Glioblastoma (GBM) is the most aggressive and lethal brain tumor. Artificial neural networks (ANNs) have the potential to make accurate predictions and improve decision making. The aim of this study was to create an ANN model to predict 15-month survival in GBM patients according to gene expression databases. Genomic data of GBM were downloaded from the CGGA, TCGA, MYO, and CPTAC. Logistic regression (LR) and ANN model were used. Age, gender, IDH wild-type/mutant and the 31 most important genes from our previous study, were determined as input factors for the established ANN model. 15-month survival time was used to evaluate the results. The normalized importance scores of each covariate were calculated using the selected ANN model. The area under a receiver operating characteristic (ROC) curve (AUC), Hosmer-Lemeshow (H-L) statistic and accuracy of prediction were measured to evaluate the two models. SPSS 26 was utilized. A total of 551 patients (61% male, mean age 55.5 ± 13.3 years) patients were divided into training, testing, and validation datasets of 441, 55 and 55 patients, respectively. The main candidate genes found were: FN1, ICAM1, MYD88, IL10, and CCL2 with the ANN model; and MMP9, MYD88, and CDK4 with LR model. The AUCs were 0.71 for the LR and 0.81 for the ANN analysis. Compared to the LR model, the ANN model showed better results: Accuracy rate, 83.3 %; H-L statistic, 6.5 %; and AUC, 0.81 % of patients. The findings show that ANNs can accurately predict the 15-month survival in GBM patients and contribute to precise medical treatment.
{"title":"Predicting Survival in Glioblastoma Using Gene Expression Databases: A Neural Network Analysis.","authors":"Parisa Azimi, Taravat Yazdanian, Amirhosein Zohrevand, Abolhassan Ahmadiani","doi":"10.22088/IJMCM.BUMS.13.1.79","DOIUrl":"10.22088/IJMCM.BUMS.13.1.79","url":null,"abstract":"<p><p>Glioblastoma (GBM) is the most aggressive and lethal brain tumor. Artificial neural networks (ANNs) have the potential to make accurate predictions and improve decision making. The aim of this study was to create an ANN model to predict 15-month survival in GBM patients according to gene expression databases. Genomic data of GBM were downloaded from the CGGA, TCGA, MYO, and CPTAC. Logistic regression (LR) and ANN model were used. Age, gender, IDH wild-type/mutant and the 31 most important genes from our previous study, were determined as input factors for the established ANN model. 15-month survival time was used to evaluate the results. The normalized importance scores of each covariate were calculated using the selected ANN model. The area under a receiver operating characteristic (ROC) curve (AUC), Hosmer-Lemeshow (H-L) statistic and accuracy of prediction were measured to evaluate the two models. SPSS 26 was utilized. A total of 551 patients (61% male, mean age 55.5 ± 13.3 years) patients were divided into training, testing, and validation datasets of 441, 55 and 55 patients, respectively. The main candidate genes found were: FN1, ICAM1, MYD88, IL10, and CCL2 with the ANN model; and MMP9, MYD88, and CDK4 with LR model. The AUCs were 0.71 for the LR and 0.81 for the ANN analysis. Compared to the LR model, the ANN model showed better results: Accuracy rate, 83.3 %; H-L statistic, 6.5 %; and AUC, 0.81 % of patients. The findings show that ANNs can accurately predict the 15-month survival in GBM patients and contribute to precise medical treatment.</p>","PeriodicalId":14152,"journal":{"name":"International Journal of Molecular and Cellular Medicine","volume":"13 1","pages":"79-90"},"PeriodicalIF":1.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11329931/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141999878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chronic lymphocytic leukemia (CLL) is the most prevalent hematological cancer, with various medical interventions. In the recent decade, cold physical plasma has become an interesting agent for future cancer therapy. The goal of this study was to see whether cold physical plasma or cold physical plasma-treated liquid (PTL) affected integrin beta 3 (ITGB3) expression, which is hypothesized to mediate an interaction between cancer stem cells and the bone marrow microenvironment, in CLL patients' blood cells. The metabolic activity, cell death pattern, lipid oxidation and ITGB3 gene expression of these treatments was evaluated. Both direct cold physical plasma and PTL exposure enhanced lipid peroxidation in cells of CLL patients, but to a lesser extent in healthy participants. Furthermore, following 48h of cold physical plasma or PTL exposure, the metabolic activity of leukocytes was preferentially reduced in CLL patient leukocytes. In addition, cold physical plasma and PTL treatment elevated ITGB3 mRNA expression in CLL patients' leukocytes compared to untreated and healthy controls. Collectively, our study suggests selective effects of direct cold physical plasma and PTL exposure on blood leukocytes from leukemia patients, but further and more detailed studies are needed to provide additional rationales for such treatment options as future therapy.
{"title":"Increased Expression of ITGB 3 in CLL Patient leukemia Cells by Exposure to Cold Physical Plasma and Plasma-treated Medium.","authors":"Monireh Golpour, Farshad Sohbatzadeh, Mina Alimohammadi, Zahra Yazdani, Sadegh Fattahi, Ehsan Zaboli, Alireza Rafiei, Sander Bekeschus","doi":"10.22088/IJMCM.BUMS.13.3.248","DOIUrl":"10.22088/IJMCM.BUMS.13.3.248","url":null,"abstract":"<p><p>Chronic lymphocytic leukemia (CLL) is the most prevalent hematological cancer, with various medical interventions. In the recent decade, cold physical plasma has become an interesting agent for future cancer therapy. The goal of this study was to see whether cold physical plasma or cold physical plasma-treated liquid (PTL) affected integrin beta 3 (ITGB3) expression, which is hypothesized to mediate an interaction between cancer stem cells and the bone marrow microenvironment, in CLL patients' blood cells. The metabolic activity, cell death pattern, lipid oxidation and ITGB3 gene expression of these treatments was evaluated. Both direct cold physical plasma and PTL exposure enhanced lipid peroxidation in cells of CLL patients, but to a lesser extent in healthy participants. Furthermore, following 48h of cold physical plasma or PTL exposure, the metabolic activity of leukocytes was preferentially reduced in CLL patient leukocytes. In addition, cold physical plasma and PTL treatment elevated ITGB3 mRNA expression in CLL patients' leukocytes compared to untreated and healthy controls. Collectively, our study suggests selective effects of direct cold physical plasma and PTL exposure on blood leukocytes from leukemia patients, but further and more detailed studies are needed to provide additional rationales for such treatment options as future therapy.</p>","PeriodicalId":14152,"journal":{"name":"International Journal of Molecular and Cellular Medicine","volume":"13 3","pages":"248-258"},"PeriodicalIF":1.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530951/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142568797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Breast cancer, characterized by genetic diversity and molecular subtypes, presents significant treatment challenges, especially in human epidermal growth factor receptor type 2 (HER2)-positive cases, which are associated with poor prognosis. Metformin, widely known for its antidiabetic effects, has emerged as a promising candidate for cancer therapy. This study investigates the effect of metformin on miR-125a promoter methylation and its subsequent impact on the HER2 signaling pathway in HER2-positive breast cancer cells (SK-BR3). SK-BR3 cells were cultured and treated with various concentrations of metformin to assess its effects on cell viability, DNA methylation, HER2, and DNA Methyltransferase 1 (DNMT1) expression. Molecular analyses focus on the miR-125a signaling pathway modulation, DNA methylation, mRNA expression of DNMT1, and protein level of HER2. Research showed a dose-dependent reduction in cell viability, with IC50 values from 65 mM at 48 hours to 35 mM at 72 hours. Metformin treatment led to demethylation of the miR-125a promoter, which increased miR-125a expression and subsequently reduced HER2 levels. This suggests that metformin exerts its anticancer effects partly by regulation of the miR-125a-HER2 axis. Additionally, metformin inhibited vimentin expression, indicating its potential to interfere with epithelial-mesenchymal transition (EMT) processes. Metformin may serve as a targeted therapeutic agent in HER2-positive breast cancer by modulating the miR-125a-HER2 axis and influencing on the epigenetic and EMT regulation. Further research is warranted to elucidate the therapeutic potential of metformin through these mechanisms.
{"title":"Metformin as a Potential Therapeutic Agent in Breast Cancer: Targeting miR-125a Methylation and Epigenetic Regulation.","authors":"Fatemeh Ahmadpour, Somayeh Igder, Ali Reza Eftekhari Moghadam, Bahman Moradipoodeh, Asma Sepahdar, Pooneh Mokarram, Jafar Fallahi, Ghorban Mohammadzadeh","doi":"10.22088/IJMCM.BUMS.13.3.272","DOIUrl":"10.22088/IJMCM.BUMS.13.3.272","url":null,"abstract":"<p><p>Breast cancer, characterized by genetic diversity and molecular subtypes, presents significant treatment challenges, especially in human epidermal growth factor receptor type 2 (HER2)-positive cases, which are associated with poor prognosis. Metformin, widely known for its antidiabetic effects, has emerged as a promising candidate for cancer therapy. This study investigates the effect of metformin on miR-125a promoter methylation and its subsequent impact on the HER2 signaling pathway in HER2-positive breast cancer cells (SK-BR3). SK-BR3 cells were cultured and treated with various concentrations of metformin to assess its effects on cell viability, DNA methylation, HER2, and DNA Methyltransferase 1 (DNMT1) expression. Molecular analyses focus on the miR-125a signaling pathway modulation, DNA methylation, mRNA expression of DNMT1, and protein level of HER2. Research showed a dose-dependent reduction in cell viability, with IC50 values from 65 mM at 48 hours to 35 mM at 72 hours. Metformin treatment led to demethylation of the miR-125a promoter, which increased miR-125a expression and subsequently reduced HER2 levels. This suggests that metformin exerts its anticancer effects partly by regulation of the miR-125a-HER2 axis. Additionally, metformin inhibited vimentin expression, indicating its potential to interfere with epithelial-mesenchymal transition (EMT) processes. Metformin may serve as a targeted therapeutic agent in HER2-positive breast cancer by modulating the miR-125a-HER2 axis and influencing on the epigenetic and EMT regulation. Further research is warranted to elucidate the therapeutic potential of metformin through these mechanisms.</p>","PeriodicalId":14152,"journal":{"name":"International Journal of Molecular and Cellular Medicine","volume":"13 3","pages":"272-285"},"PeriodicalIF":1.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530948/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142568830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Colorectal cancer is one of the most serious malignancies affecting humans. In this study, Streptomyces bioactive chemicals extracted from soil were analyzed for their anti-colorectal-cancer and antibacterial properties. A total of 100 soil samples were collected from Kerman-Iran, incubated in SCA media and the antimicrobial properties were tested using the cross-streak method. Three strains were cultured in ISP4 medium to obtain secondary bioactive compounds. After studying the effects of the bioactive compounds on the HT29 and human foreskin fibroblast (HFF) cell lines, the expression of the p53, p21, BAX, BCL2, Casp3 and Casp8 genes was analyzed by real-time PCR and flow cytometry to detect the presence of apoptosis.The isolates show high degree of identification with Streptomyces rochei, Streptomyces fungicidicus and Streptomyces maritimus due to 16SrDNA sequence homology. Compared to HT-29 cells, Streptomyces extracts had lower cytotoxicity against normal cells (SI=5.88), followed by HFF (SI=4.14). The cell lines demonstrated a dose-dependent significant increase in DNA fragmentation, an increase in the proportion of cells in sub-G1 phase and caused G2/M cell cycle arrest in HT-29 and HFF cells.The bacterial extracts obtained displayed strong antibacterial properties and inhibited the proliferation of HT-29 and HFF cell lines. The treated cells exhibited morphological changes caused by the activation of caspase and p53/p21 proteins. This confirms that Streptomyces-induced apoptosis is mediated by the activation of p21/p53. Anti-apoptotic Bcl-2 gene expression was downregulated by treatment with the extracts. Further studies are needed to understand the antimicrobial properties of Streptomyces.
{"title":"Evaluation of the Cytotoxicity of Secondary Bioactive Compounds Produced by <i>Streptomyces</i> in Soil against a Colon Cancer Cell Line.","authors":"Mehri Hosseini, Abbas Akhavan Sepahi, Kumarss Amini, Maryam Bikhof Torbati, Mohsen Mousavi","doi":"10.22088/IJMCM.BUMS.13.1.105","DOIUrl":"10.22088/IJMCM.BUMS.13.1.105","url":null,"abstract":"<p><p>Colorectal cancer is one of the most serious malignancies affecting humans. In this study, <i>Streptomyces</i> bioactive chemicals extracted from soil were analyzed for their anti-colorectal-cancer and antibacterial properties. A total of 100 soil samples were collected from Kerman-Iran, incubated in SCA media and the antimicrobial properties were tested using the cross-streak method. Three strains were cultured in ISP4 medium to obtain secondary bioactive compounds. After studying the effects of the bioactive compounds on the HT29 and human foreskin fibroblast (HFF) cell lines, the expression of the <i>p53, p21, BAX, BCL2, Casp3</i> and <i>Casp8</i> genes was analyzed by real-time PCR and flow cytometry to detect the presence of apoptosis.The isolates show high degree of identification with <i>Streptomyces rochei, Streptomyces fungicidicus</i> and <i>Streptomyces maritimus</i> due to 16SrDNA sequence homology. Compared to HT-29 cells, <i>Streptomyces</i> extracts had lower cytotoxicity against normal cells (SI=5.88), followed by HFF (SI=4.14). The cell lines demonstrated a dose-dependent significant increase in DNA fragmentation, an increase in the proportion of cells in sub-G1 phase and caused G2/M cell cycle arrest in HT-29 and HFF cells.The bacterial extracts obtained displayed strong antibacterial properties and inhibited the proliferation of HT-29 and HFF cell lines. The treated cells exhibited morphological changes caused by the activation of caspase and <i>p53/p21</i> proteins. This confirms that <i>Streptomyces</i>-induced apoptosis is mediated by the activation of <i>p21/p53</i>. Anti-apoptotic <i>Bcl-2</i> gene expression was downregulated by treatment with the extracts. Further studies are needed to understand the antimicrobial properties of <i>Streptomyces</i>.</p>","PeriodicalId":14152,"journal":{"name":"International Journal of Molecular and Cellular Medicine","volume":"13 1","pages":"105-119"},"PeriodicalIF":1.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11329933/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141999855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.22088/IJMCM.BUMS.13.1.91
Mohammad Esmail Gheidari, Asal Geramifard, Mahyar Rafiei
Coronary Slow Flow (CSF) is observed in individuals who experience delayed blood supply in the coronary arteries. Inflammation and endothelial dysfunction may play a role in the etiology and development of CSF. The current investigation aimed to compare the expression of specific long noncoding RNAs (lncRNAs) associated with endothelial dysfunction and inflammation in CSF patients. This case‒control study enrolled 72 CSF patients and 71 healthy individuals. Blood samples were collected, and serum marker levels were measured. The expression levels of lncRNAs ANRIL, MALAT1, and LINC00305 in peripheral blood mononuclear cells (PBMCs) were assessed using real-time Polymerase Chain Reaction (PCR). All statistical analyses were performed using SPSS 22, with the significance level set at P < 0.05. The study revealed that the relative expression of MALAT1 and LINC00305 was significantly lower in the CSF group (p < 0.01), whereas ANRIL was expressed at higher levels (p < 0.0001). The areas under the ROC curves (AUCs) for MALAT1, LINC00305, and ANRIL were 0.64, 0.66, and 0.75, respectively. Notably, the expression level of LINC00305 exhibited an inverse correlation with CSF incidence (OR: 0.83, p: 0.008) in contrast to that of ANRIL (OR: 1.43, p < 0.0001). Additionally, compared to those in the control group, the average BMI, WBC, RBC, Hb, LDH, LDL, FBS, and percentage of neutrophils in the CSF group were significantly greater (p< 0.05). lncRNA ANRIL is upregulated in CSF patients, whereas MALAT1 and LINC00305 are downregulated. Dysregulation of ANRIL, MALAT1, and LINC00305 may serve as diagnostic and predictive factors for CSF leakage.
{"title":"Dysregulation of LncRNAs ANRIL, MALAT1, and LINC00305 in Coronary Slow Flow Patients: Implications for Inflammation and Endothelial Dysfunction.","authors":"Mohammad Esmail Gheidari, Asal Geramifard, Mahyar Rafiei","doi":"10.22088/IJMCM.BUMS.13.1.91","DOIUrl":"10.22088/IJMCM.BUMS.13.1.91","url":null,"abstract":"<p><p>Coronary Slow Flow (CSF) is observed in individuals who experience delayed blood supply in the coronary arteries. Inflammation and endothelial dysfunction may play a role in the etiology and development of CSF. The current investigation aimed to compare the expression of specific long noncoding RNAs (lncRNAs) associated with endothelial dysfunction and inflammation in CSF patients. This case‒control study enrolled 72 CSF patients and 71 healthy individuals. Blood samples were collected, and serum marker levels were measured. The expression levels of lncRNAs ANRIL, MALAT1, and LINC00305 in peripheral blood mononuclear cells (PBMCs) were assessed using real-time <i>Polymerase Chain Reaction</i> (PCR). All statistical analyses were performed using SPSS 22, with the significance level set at P < 0.05. The study revealed that the relative expression of MALAT1 and LINC00305 was significantly lower in the CSF group (p < 0.01), whereas ANRIL was expressed at higher levels (p < 0.0001). The areas under the ROC curves (AUCs) for MALAT1, LINC00305, and ANRIL were 0.64, 0.66, and 0.75, respectively. Notably, the expression level of LINC00305 exhibited an inverse correlation with CSF incidence (OR: 0.83, p: 0.008) in contrast to that of ANRIL (OR: 1.43, p < 0.0001). Additionally, compared to those in the control group, the average BMI, WBC, RBC, Hb, LDH, LDL, FBS, and percentage of neutrophils in the CSF group were significantly greater (p< 0.05). lncRNA ANRIL is upregulated in CSF patients, whereas MALAT1 and LINC00305 are downregulated. Dysregulation of ANRIL, MALAT1, and LINC00305 may serve as diagnostic and predictive factors for CSF leakage.</p>","PeriodicalId":14152,"journal":{"name":"International Journal of Molecular and Cellular Medicine","volume":"13 1","pages":"91-104"},"PeriodicalIF":1.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11329937/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141999854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rosemary is an aromatic plant with ancient and modern applications as a spice and herbal remedy. Due to the strong antioxidant potential of rosemary, the present study investigated the anti-proliferative and pro-apoptotic characteristics of rosemary on luminal A and triple-negative breast cancer cells. The effect of rosemary extract on the WNT10B and β-Catenin genes was also evaluated. The WNT10B and β-Catenin expression were measured by real-time PCR. The outcomes of the MTT assay and AnnexinV/PI flow cytometry assay showed that exposure of MCF-7 and MDA-MB-231 cells to rosemary reduced cell viability in a dose-time-dependent routine and promoted apoptosis in breast cancer cells. It was revealed that the extract could exert cytotoxic and apoptotic effects by downregulation of WNT10B and β-Catenin. Our results suggest rosemary as a promising complementary herbal medicine for breast cancers, without the adverse effects of chemotherapy drugs.
{"title":"Suppressive Potential of <i>Rosmarinus officinalis</i> L. Extract against Triple-Negative and Luminal A Breast Cancer.","authors":"Kamran Eghbalpour, Nahid Eghbalpour, Saideh Khademi, Laleh Arzi","doi":"10.22088/IJMCM.BUMS.13.2.198","DOIUrl":"10.22088/IJMCM.BUMS.13.2.198","url":null,"abstract":"<p><p>Rosemary is an aromatic plant with ancient and modern applications as a spice and herbal remedy. Due to the strong antioxidant potential of rosemary, the present study investigated the anti-proliferative and pro-apoptotic characteristics of rosemary on luminal A and triple-negative breast cancer cells. The effect of rosemary extract on the WNT10B and β-Catenin genes was also evaluated. The WNT10B and β-Catenin expression were measured by real-time PCR. The outcomes of the MTT assay and AnnexinV/PI flow cytometry assay showed that exposure of MCF-7 and MDA-MB-231 cells to rosemary reduced cell viability in a dose-time-dependent routine and promoted apoptosis in breast cancer cells. It was revealed that the extract could exert cytotoxic and apoptotic effects by downregulation of WNT10B and β-Catenin. Our results suggest rosemary as a promising complementary herbal medicine for breast cancers, without the adverse effects of chemotherapy drugs.</p>","PeriodicalId":14152,"journal":{"name":"International Journal of Molecular and Cellular Medicine","volume":"13 2","pages":"198-209"},"PeriodicalIF":1.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344568/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142055520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.22088/IJMCM.BUMS.13.2.186
Mohammad Mehdi Darzi, Nahid Neamati, Farzin Sadeghi, Ali Bijani, Emadoddin Moudi
Treatment failure after intravesical instillation of Bacillus Calmette-Guerin immunotherapy (BCG) for non-muscle-invasive bladder cancer (BCa) occurs frequently. The exact effects of BCG on cellular redox status and gene expression remain unclear. We assessed oxidative stress biomarkers and changes in miR-155-5p expression in response to BCG. Twenty-seven patients with BCa were recruited for measuring tissue and serum malondialdehyde (MDA) and total antioxidant capacity (TAC) levels, and tissue expression of miR-155-5p at two-time points: pre and 6 weeks post BCG. Recurrence of BCa was observed after 20 months. R statistical software was used for paired comparisons of biomarkers, as well as the correlation between variables. Significant increases in TAC were observed after BCG (P= <0.001). Tissue MDA levels were significantly reduced (P= 0.003). miR-155-5p was slightly overexpressed after BCG (median fold change=1.3, P=0.25). At the 20-month follow-up, it was observed that improved MDA and TAC changes were significant only in patients without recurrence of BCa. In patients with recurrence, the pre-treatment expression ratio of miR-155-p5 was positively correlated with TAC (R=0.63, P= 0.032) and negatively correlated with MDA (R=-0.72, P=0.037). In patients with recurrence of BCa pre-treatment miR-155-5p showed negative correlation with its expression changes after BCG (R=-0.78, P=0.004). Conclusions: Treatment with BCG has some beneficial effects on the oxidative stress status, which is probably modulated by miR-155-5p. A well-controlled oxidative balance may enhance overall survival of BCa. Considering its high recurrence rate, our pilot experiment can open a window toward better management of patients with BCa.
非肌层浸润性膀胱癌(BCa)膀胱内灌注卡介苗免疫疗法(BCG)治疗失败的情况时有发生。卡介苗对细胞氧化还原状态和基因表达的确切影响仍不清楚。我们评估了氧化应激生物标记物和 miR-155-5p 表达对卡介苗反应的变化。我们招募了27名卡介苗患者,在卡介苗接种前和接种后6周的两个时间点测量组织和血清丙二醛(MDA)和总抗氧化能力(TAC)水平以及组织中miR-155-5p的表达。20 个月后观察卡介苗复发情况。使用 R 统计软件对生物标志物进行配对比较,并计算变量之间的相关性。卡介苗接种后,观察到 TAC 显著增加(P=
{"title":"An Intricate Relationship Between miR-155-5p Expression and Oxidative Stress in Bladder Cancer Patients Treated with Calmette-Guerin Immunotherapy.","authors":"Mohammad Mehdi Darzi, Nahid Neamati, Farzin Sadeghi, Ali Bijani, Emadoddin Moudi","doi":"10.22088/IJMCM.BUMS.13.2.186","DOIUrl":"10.22088/IJMCM.BUMS.13.2.186","url":null,"abstract":"<p><p>Treatment failure after intravesical instillation of Bacillus Calmette-Guerin immunotherapy (BCG) for non-muscle-invasive bladder cancer (BCa) occurs frequently. The exact effects of BCG on cellular redox status and gene expression remain unclear. We assessed oxidative stress biomarkers and changes in miR-155-5p expression in response to BCG. Twenty-seven patients with BCa were recruited for measuring tissue and serum malondialdehyde (MDA) and total antioxidant capacity (TAC) levels, and tissue expression of miR-155-5p at two-time points: pre and 6 weeks post BCG. Recurrence of BCa was observed after 20 months. R statistical software was used for paired comparisons of biomarkers, as well as the correlation between variables. Significant increases in TAC were observed after BCG (P= <0.001). Tissue MDA levels were significantly reduced (P= 0.003). miR-155-5p was slightly overexpressed after BCG (median fold change=1.3, P=0.25). At the 20-month follow-up, it was observed that improved MDA and TAC changes were significant only in patients without recurrence of BCa. In patients with recurrence, the pre-treatment expression ratio of miR-155-p5 was positively correlated with TAC (R=0.63, P= 0.032) and negatively correlated with MDA (R=-0.72, P=0.037). In patients with recurrence of BCa pre-treatment miR-155-5p showed negative correlation with its expression changes after BCG (R=-0.78, P=0.004). Conclusions: Treatment with BCG has some beneficial effects on the oxidative stress status, which is probably modulated by miR-155-5p. A well-controlled oxidative balance may enhance overall survival of BCa. Considering its high recurrence rate, our pilot experiment can open a window toward better management of patients with BCa.</p>","PeriodicalId":14152,"journal":{"name":"International Journal of Molecular and Cellular Medicine","volume":"13 2","pages":"186-197"},"PeriodicalIF":1.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344563/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142055563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Overexpression of (myeloid leukemia cell differentiation protein 1) Mcl-1 is associated with the reduction of ABT-737 toxicity and secondary resistance. In this study, the effect of formononetin (biochanin B) on Mcl-1 expression, cell growth, apoptosis, and ABT-737 sensitivity of the acute lymphoblastic leukemia (ALL) cells was investigated. In this experimental study, the cell proliferation and MTT assays were used to investigate the effect of formononetin on cell growth and survival. qRT-PCR was performed for the measurement of gene expression. Hoechst 33342 staining and caspase-3 activity assay were used for the determination of apoptosis. Our data showed that formononetin and ABT-737 both led to a significant reduction in the IC50 value and synergistically reduced the cell growth and survival relative to single treatment. Overexpression of Mcl-1 was found after the treatment with ABT-737. Formononetin decreased the expression of B-cell lymphoma 2 (Bcl-2) and Mcl-1 and increased the Bcl-2-associated protein x (Bax) and P21 expression. Moreover, formononetin enhanced the apoptotic effect of ABT-737 in ALL cells. In summary, formononetin showed anti-carcinogenic activities in human ALL cells via suppression of cell growth and survival. Formononetin enhanced the apoptotic effect of ABT-737, with contribution by inhibition of the Mcl-1 expression.
{"title":"Enhancement of the Sensitivity of the Acute Lymphoblastic Leukemia Cells to ABT-737 by Formononetin.","authors":"Yusef Abbasi, Marziyeh Pooladi, Roya Nazmabadi, Jamal Amri, Helia Abbasi, Razieh Aghabeygi, Hadi Karami","doi":"10.22088/IJMCM.BUMS.13.3.259","DOIUrl":"10.22088/IJMCM.BUMS.13.3.259","url":null,"abstract":"<p><p>Overexpression of (myeloid leukemia cell differentiation protein 1) Mcl-1 is associated with the reduction of ABT-737 toxicity and secondary resistance. In this study, the effect of formononetin (biochanin B) on Mcl-1 expression, cell growth, apoptosis, and ABT-737 sensitivity of the acute lymphoblastic leukemia (ALL) cells was investigated. In this experimental study, the cell proliferation and MTT assays were used to investigate the effect of formononetin on cell growth and survival. qRT-PCR was performed for the measurement of gene expression. Hoechst 33342 staining and caspase-3 activity assay were used for the determination of apoptosis. Our data showed that formononetin and ABT-737 both led to a significant reduction in the IC<sub>50</sub> value and synergistically reduced the cell growth and survival relative to single treatment. Overexpression of Mcl-1 was found after the treatment with ABT-737. Formononetin decreased the expression of B-cell lymphoma 2 (Bcl-2) and Mcl-1 and increased the Bcl-2-associated protein x (Bax) and P21 expression. Moreover, formononetin enhanced the apoptotic effect of ABT-737 in ALL cells. In summary, formononetin showed anti-carcinogenic activities in human ALL cells <i>via</i> suppression of cell growth and survival. Formononetin enhanced the apoptotic effect of ABT-737, with contribution by inhibition of the Mcl-1 expression.</p>","PeriodicalId":14152,"journal":{"name":"International Journal of Molecular and Cellular Medicine","volume":"13 3","pages":"259-271"},"PeriodicalIF":1.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530950/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142568765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.22088/IJMCM.BUMS.13.3.234
Ika Rahayu, Nur Arfian, Kris Herawan Timotius, Mae Sri Hartati Wahyuningsih
Transforming growth factor beta (TGF-β) initiates epithelial-mesenchymal transition (EMT) in tubular and glomerular epithelial cells, resulting in excessive production and deposition of extracellular matrix through its interaction with TGF-β receptors, which play a crucial role in TGF-β signaling involving two receptor types, namely TGF-β type I (TβRI) and type II (TβRII). EMT contributes to the pathogenesis of interstitial renal fibrosis, a marker of end-stage kidney disease. This study aimed to identify the bioactive compounds in the active fraction of P. angulata and evaluate their ability to inhibit the TGF-β activity and their potential as drug candidates. The active components in the active fraction of P. angulata were analyzed using gas chromatography-mass spectrometry (GC-MS). The bioactive compound structures were obtained from the PubChem database, while the protein targets, TβRI and TβRII, were retrieved from the Protein Data Bank (PDB). The molecular docking analyses were performed using PyRx 0.8 and Discovery Studio. SwissADME was used to evaluate ligand properties and druglikeness. Three dominant active compounds were identified, namely palmitic acid, campesterol, and stigmasterol. In silico studies demonstrated strong energy bonds existed between TβRI and palmitic acid, campesterol, stigmasterol, and SB431542 with binding energy values of -5.7, -10, -9.4, and -10.9 kcal/mol, respectively. Similarly, they strongly bound to TβRII with binding energy values of -5.2, -7.1, -7.5, and -6.1 kcal/mol, respectively. All compounds meet Lipinski's criteria for druglikeness. Among the identified active compounds, campesterol exhibited the highest affinity for TβRI, while stigmasterol exhibited a strong affinity for TβRII. These findings suggested that the three compounds have potential as drug candidates.
转化生长因子β(TGF-β)通过与 TGF-β 受体相互作用,启动肾小管和肾小球上皮细胞的上皮-间充质转化(EMT),导致细胞外基质的过度生成和沉积,TGF-β 受体在 TGF-β 信号转导中发挥着关键作用,涉及两种受体类型,即 TGF-β I 型(TβRI)和 II 型(TβRII)。EMT 是肾间质纤维化的发病机制之一,而肾间质纤维化是终末期肾病的标志。本研究旨在鉴定 P. angulata 有效成分中的生物活性化合物,并评估其抑制 TGF-β 活性的能力及其作为候选药物的潜力。采用气相色谱-质谱法(GC-MS)分析了 P. angulata 有效成分中的活性成分。生物活性化合物的结构来自 PubChem 数据库,而蛋白质靶标 TβRI 和 TβRII 则来自蛋白质数据库 (PDB)。分子对接分析使用 PyRx 0.8 和 Discovery Studio 进行。SwissADME 用于评估配体性质和药物亲和性。确定了三种主要活性化合物,即棕榈酸、坎贝酯醇和豆固醇。硅学研究表明,TβRI 与棕榈酸、坎贝酯醇、豆甾醇和 SB431542 之间存在很强的能量键,结合能值分别为-5.7、-10、-9.4 和-10.9 kcal/mol。同样,它们与 TβRII 的结合能也很强,分别为-5.2、-7.1、-7.5 和 -6.1 kcal/mol。所有化合物都符合利宾斯基的药物相似性标准。在已鉴定的活性化合物中,坎贝特醇对 TβRI 的亲和力最高,而豆固醇对 TβRII 的亲和力较强。这些发现表明,这三种化合物具有候选药物的潜力。
{"title":"An In Silico Study of Transforming Growth Factor-β Inhibitors: A Potential Target for Diabetic Nephropathy Treatment with Active Compounds from the Active Fraction of Physalis angulata.","authors":"Ika Rahayu, Nur Arfian, Kris Herawan Timotius, Mae Sri Hartati Wahyuningsih","doi":"10.22088/IJMCM.BUMS.13.3.234","DOIUrl":"10.22088/IJMCM.BUMS.13.3.234","url":null,"abstract":"<p><p>Transforming growth factor beta (TGF-β) initiates epithelial-mesenchymal transition (EMT) in tubular and glomerular epithelial cells, resulting in excessive production and deposition of extracellular matrix through its interaction with TGF-β receptors, which play a crucial role in TGF-β signaling involving two receptor types, namely TGF-β type I (TβRI) and type II (TβRII). EMT contributes to the pathogenesis of interstitial renal fibrosis, a marker of end-stage kidney disease. This study aimed to identify the bioactive compounds in the active fraction of <i>P. angulata</i> and evaluate their ability to inhibit the TGF-β activity and their potential as drug candidates. The active components in the active fraction of <i>P. angulata</i> were analyzed using gas chromatography-mass spectrometry (GC-MS). The bioactive compound structures were obtained from the PubChem database, while the protein targets, TβRI and TβRII, were retrieved from the Protein Data Bank (PDB). The molecular docking analyses were performed using PyRx 0.8 and Discovery Studio. SwissADME was used to evaluate ligand properties and druglikeness. Three dominant active compounds were identified, namely palmitic acid, campesterol, and stigmasterol. <i>In silico</i> studies demonstrated strong energy bonds existed between TβRI and palmitic acid, campesterol, stigmasterol, and SB431542 with binding energy values of -5.7, -10, -9.4, and -10.9 kcal/mol, respectively. Similarly, they strongly bound to TβRII with binding energy values of -5.2, -7.1, -7.5, and -6.1 kcal/mol, respectively. All compounds meet Lipinski's criteria for druglikeness. Among the identified active compounds, campesterol exhibited the highest affinity for TβRI, while stigmasterol exhibited a strong affinity for TβRII. These findings suggested that the three compounds have potential as drug candidates.</p>","PeriodicalId":14152,"journal":{"name":"International Journal of Molecular and Cellular Medicine","volume":"13 3","pages":"234-247"},"PeriodicalIF":1.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530946/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142568692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.22088/IJMCM.BUMS.13.1.46
Eman Koosehlar, Hassan Mohabatkar, Mandana Behbahani
One of the burning issues facing healthcare organizations is multidrug-resistant (MDR) bacteria. P. aeruginosa is an MDR opportunistic bacterium responsible for nosocomial and fatal infections in immunosuppressed individuals. According to previous studies, efflux pump activity and biofilm formation are the most common resistance mechanisms in P. aeruginosa. The aim of this study was to propose new antimicrobial peptides (AMPs) that target P. aeruginosa and can effectively address these resistance mechanisms through in silico and in vitro assessments. Since AMPs are an attractive alternative to antibiotics, in vitro experiments were carried out along with bioinformatics analyses on 19 Nef peptides (derived from the HIV-1 Nef protein) in the current study. Several servers, including Dbaasps, Antibp2, CLASSAMP2, ToxinPred, dPABBs and ProtParam were used to predict Nef peptides as AMPs. To evaluate the binding affinities, a molecular docking analysis was performed with the HADDOCK web server for all Nef peptide models against two effective proteins of P. aeruginosa (MexB and PqsR) that play a role in efflux and quorum sensing. Moreover, the antibacterial and antibiofilm activity of the Nef peptides was investigated in a resistant strain of P. aeruginosa. The results of molecular docking revealed that all Nef peptides have a significant binding affinity to the abovementioned proteins. Nef-Peptide-19 has the highest affinity to the active sites of MexB and PqsR with the HADDOCK scores of -136.1 ± 1.7 and -129.4 ± 2, respectively. According to the results of in vitro evaluation, Nef peptide 19 showed remarked activity against P. aeruginosa with minimum inhibitory and bactericidal concen-trations (MIC and MBC) of 10 µM and 20 µM, respectively. In addition, biofilm inhibitory activity was observed at a concentration of 20 µM. Finally, Nef peptide 19 is proposed as a new AMP against P. aeruginosa.
{"title":"In Silico and In vitro Evaluations of the Antibacterial Activities of HIV-1 Nef Peptides against <i>Pseudomonas aeruginosa</i>.","authors":"Eman Koosehlar, Hassan Mohabatkar, Mandana Behbahani","doi":"10.22088/IJMCM.BUMS.13.1.46","DOIUrl":"10.22088/IJMCM.BUMS.13.1.46","url":null,"abstract":"<p><p>One of the burning issues facing healthcare organizations is multidrug-resistant (MDR) bacteria. <i>P. aeruginosa</i> is an MDR opportunistic bacterium responsible for nosocomial and fatal infections in immunosuppressed individuals. According to previous studies, efflux pump activity and biofilm formation are the most common resistance mechanisms in <i>P. aeruginosa</i>. The aim of this study was to propose new antimicrobial peptides (AMPs) that target <i>P. aeruginosa</i> and can effectively address these resistance mechanisms through <i>in silico</i> and <i>in vitro</i> assessments. Since AMPs are an attractive alternative to antibiotics, in vitro experiments were carried out along with bioinformatics analyses on 19 Nef peptides (derived from the HIV-1 Nef protein) in the current study. Several servers, including Dbaasps, Antibp2, CLASSAMP2, ToxinPred, dPABBs and ProtParam were used to predict Nef peptides as AMPs. To evaluate the binding affinities, a molecular docking analysis was performed with the HADDOCK web server for all Nef peptide models against two effective proteins of <i>P. aeruginosa</i> (MexB and PqsR) that play a role in efflux and quorum sensing. Moreover, the antibacterial and antibiofilm activity of the Nef peptides was investigated in a resistant strain of <i>P. aeruginosa</i>. The results of molecular docking revealed that all Nef peptides have a significant binding affinity to the abovementioned proteins. Nef-Peptide-19 has the highest affinity to the active sites of MexB and PqsR with the HADDOCK scores of -136.1 ± 1.7 and -129.4 ± 2, respectively. According to the results of <i>in vitro </i>evaluation, Nef peptide 19 showed remarked activity against <i>P. aeruginosa</i> with minimum inhibitory and bactericidal concen-trations (MIC and MBC) of 10 µM and 20 µM, respectively. In addition, biofilm inhibitory activity was observed at a concentration of 20 µM. Finally, Nef peptide 19 is proposed as a new AMP against <i>P. aeruginosa</i>.</p>","PeriodicalId":14152,"journal":{"name":"International Journal of Molecular and Cellular Medicine","volume":"13 1","pages":"46-63"},"PeriodicalIF":1.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11329932/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141999877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}