":"<p><p>Recent improvements in molecular treatment and gene therapy led to discovering novel cancer remedies. Antisense LNA GapmeRs is a state-of-the-art molecular research field for diagnosing and treating various cancer types. Acute myeloid leukemia (AML) is a heterogeneous hematopoietic malignancy defined by the rapid accumulation and malignant proliferation of immature myeloid progenitors. SOX12 is a new potential target for acute myeloid leukemia. In this study, SOX12 was blocked by antisense LNA GapmeRs (ALG) in human AML cell lines (KG1 and M07e). Cells were transfected with Gapmer anti-<i>SOX12</i> at 24, 48, and 72 h post-transfection. Transfection efficiency was assessed by a fluorescent microscope. Furthermore, evaluation of SOX12, TWIST1, CTNNB1, CASP3, and CASP9 expression was performed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). Cell viability was determined by MTT assay. SOX12 expression was decreased remarkably in the ALG group. Moreover, SOX12 knockdown was associated with a decrease in <i>TWIST1</i> and <i>CTNNB1</i> expression. Besides, downregulation of SOX12 in both cell lines could induce apoptosis, probably through upregulation of CASP3 and CASP9. The findings reveal that SOX12 knockdown could be a new target for reducing AML cells proliferation through antisense therapy approach.</p>","PeriodicalId":14152,"journal":{"name":"International Journal of Molecular and Cellular Medicine","volume":"10 4","pages":"249-258"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e4/c8/ijmcm-10-249.PMC9273156.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40536018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01Epub Date: 2021-05-22DOI: 10.22088/IJMCM.BUMS.10.1.45
Hussein Sabit, Huseyin Tombuloglu, Emre Cevik, Shaimaa Abdel-Ghany, Engy El-Zawahri, Amr El-Sawy, Sevim Isik, Ebtesam Al-Suhaimi
Oral squamous cell carcinoma (OSCC) is the most common malignant epithelial cancer occurring in the oral cavity, where it accounts for nearly 90% of all oral cavity neoplasms. The c-MYC transcription factor plays an important role in the control of programmed cell death, normal-to-malignant cellular transformation, and progression of the cell cycle. However, the role of c-MYC in controlling the proliferation of OSCC cells is not well known. In this study, c-MYC gene was silenced in OSCC cells (ORL-136T), and molecular and cellular responses were screened. To identify the pathway through which cell death occurred, cytotoxicity, colony formation, western blotting, caspase-3, and RT-qPCR analyzes were performed. Results indicated that knockdown of c-MYC has resulted in a significant decrease in the cell viability and c-MYC protein synthesis. Furthermore, caspase-3 was shown to be upregulated leading to apoptosis via the intrinsic pathway. In response to c-MYC knockdown, eight cell proliferation-associated genes showed variable expression profiles: c-MYC (-21.2), p21 (-2.5), CCNA1(1.8), BCL2 (-1.4), p53(-3.7), BAX(1.1), and CYCS (19.3). p27 expression was dramatically decreased in c-MYC-silenced cells in comparison with control, and this might indicate that the relative absence of c-MYC triggered intrinsic apoptosis in OSCC cells via p27 and CYCS.
{"title":"Knockdown of c-MYC Controls the Proliferation of Oral Squamous Cell Carcinoma Cells in vitro via Dynamic Regulation of Key Apoptotic Marker Genes.","authors":"Hussein Sabit, Huseyin Tombuloglu, Emre Cevik, Shaimaa Abdel-Ghany, Engy El-Zawahri, Amr El-Sawy, Sevim Isik, Ebtesam Al-Suhaimi","doi":"10.22088/IJMCM.BUMS.10.1.45","DOIUrl":"https://doi.org/10.22088/IJMCM.BUMS.10.1.45","url":null,"abstract":"<p><p>Oral squamous cell carcinoma (OSCC) is the most common malignant epithelial cancer occurring in the oral cavity, where it accounts for nearly 90% of all oral cavity neoplasms. The c-MYC transcription factor plays an important role in the control of programmed cell death, normal-to-malignant cellular transformation, and progression of the cell cycle. However, the role of <i>c-MYC</i> in controlling the proliferation of OSCC cells is not well known. In this study, <i>c-MYC</i> gene was silenced in OSCC cells (ORL-136T), and molecular and cellular responses were screened. To identify the pathway through which cell death occurred, cytotoxicity, colony formation, western blotting, caspase-3, and RT-qPCR analyzes were performed. Results indicated that knockdown of <i>c-MYC</i> has resulted in a significant decrease in the cell viability and c-MYC protein synthesis. Furthermore, caspase-3 was shown to be upregulated leading to apoptosis <i>via</i> the intrinsic pathway. In response to <i>c-MYC</i> knockdown, eight cell proliferation-associated genes showed variable expression profiles: <i>c-MYC</i> (-21.2), <i>p21</i> (-2.5), <i>CCNA1</i>(1.8), <i>BCL</i>2 (-1.4), <i>p53</i>(-3.7), <i>BAX</i>(1.1), and <i>CYCS</i> (19.3)<i>. p27</i> expression was dramatically decreased in <i>c-MYC</i>-silenced cells in comparison with control, and this might indicate that the relative absence of <i>c-MYC</i> triggered intrinsic apoptosis in OSCC cells <i>via p27</i> and <i>CYCS</i>.</p>","PeriodicalId":14152,"journal":{"name":"International Journal of Molecular and Cellular Medicine","volume":"10 1","pages":"45-55"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8256829/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39189219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01Epub Date: 2021-09-01DOI: 10.22088/IJMCM.BUMS.10.2.75
Maryame Lamsisi, Lahcen Wakrim, Amal Bouziyane, Mustapha Benhessou, Mounia Oudghiri, Abdelilah Laraqui, Mohamed Elkarroumi, Mohammed Ennachit, Mohammed El Mzibri, Moulay Mustapha Ennaji
Despite the remarkable decrease in cervical cancer incidence due to the availability of the HPV vaccine and implementation of screening programs for early detection in developed countries, this cancer remains a major health problem globally, especially in developing countries where most of the cases and mortality occur. Therefore, more understanding of molecular mechanisms of cervical cancer development might lead to the discovery of more effective diagnosis and treatment options. Research on long noncoding RNAs (lncRNAs) demonstrates the important roles of these molecules in many physiological processes and diseases, especially cancer. In the present review, we discussed the significance of lncRNAs altered expression in cervical cancer, highlighting their roles in regulating highly conserved signaling pathways, such as mitogen-activated protein kinase (MAPK), Wnt/β-catenin, Notch, and phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathways and their association with the progression of cervical cancer in order to bring more insight and understanding of this disease and their potential implications in cancer diagnosis and therapy.
{"title":"The Biological Significance of Long noncoding RNAs Dysregulation and their Mechanism of Regulating Signaling Pathways in Cervical Cancer.","authors":"Maryame Lamsisi, Lahcen Wakrim, Amal Bouziyane, Mustapha Benhessou, Mounia Oudghiri, Abdelilah Laraqui, Mohamed Elkarroumi, Mohammed Ennachit, Mohammed El Mzibri, Moulay Mustapha Ennaji","doi":"10.22088/IJMCM.BUMS.10.2.75","DOIUrl":"10.22088/IJMCM.BUMS.10.2.75","url":null,"abstract":"<p><p>Despite the remarkable decrease in cervical cancer incidence due to the availability of the HPV vaccine and implementation of screening programs for early detection in developed countries, this cancer remains a major health problem globally, especially in developing countries where most of the cases and mortality occur. Therefore, more understanding of molecular mechanisms of cervical cancer development might lead to the discovery of more effective diagnosis and treatment options. Research on long noncoding RNAs (lncRNAs) demonstrates the important roles of these molecules in many physiological processes and diseases, especially cancer. In the present review, we discussed the significance of lncRNAs altered expression in cervical cancer, highlighting their roles in regulating highly conserved signaling pathways, such as mitogen-activated protein kinase (MAPK), Wnt/β-catenin, Notch, and phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathways and their association with the progression of cervical cancer in order to bring more insight and understanding of this disease and their potential implications in cancer diagnosis and therapy.</p>","PeriodicalId":14152,"journal":{"name":"International Journal of Molecular and Cellular Medicine","volume":"10 2","pages":"75-101"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8496250/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39561003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mesenchymal stem cells (MSCs) as undifferentiated cells are specially considered in cell-based cancer therapy due to unique features such as multi-potency, pluripotency, and self-renewal. A multitude of cytokines secreted from MSCs are known to give such multifunctional attributes, but details of their role are yet to be unknown. In the present study, MSCs were cultured, characterized and co-cultured with Molt-4 cells as acute lymphoblastic leukemia cell line in a trans-well plate. Then, cultured Molt-4 alone and Molt-4 co-cultured with MSCs (10:1) were collected on day 7 and subjected to real time-PCR and Western blotting for gene and protein expression assessment, respectively. Ki-67/caspase-3 as well as telomere length were investigated by flow cytometry and real time-PCR, respectively. The results showed that MSCs caused significant decrease in telomere length as well as hTERT gene expression of Molt-4 cells. Also, gene and protein expression of BAD and P53 were significantly increased. Furthermore, the flow cytometry analysis indicated the decrease and increase of the Ki-67 and caspaspase-3 expression, respectively. It was concluded that MSCs co-cultured with Molt-4 cells could be involved in the promotion of Molt-4 cell apoptosis via caspase-3, BAD, and P53 expression. In addition, the decrease of telomere length is another effect of MSCs on Molt-4 leukemic cells.
{"title":"Mesenchymal Stem Cells cause Telomere Length Reduction of Molt-4 Cells via Caspase-3, BAD and P53 Apoptotic Pathway.","authors":"Hamid Reza Heidari, Ezzatollah Fathi, Soheila Montazersaheb, Ayoub Mamandi, Raheleh Farahzadi, Soran Zalavi, Hojjatollah Nozad Charoudeh","doi":"10.22088/IJMCM.BUMS.10.2.113","DOIUrl":"https://doi.org/10.22088/IJMCM.BUMS.10.2.113","url":null,"abstract":"<p><p>Mesenchymal stem cells (MSCs) as undifferentiated cells are specially considered in cell-based cancer therapy due to unique features such as multi-potency, pluripotency, and self-renewal. A multitude of cytokines secreted from MSCs are known to give such multifunctional attributes, but details of their role are yet to be unknown. In the present study, MSCs were cultured, characterized and co-cultured with Molt-4 cells as acute lymphoblastic leukemia cell line in a trans-well plate. Then, cultured Molt-4 alone and Molt-4 co-cultured with MSCs (10:1) were collected on day 7 and subjected to real time-PCR and Western blotting for gene and protein expression assessment, respectively. Ki-67/caspase-3 as well as telomere length were investigated by flow cytometry and real time-PCR, respectively. The results showed that MSCs caused significant decrease in telomere length as well as <i>hTERT</i> gene expression of Molt-4 cells. Also, gene and protein expression of BAD and P53 were significantly increased. Furthermore, the flow cytometry analysis indicated the decrease and increase of the Ki-67 and caspaspase-3 expression, respectively. It was concluded that MSCs co-cultured with Molt-4 cells could be involved in the promotion of Molt-4 cell apoptosis via caspase-3, BAD, and P53 expression. In addition, the decrease of telomere length is another effect of MSCs on Molt-4 leukemic cells.</p>","PeriodicalId":14152,"journal":{"name":"International Journal of Molecular and Cellular Medicine","volume":"10 2","pages":"113-122"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8496249/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39561004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01Epub Date: 2022-01-10DOI: 10.22088/IJMCM.BUMS.10.3.181
Amir Yarahmadi, Negar Azarpira, Zohreh Mostafavi-Pour
The mammalian target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine-protein kinase that senses and combines various environmental signals to regulate the growth and homeostasis of human cells. This signaling pathway synchronizes many critical cellular processes and is involved in an increasing number of pathological conditions such as diabetes, cancer, obesity, and metabolic syndrome. Here, we review different complications of diabetes that are associated with mTOR complex 1 imbalance. We further discuss pharmacological approaches to treat diabetes complications linked to mTOR deregulation.
{"title":"Role of mTOR Complex 1 Signaling Pathway in the Pathogenesis of Diabetes Complications; A Mini Review.","authors":"Amir Yarahmadi, Negar Azarpira, Zohreh Mostafavi-Pour","doi":"10.22088/IJMCM.BUMS.10.3.181","DOIUrl":"https://doi.org/10.22088/IJMCM.BUMS.10.3.181","url":null,"abstract":"<p><p>The mammalian target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine-protein kinase that senses and combines various environmental signals to regulate the growth and homeostasis of human cells. This signaling pathway synchronizes many critical cellular processes and is involved in an increasing number of pathological conditions such as diabetes, cancer, obesity, and metabolic syndrome. Here, we review different complications of diabetes that are associated with mTOR complex 1 imbalance. We further discuss pharmacological approaches to treat diabetes complications linked to mTOR deregulation.</p>","PeriodicalId":14152,"journal":{"name":"International Journal of Molecular and Cellular Medicine","volume":"10 3","pages":"181-189"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8800458/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39933691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aberrant protein glycosylation is known to be associated with the development of various cancers. Although fucosylation is essential for normal biological functions, alterations in fucosylation are strongly implicated in cancer and increasing metastatic potential. Altered fucosyltarnsferases (FUTs) and fucosidases are found to be involved in many types of malignancies. In this study, we examined the mRNA expressions of fucosidase (FUCA1) and FUTs (FUTs (FUT3, FUT4, FUT5, FUT6, FUT8) in human oral cancer tissues. All FUTs and FUCA1 were significantly (P ≤0.05) down-regulated in malignant tissues in comparison with their adjacent normal tissues. The relationship between the clinicopathological parameters and the expression of FUTs and FUCA1 revealed that higher mRNA levels of FUT4, FUT5, and FUT8 and lower levels of FUT3 were associated with progression of disease and lymph node metastasis in oral carcinoma indicating their role in oral cancer progression. Collectively, results suggest that elevated mRNA levels of FUT4, FUT5 and FUT8 may be used as worst prognostic indicators for oral carcinoma.
{"title":"Altered mRNA Expression of Fucosyltransferases and Fucosidase Predicts Prognosis in Human Oral Carcinoma.","authors":"Kruti Mehta, Kinjal Patel, Shashank Pandya, Prabhudas Patel","doi":"10.22088/IJMCM.BUMS.10.2.123","DOIUrl":"https://doi.org/10.22088/IJMCM.BUMS.10.2.123","url":null,"abstract":"<p><p>Aberrant protein glycosylation is known to be associated with the development of various cancers. Although fucosylation is essential for normal biological functions, alterations in fucosylation are strongly implicated in cancer and increasing metastatic potential. Altered fucosyltarnsferases (FUTs) and fucosidases are found to be involved in many types of malignancies. In this study, we examined the mRNA expressions of fucosidase (<i>FUCA1</i>) and FUTs (<i>FUT</i>s (<i>FUT3</i>, <i>FUT4</i>, <i>FUT5</i>, <i>FUT6</i>, <i>FUT8</i>) in human oral cancer tissues. All <i>FUT</i>s and <i>FUCA1</i> were significantly (P ≤0.05) down-regulated in malignant tissues in comparison with their adjacent normal tissues. The relationship between the clinicopathological parameters and the expression of <i>FUT</i>s and <i>FUCA1</i> revealed that higher mRNA levels of <i>FUT4</i>, <i>FUT5</i>, and <i>FUT8</i> and lower levels of <i>FUT3</i> were associated with progression of disease and lymph node metastasis in oral carcinoma indicating their role in oral cancer progression. Collectively, results suggest that elevated mRNA levels of <i>FUT4</i>, <i>FUT5</i> and <i>FUT8</i> may be used as worst prognostic indicators for oral carcinoma.</p>","PeriodicalId":14152,"journal":{"name":"International Journal of Molecular and Cellular Medicine","volume":"10 2","pages":"123-131"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8496247/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39561005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bone marrow-derived mesenchymal stromal cells (BM-MSCs) and antioxidants opened the way for many effective therapeutic experiments against damaged organs like kidneys. Nephrotoxicity is the main complication of chemotherapeutic drugs. Therefore, the present study aimed to investigate the efficacy of BM-MSCs and hesperidin to treat cisplatin-induced nephrotoxicity in rats. Fifty rats were divided into five equal groups of 10 each. Group-I served as a control group, group-II received a single dose of cisplatin (7.5 mg/kg) intraperitoneally to induce nephrotoxicity, group-III received a daily dose of hesperidin (40 mg/kg) orally for four weeks, and on the 5th day cisplatin was administered an hour before hesperidin administration. Group-IV consisted of cisplatin-treated rats that were intravenously injected with 1х106 BM-MSCs cells/rat once per week. Group V contained cisplatin-treated rats that received a combination of hesperidin and BM-MSCs with the same dosage regimes. After four weeks, serum and kidney samples were collected for biochemical, histological, and immunohistochemical examinations were performed. Cisplatin administered rats showed deteriorated biochemical parameters and severe degenerative changes in renal tissue. Both single and combined hesperidin and BM-MSCs treatments restored the renal biochemical parameters. Histologically, the renal tissues significantly improved in the BM-MSCs treated group in comparison with the hesperidin treated group. Moreover, combined treatment (i.e., group V) showed complete restoration of the normal architecture in the renal tissue. Our data suggest that the combined treatment of BM-MSCs and hesperidin has a potent renoprotective efficacy against cisplatin-induced nephrotoxicity rather than the single treatment.
{"title":"The Role of Bone Marrow-Derived Mesenchymal Stromal Cells and Hesperidin in Ameliorating Nephrotoxicity Induced by Cisplatin in Male Wistar Rats.","authors":"Khalid Mohamed Mazher, Osama Mohamed Ahmed, Hadeer Abdallah Sayed, Taghreed Mohamed Nabil","doi":"10.22088/IJMCM.BUMS.10.2.133","DOIUrl":"https://doi.org/10.22088/IJMCM.BUMS.10.2.133","url":null,"abstract":"<p><p>Bone marrow-derived mesenchymal stromal cells (BM-MSCs) and antioxidants opened the way for many effective therapeutic experiments against damaged organs like kidneys. Nephrotoxicity is the main complication of chemotherapeutic drugs. Therefore, the present study aimed to investigate the efficacy of BM-MSCs and hesperidin to treat cisplatin-induced nephrotoxicity in rats. Fifty rats were divided into five equal groups of 10 each. Group-I served as a control group, group-II received a single dose of cisplatin (7.5 mg/kg) intraperitoneally to induce nephrotoxicity, group-III received a daily dose of hesperidin (40 mg/kg) orally for four weeks, and on the 5<sup>th</sup> day cisplatin was administered an hour before hesperidin administration. Group-IV consisted of cisplatin-treated rats that were intravenously injected with 1х10<sup>6</sup> BM-MSCs cells/rat once per week. Group V contained cisplatin-treated rats that received a combination of hesperidin and BM-MSCs with the same dosage regimes. After four weeks, serum and kidney samples were collected for biochemical, histological, and immunohistochemical examinations were performed. Cisplatin administered rats showed deteriorated biochemical parameters and severe degenerative changes in renal tissue. Both single and combined hesperidin and BM-MSCs treatments restored the renal biochemical parameters. Histologically, the renal tissues significantly improved in the BM-MSCs treated group in comparison with the hesperidin treated group. Moreover, combined treatment (i.e., group V) showed complete restoration of the normal architecture in the renal tissue. Our data suggest that the combined treatment of BM-MSCs and hesperidin has a potent renoprotective efficacy against cisplatin-induced nephrotoxicity rather than the single treatment.</p>","PeriodicalId":14152,"journal":{"name":"International Journal of Molecular and Cellular Medicine","volume":"10 2","pages":"133-146"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8496246/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39561006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01Epub Date: 2021-05-22DOI: 10.22088/IJMCM.BUMS.10.1.11
Amir Safi, Esfandiar Heidarian, Reza Ahmadi
Docetaxel is widely used in the treatment of metastatic breast cancer. However, its effectiveness is limited due to chemoresistance and its undesirable side effects. The combination of chemotherapeutic agents and natural compounds is an effective strategy to overcome drug resistance and the ensuing inevitable toxicities. Quercetin is a natural flavonoid with strong antioxidant and anticancer activities. This study aimed to evaluate the cytotoxic and modulatory effects of combined docetaxel and quercetin on the MDA-MB-231 human breast cancer cell line. The cell viability was assessed by MTT assay. The induction of apoptosis was examined using flow cytometry. The role of p53 in the apoptotic process was evaluated via qRT-PCR. The levels of BAX, BCL2, ERK1/2, AKT, and STAT3 proteins were measured by Western blot analysis. The results showed that the single-agent treatment with docetaxel or quercetin leads to a decrease in the viability of the MDA-MB-231 cells at 48 h. Furthermore, the combination of docetaxel (7 nM) and quercetin (95 μM) displayed the greatest synergistic effects with a combination index value of 0.76 accompanied by the up regulation of p53 and a significant increase in BAX level, as well as decrease in the levels of BCL2, pERK1/2, AKT, and STAT3 proteins (P < 0.05). The concomitant use of docetaxel and quercetin leads to the cell growth inhibition associated with the induction of apoptosis and inhibition of cell survival. Therefore, this study provides a promising therapeutic approach to enhance the efficacy of docetaxel in a less-toxic manner.
{"title":"Quercetin Synergistically Enhances the Anticancer Efficacy of Docetaxel through Induction of Apoptosis and Modulation of PI3K/AKT, MAPK/ERK, and JAK/STAT3 Signaling Pathways in MDA-MB-231 Breast Cancer Cell Line.","authors":"Amir Safi, Esfandiar Heidarian, Reza Ahmadi","doi":"10.22088/IJMCM.BUMS.10.1.11","DOIUrl":"https://doi.org/10.22088/IJMCM.BUMS.10.1.11","url":null,"abstract":"<p><p>Docetaxel is widely used in the treatment of metastatic breast cancer. However, its effectiveness is limited due to chemoresistance and its undesirable side effects. The combination of chemotherapeutic agents and natural compounds is an effective strategy to overcome drug resistance and the ensuing inevitable toxicities. Quercetin is a natural flavonoid with strong antioxidant and anticancer activities. This study aimed to evaluate the cytotoxic and modulatory effects of combined docetaxel and quercetin on the MDA-MB-231 human breast cancer cell line. The cell viability was assessed by MTT assay. The induction of apoptosis was examined using flow cytometry. The role of <i>p53</i> in the apoptotic process was evaluated <i>via</i> qRT-PCR. The levels of BAX, BCL2, ERK1/2, AKT, and STAT3 proteins were measured by Western blot analysis. The results showed that the single-agent treatment with docetaxel or quercetin leads to a decrease in the viability of the MDA-MB-231 cells at 48 h. Furthermore, the combination of docetaxel (7 nM) and quercetin (95 μM) displayed the greatest synergistic effects with a combination index value of 0.76 accompanied by the up regulation of <i>p53</i> and a significant increase in BAX level, as well as decrease in the levels of BCL2, pERK1/2, AKT, and STAT3 proteins (P < 0.05). The concomitant use of docetaxel and quercetin leads to the cell growth inhibition associated with the induction of apoptosis and inhibition of cell survival. Therefore, this study provides a promising therapeutic approach to enhance the efficacy of docetaxel in a less-toxic manner.</p>","PeriodicalId":14152,"journal":{"name":"International Journal of Molecular and Cellular Medicine","volume":"10 1","pages":"11-22"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8256834/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39188783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Toxoplasma gondii, an obligate intracellular parasite, infects more than 30% of world's population. This parasite is considered to be neurotropic, and has high tropism for the central nervous system, and potentially induces cryptogenic epilepsy by no clear mechanism. The current study aimed to investigate the alteration of the main components of the endocannabinoid signaling systems in T. gondii-infected mice. For this purpose, the levels of mRNA expression of monoacylglycerol lipase (MAGL), diacylglycerol lipase (DAGL) and cannabinoid receptor-1 (CB1), were measured by quantitative real time PCR.The mRNA expression level of MAGL was increased by ~ 8-fold in the brains of the Toxoplasma-infected group in comparison with non-infected mice (P<0.0001). The mRNA expression of CB1 gene in the brain of the infected mice was ~ 2 times higher than that measured in control group (P<0.01). The mRNA expression level of DAGL remained unchanged in the infected mice. Overall a substantial increase in MAGL and CB1 expression without any changes in DAGL, in the brain of infected mice suggests that T. gondii disturbs the endocannabinoid signaling pathways, which are known as neurotransmitter modulators involved in epilepsy.
{"title":"Modulation of mRNA Expression of Monoacylglycerol Lipase, Diacylglycerol Lipase and Cannabinoid Receptor-1 in Mice Experimentally Infected with <i>T. gondii</i>.","authors":"Sahar Rostami-Mansoor, Narges Kalantari, Tahmineh Gorgani-Firouzjaee, Salman Ghaffari, Maryam Ghasemi-Kasman","doi":"10.22088/IJMCM.BUMS.10.2.149","DOIUrl":"https://doi.org/10.22088/IJMCM.BUMS.10.2.149","url":null,"abstract":"<p><p><i>Toxoplasma gondii</i>, an obligate intracellular parasite, infects more than 30% of world's population. This parasite is considered to be neurotropic, and has high tropism for the central nervous system, and potentially induces cryptogenic epilepsy by no clear mechanism. The current study aimed to investigate the alteration of the main components of the endocannabinoid signaling systems in <i>T. gondii</i>-infected mice. For this purpose, the levels of mRNA expression of monoacylglycerol lipase (MAGL), diacylglycerol lipase (DAGL) and cannabinoid receptor-1 (CB1), were measured by quantitative real time PCR.The mRNA expression level of MAGL was increased by ~ 8-fold in the brains of the <i>Toxoplasma</i>-infected group in comparison with non-infected mice (P<0.0001). The mRNA expression of CB1 gene in the brain of the infected mice was ~ 2 times higher than that measured in control group (P<0.01). The mRNA expression level of DAGL remained unchanged in the infected mice. Overall a substantial increase in MAGL and CB1 expression without any changes in DAGL, in the brain of infected mice suggests that <i>T. gondii</i> disturbs the endocannabinoid signaling pathways, which are known as neurotransmitter modulators involved in epilepsy.</p>","PeriodicalId":14152,"journal":{"name":"International Journal of Molecular and Cellular Medicine","volume":"10 2","pages":"149-155"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8496245/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39561007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01Epub Date: 2021-09-01DOI: 10.22088/IJMCM.BUMS.10.2.155
Asmaolhosna Amini, Sara Sadat Aghabozorg Afjeh, Behzad Boshehri, Safar Hamednia, Parisa Mashayekhi, Mir Davood Omrani
Bipolar disorder (BD) is a major health care concern worldwide. There are some reports showing an association between genes and their variants involved in circadian rhythm; clock and clock related genes function and development of BD in patients. Therefore, the aim of this study was to investigate the possible association of rs534654 variant on TMEM165 (transmembrane protein 165) gene with the risk of BD. Genotyping of the rs534654 was carried out using the tetra primers- amplification refractory mutation system-PCR (4P-ARMS-PCR) method in 203 patients with BD type 1 and their healthy and normal counterpart. The frequency of the G and A alleles of rs534654 polymorphism was 53% and 47%, respectively in patients. Genotype frequency in patients in comparison with control subjects was 5.4% vs 2.5% for the AA homozygous; 11.3% vs 80.8% for the GG homozygous; and 83.3% vs 16.7% for the heterozygous AG. Statistical analysis showed a significant difference in frequencies between the control and patient groups (P = 0.001). Based on this finding, it is possible to conclude that the impairment in the rs534654 single nucleotide polymorphism in TMEM165 gene is associated with the risk of BD development.
双相情感障碍(BD)是世界范围内主要的卫生保健问题。有一些报告显示,与昼夜节律有关的基因及其变异之间存在关联;生物钟和生物钟相关基因在BD患者中的功能和发展。因此,本研究旨在探讨TMEM165(跨膜蛋白165)基因上的rs534654变异与BD风险的可能关联。采用四引物扩增难变系统- pcr (4P-ARMS-PCR)方法对203例1型BD患者及其健康和正常对照者进行rs534654基因分型。患者中rs534654多态性G和A等位基因的频率分别为53%和47%。与对照组相比,AA纯合子患者的基因型频率为5.4% vs 2.5%;GG纯合子为11.3% vs 80.8%;杂合子AG为83.3% vs 16.7%。统计分析显示,对照组和患者组之间的频率差异有统计学意义(P = 0.001)。基于这一发现,我们可以得出结论,TMEM165基因rs534654单核苷酸多态性的损伤与双相障碍的发生风险有关。
{"title":"The Relationship between rs534654 Polymorphism in TMEM165 Gene and Increased Risk of Bipolar Disorder Type 1.","authors":"Asmaolhosna Amini, Sara Sadat Aghabozorg Afjeh, Behzad Boshehri, Safar Hamednia, Parisa Mashayekhi, Mir Davood Omrani","doi":"10.22088/IJMCM.BUMS.10.2.155","DOIUrl":"https://doi.org/10.22088/IJMCM.BUMS.10.2.155","url":null,"abstract":"<p><p>Bipolar disorder (BD) is a major health care concern worldwide. There are some reports showing an association between genes and their variants involved in circadian rhythm; clock and clock related genes function and development of BD in patients. Therefore, the aim of this study was to investigate the possible association of rs534654 variant on <i>TMEM165</i> (transmembrane protein 165) gene with the risk of BD. Genotyping of the rs534654 was carried out using the tetra primers- amplification refractory mutation system-PCR (4P-ARMS-PCR) method in 203 patients with BD type 1 and their healthy and normal counterpart. The frequency of the G and A alleles of rs534654 polymorphism was 53% and 47%, respectively in patients. Genotype frequency in patients in comparison with control subjects was 5.4% vs 2.5% for the AA homozygous; 11.3% vs 80.8% for the GG homozygous; and 83.3% vs 16.7% for the heterozygous AG. Statistical analysis showed a significant difference in frequencies between the control and patient groups (P = 0.001). Based on this finding, it is possible to conclude that the impairment in the rs534654 single nucleotide polymorphism in <i>TMEM165</i> gene is associated with the risk of BD development.</p>","PeriodicalId":14152,"journal":{"name":"International Journal of Molecular and Cellular Medicine","volume":"10 2","pages":"162-165"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8496248/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39561008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}