Pub Date : 2023-11-16DOI: 10.1080/1023666x.2023.2278234
Abdulhakim Masa, Nabil Hayeemasae
As the performance of natural rubber (NR) and halloysite nanotube (HNT) composites is uncertain due to low compatibility between the materials, malleated natural rubber (MNR) is then used as a comp...
{"title":"Dual modification of natural rubber/halloysite nanotubes composites by silane and maleated natural rubber","authors":"Abdulhakim Masa, Nabil Hayeemasae","doi":"10.1080/1023666x.2023.2278234","DOIUrl":"https://doi.org/10.1080/1023666x.2023.2278234","url":null,"abstract":"As the performance of natural rubber (NR) and halloysite nanotube (HNT) composites is uncertain due to low compatibility between the materials, malleated natural rubber (MNR) is then used as a comp...","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":"82 2","pages":""},"PeriodicalIF":1.9,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138513848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-26DOI: 10.1080/1023666x.2023.2270803
Vinayak N. Vanjeri, Vishram D. Hiremani, Naganagouda Goudar, Oshin Jacintha D’souza, Jennifer P. Pinto, Anilkumar R Patil, Shivayogi S. Narasagoudr, Saraswati P. Masti, Ravindra B. Chougale
AbstractIn the present study, the ellagic acid doped Polyvinyl alcohol (PVA), Chitosan (CS), PVA/CS and PVA/CS/Guar-gum blend films were prepared and coded as EA-1, EA-2, EA-3 and EA-4, respectively. The physicochemical properties of prepared films were analyzed by using different instrumental techniques. The differential scanning calorimetry (DSC) and Fourier transform infrared (FT-IR) results revealed the good interaction and miscibility among the components of the films. The thermal stability of ellagic acid incorporated PVA film (EA-1) shown more thermal stability in contrast with other films confirmed by thermogravimetric analysis (TGA) analysis. From the results of X-ray diffraction (XRD) study, the increased amorphous nature was observed for the EA-3 and EA-4 films. Surface morphology was analyzed by using scanning electron microscopy (SEM) and atomic force microscopy (AFM) which illustrates that prepared films exhibits smooth and homogeneous surface after blending with ellagic acid. The results obtained by measuring water contact angles (WCA) revealed that all the films have hydrophilic nature. All the prepared films have exhibited good mechanical properties, hence prepared films can act as promising material for food packaging application.Keywords: Polyvinyl alcoholchitosanguargumellagic acidblend films AcknowledgmentsThe authors gratefully acknowledge the facilities provided by University Science Instruments Center (USIC), DST-SAIF and DST PURSE- Phase II Programme, Karnatak University, Dharwad, Karnataka, India, also Dr. Saraswati P Masti Principal investigator DST-SERB Project, No. SB/EMEQ-213/2014, Department of Chemistry, Karnatak Univesity’s, Karnatak Science College, Dharwad, Karnataka, India, for their support to this study.Author contributionAll the authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Vinayak N. Vanjeri, Vishram D. Hiremani, Naganagouda Goudar, Oshin D’souza, Jennifer P. Pinto, Anilkumar R Patil, Shivayogi S. Narasagoudr, Saraswati P. Masti, Ravindra B. Chougale. The first draft of the manuscript was written by Vinayak Vanjeri and all the authors commented on previous version of the manuscript. All authors read and approved the final manuscript.Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementAll data generated or analyzed during this study are included in the article.Additional informationFundingThe authors declare that no funds, grants, or other support were received during the preparation of this manuscript.
摘要本研究制备了鞣花酸掺杂聚乙烯醇(PVA)、壳聚糖(CS)、PVA/CS和PVA/CS/瓜尔胶共混膜,分别编码为EA-1、EA-2、EA-3和EA-4。采用不同的仪器技术对制备膜的理化性质进行了分析。差示扫描量热(DSC)和傅里叶变换红外(FT-IR)结果表明,膜组分之间具有良好的相互作用和互溶性。经热重分析(TGA)证实,鞣花酸掺入PVA膜(EA-1)的热稳定性优于其他膜。从x射线衍射(XRD)研究结果来看,EA-3和EA-4薄膜的非晶态性质有所增加。利用扫描电镜(SEM)和原子力显微镜(AFM)对制备的膜表面形貌进行了分析,结果表明,与鞣花酸共混后制备的膜表面光滑均匀。水接触角(WCA)测试结果表明,所有膜均具有亲水性。所制备的薄膜均表现出良好的力学性能,是一种很有前途的食品包装材料。作者感谢印度卡纳塔克大学(Dharwad, Karnatak University)大学科学仪器中心(USIC)、DST- saif和DST PURSE-二期计划提供的设施,以及Saraswati P Masti博士(st -塞族项目首席研究员)提供的设施。SB/EMEQ-213/2014,卡纳塔克大学化学系,卡纳塔克科学学院,Dharwad,卡纳塔克邦,印度,感谢他们对本研究的支持。所有作者都对研究的构思和设计做出了贡献。Vinayak N. Vanjeri、Vishram D. Hiremani、Naganagouda Goudar、Oshin D 'souza、Jennifer P. Pinto、Anilkumar R Patil、Shivayogi S. Narasagoudr、Saraswati P. Masti、Ravindra B. Chougale负责材料准备、数据收集和分析。手稿的初稿是由Vinayak Vanjeri撰写的,所有作者都对以前的手稿版本进行了评论。所有作者都阅读并批准了最终的手稿。披露声明作者未报告潜在的利益冲突。数据可用性声明本研究过程中产生或分析的所有数据均包含在本文中。作者声明在撰写本文期间没有收到任何资金、资助或其他支持。
{"title":"Assessment of thermal, crystalline and morphological properties of ellagic acid incorporated PVA, chitosan, PVA/chitosan and PVA/chitosan/gaur gum polymeric films","authors":"Vinayak N. Vanjeri, Vishram D. Hiremani, Naganagouda Goudar, Oshin Jacintha D’souza, Jennifer P. Pinto, Anilkumar R Patil, Shivayogi S. Narasagoudr, Saraswati P. Masti, Ravindra B. Chougale","doi":"10.1080/1023666x.2023.2270803","DOIUrl":"https://doi.org/10.1080/1023666x.2023.2270803","url":null,"abstract":"AbstractIn the present study, the ellagic acid doped Polyvinyl alcohol (PVA), Chitosan (CS), PVA/CS and PVA/CS/Guar-gum blend films were prepared and coded as EA-1, EA-2, EA-3 and EA-4, respectively. The physicochemical properties of prepared films were analyzed by using different instrumental techniques. The differential scanning calorimetry (DSC) and Fourier transform infrared (FT-IR) results revealed the good interaction and miscibility among the components of the films. The thermal stability of ellagic acid incorporated PVA film (EA-1) shown more thermal stability in contrast with other films confirmed by thermogravimetric analysis (TGA) analysis. From the results of X-ray diffraction (XRD) study, the increased amorphous nature was observed for the EA-3 and EA-4 films. Surface morphology was analyzed by using scanning electron microscopy (SEM) and atomic force microscopy (AFM) which illustrates that prepared films exhibits smooth and homogeneous surface after blending with ellagic acid. The results obtained by measuring water contact angles (WCA) revealed that all the films have hydrophilic nature. All the prepared films have exhibited good mechanical properties, hence prepared films can act as promising material for food packaging application.Keywords: Polyvinyl alcoholchitosanguargumellagic acidblend films AcknowledgmentsThe authors gratefully acknowledge the facilities provided by University Science Instruments Center (USIC), DST-SAIF and DST PURSE- Phase II Programme, Karnatak University, Dharwad, Karnataka, India, also Dr. Saraswati P Masti Principal investigator DST-SERB Project, No. SB/EMEQ-213/2014, Department of Chemistry, Karnatak Univesity’s, Karnatak Science College, Dharwad, Karnataka, India, for their support to this study.Author contributionAll the authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Vinayak N. Vanjeri, Vishram D. Hiremani, Naganagouda Goudar, Oshin D’souza, Jennifer P. Pinto, Anilkumar R Patil, Shivayogi S. Narasagoudr, Saraswati P. Masti, Ravindra B. Chougale. The first draft of the manuscript was written by Vinayak Vanjeri and all the authors commented on previous version of the manuscript. All authors read and approved the final manuscript.Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementAll data generated or analyzed during this study are included in the article.Additional informationFundingThe authors declare that no funds, grants, or other support were received during the preparation of this manuscript.","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136376382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AbstractRigid polyurethane foams (RPUFs) were synthesized with hydrolyzed keratin using the “one-step method” of all-water foaming. Thermogravimetric analysis, pyrolysis kinetics analysis, cone calorimetry and smoke density (Ds) were used to investigate the effects of hydrolyzed keratin on thermal stability and combustion performance of RPUFs. The results showed that the modified RPUFs with 12.5 wt% hydrolyzed keratin (RPUF-HK5) had the lowest mass loss, the highest integrated program pyrolysis temperature, the highest activation energy, the lowest Ds (25.32 and 22.57), the highest light transmittance (64.30% and 67.46%), and total heat release (1.85 MJ/m2, 2.18 MJ/m2 and 2.92 MJ/m2), which indicated that RPUF-HK5 had better thermal stability and combustion performance. The current research results provided a useful reference for the preparation of the RPUFs with good thermal stability by bio-based modification.Keywords: Polyurethane foamhydrolyzed keratincombustion performancethermal stability Disclosure statementWe declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.Data availability statementData available on request from the authors. The data that support the findings of this study are available from the corresponding author upon reasonable request.Additional informationFundingThe financial support from Scientific Research Fund of Liaoning Provincial Education Department [Grant No. JYT2020011) is greatly acknowledged.
{"title":"Fabrication of hydrolyzed keratin-modified rigid polyurethane foams and its thermal stability and combustion performance","authors":"Xu Zhang, Simiao Sun, Dehe Yuan, Zhi Wang, Hua Xie, Yinhua Liu","doi":"10.1080/1023666x.2023.2270805","DOIUrl":"https://doi.org/10.1080/1023666x.2023.2270805","url":null,"abstract":"AbstractRigid polyurethane foams (RPUFs) were synthesized with hydrolyzed keratin using the “one-step method” of all-water foaming. Thermogravimetric analysis, pyrolysis kinetics analysis, cone calorimetry and smoke density (Ds) were used to investigate the effects of hydrolyzed keratin on thermal stability and combustion performance of RPUFs. The results showed that the modified RPUFs with 12.5 wt% hydrolyzed keratin (RPUF-HK5) had the lowest mass loss, the highest integrated program pyrolysis temperature, the highest activation energy, the lowest Ds (25.32 and 22.57), the highest light transmittance (64.30% and 67.46%), and total heat release (1.85 MJ/m2, 2.18 MJ/m2 and 2.92 MJ/m2), which indicated that RPUF-HK5 had better thermal stability and combustion performance. The current research results provided a useful reference for the preparation of the RPUFs with good thermal stability by bio-based modification.Keywords: Polyurethane foamhydrolyzed keratincombustion performancethermal stability Disclosure statementWe declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.Data availability statementData available on request from the authors. The data that support the findings of this study are available from the corresponding author upon reasonable request.Additional informationFundingThe financial support from Scientific Research Fund of Liaoning Provincial Education Department [Grant No. JYT2020011) is greatly acknowledged.","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":"57 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136376521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-20DOI: 10.1080/1023666x.2023.2267257
Neelima Dubey
{"title":"A study on surfactant modified polypyrrole nanostructures and its applications in supercapacitors","authors":"Neelima Dubey","doi":"10.1080/1023666x.2023.2267257","DOIUrl":"https://doi.org/10.1080/1023666x.2023.2267257","url":null,"abstract":"","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":"76 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135570898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-18DOI: 10.1080/1023666x.2023.2264604
J. Kamalipour, M. H. Beheshty, M. J. Zohuriaan-Mehr
AbstractSeveral phosphorous-containing flame retardant latent curing agents newly derived from 4,4-diamino diphenyl sulfone (DDS) and 4,4-diamino diphenyl methane (DDM) were designed to cure epoxy resin alongside dicyandiamide (Dicy). The thermal decomposition and kinetics of cured one-packed systems were investigated in detail. The epoxy systems were studied under a nitrogen atmosphere by using thermal gravimetric analysis at different heating rates. The kinetics of thermal decomposition was evaluated by Flynn-Wall-Ozawa, Kissinger-Akahira-Sunose, and Starink methods. The correlation coefficient for all systems obtained by the three above methods was almost equal to one, indicating that these three methods were correctly chosen. The results demonstrated that the activation energy of epoxy/Dicy blended with different phosphorous-containing DDS- and DDM-derived curing agents at a lower degree of conversion decreased by incorporation of the agents while increasing at a higher degree of conversion. The thermodynamic parameters (ΔH*, ΔG*, and ΔS*) of the studied systems were calculated by the obtained activation energy via three kinetics methods. It was found that as the conversion degree and the enthalpy increased, the Gibbs free energy decreased, while entropy changed from negative to positive values.Keywords: Epoxy resinflame retardantdicyandiamideFlynn-Wall-OzawaKissinger-Akahira-SunoseStarinkthermodynamic parameters Disclosure statementNo potential conflict of interest was reported by the author(s).
{"title":"Thermal decomposition kinetic study on one-pack formulations of epoxy resin cured with novel phosphorus-containing flame retardant latent curing agents","authors":"J. Kamalipour, M. H. Beheshty, M. J. Zohuriaan-Mehr","doi":"10.1080/1023666x.2023.2264604","DOIUrl":"https://doi.org/10.1080/1023666x.2023.2264604","url":null,"abstract":"AbstractSeveral phosphorous-containing flame retardant latent curing agents newly derived from 4,4-diamino diphenyl sulfone (DDS) and 4,4-diamino diphenyl methane (DDM) were designed to cure epoxy resin alongside dicyandiamide (Dicy). The thermal decomposition and kinetics of cured one-packed systems were investigated in detail. The epoxy systems were studied under a nitrogen atmosphere by using thermal gravimetric analysis at different heating rates. The kinetics of thermal decomposition was evaluated by Flynn-Wall-Ozawa, Kissinger-Akahira-Sunose, and Starink methods. The correlation coefficient for all systems obtained by the three above methods was almost equal to one, indicating that these three methods were correctly chosen. The results demonstrated that the activation energy of epoxy/Dicy blended with different phosphorous-containing DDS- and DDM-derived curing agents at a lower degree of conversion decreased by incorporation of the agents while increasing at a higher degree of conversion. The thermodynamic parameters (ΔH*, ΔG*, and ΔS*) of the studied systems were calculated by the obtained activation energy via three kinetics methods. It was found that as the conversion degree and the enthalpy increased, the Gibbs free energy decreased, while entropy changed from negative to positive values.Keywords: Epoxy resinflame retardantdicyandiamideFlynn-Wall-OzawaKissinger-Akahira-SunoseStarinkthermodynamic parameters Disclosure statementNo potential conflict of interest was reported by the author(s).","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":"06 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135883687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-25DOI: 10.1080/1023666x.2023.2255024
Mohammad Babar, Gaurav Verma
AbstractThis article narrates how processing “bias” affects polymer chain dynamics due to variable 2D-nanofiller interfaces. Importance of this biasing can be assessed by the significant improvement in thermal and mechanical properties we have recently published for polyurethane-2D clay nanocomposite coatings. We intricately look at the nanoscale structure and subsequent interface formation between 2D clay and PU chains to understand the changes in morphology. Polyurethane (PU) chain dynamics was observed through the gold (Au) sputtered patterns in field emission electron microscopy (FESEM) images. These were fitted with circles and our findings confirm the presence of an attractive interface between PU and 2D nanoclay. Circle fitting elicits important data like the critical area (Ac) and critical relative frequency (fc) which are used to evaluate the polymer chain dynamics and morphology. We find that fc is related to circularity, and reinforcing nanoclay to the PU matrix enhances fc by 4.6% and 6.9% with simultaneous use of ultrasonic bath and high shear homogenizer. This is further correlated with the already established methods of small angle X-Ray scattering (SAXS) and Fourier transform infrared (FTIR) spectroscopy to generate a fresh perspective on interfacial interactions in PU-2D clay nanocomposites.Circle fitting treatment FESEM images of polyurethane (PU) nanocomposites. Difference in the gold sputtering patterns (GSPs) of PU on the surface of nanoclay (below) can be clearly observed as compared to the GSPs of bare PU (above).Highlights1 wt% C30B-PU nanocomposite coatings were prepared using 3 processing schemes.FESEM images revealed gold sputtered patterns from the differently processed samples.Circle fitting analysis on GSPs helped in understanding the polymer nanofiller interface.Growth conformation of polymer chains in and around the 2D nanofiller provides fresh perspective into polymer chain dynamics.Keywords: Chain mobilitypolymer conformationattractive interfacereorganizationFESEMdegree of phase separation (DPS)gold sputtering patterns (GSPs)circularity AcknowledgmentsThe authors thank Covestro (India) Private Limited for providing us with the necessary materials on- gratis.Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementThe data that support the findings of this study are available from the corresponding author upon reasonable request.Additional informationFundingWe acknowledge the contribution of SAP (UGC, New Delhi), PURSE (DST, New Delhi) and TEQIP-III grants accorded to Dr. SSBUICET. We acknowledge the financial assistance given by DST-UT (S&T&RE/RP/147/Sanc/09/2017/1123-1129) and DRDO (DMSDE Kanpur) (TR/0569/CARS-130 dated 16/12/2021). We acknowledge the receiving of collaborative grant from Nottingham Trent University (NTU), United Kingdom under the science and technology initiative.
{"title":"Eliciting impact of nano-clay reinforcement and processing schemes on polyurethane chain dynamics by gold sputtering patterns (GSPs)","authors":"Mohammad Babar, Gaurav Verma","doi":"10.1080/1023666x.2023.2255024","DOIUrl":"https://doi.org/10.1080/1023666x.2023.2255024","url":null,"abstract":"AbstractThis article narrates how processing “bias” affects polymer chain dynamics due to variable 2D-nanofiller interfaces. Importance of this biasing can be assessed by the significant improvement in thermal and mechanical properties we have recently published for polyurethane-2D clay nanocomposite coatings. We intricately look at the nanoscale structure and subsequent interface formation between 2D clay and PU chains to understand the changes in morphology. Polyurethane (PU) chain dynamics was observed through the gold (Au) sputtered patterns in field emission electron microscopy (FESEM) images. These were fitted with circles and our findings confirm the presence of an attractive interface between PU and 2D nanoclay. Circle fitting elicits important data like the critical area (Ac) and critical relative frequency (fc) which are used to evaluate the polymer chain dynamics and morphology. We find that fc is related to circularity, and reinforcing nanoclay to the PU matrix enhances fc by 4.6% and 6.9% with simultaneous use of ultrasonic bath and high shear homogenizer. This is further correlated with the already established methods of small angle X-Ray scattering (SAXS) and Fourier transform infrared (FTIR) spectroscopy to generate a fresh perspective on interfacial interactions in PU-2D clay nanocomposites.Circle fitting treatment FESEM images of polyurethane (PU) nanocomposites. Difference in the gold sputtering patterns (GSPs) of PU on the surface of nanoclay (below) can be clearly observed as compared to the GSPs of bare PU (above).Highlights1 wt% C30B-PU nanocomposite coatings were prepared using 3 processing schemes.FESEM images revealed gold sputtered patterns from the differently processed samples.Circle fitting analysis on GSPs helped in understanding the polymer nanofiller interface.Growth conformation of polymer chains in and around the 2D nanofiller provides fresh perspective into polymer chain dynamics.Keywords: Chain mobilitypolymer conformationattractive interfacereorganizationFESEMdegree of phase separation (DPS)gold sputtering patterns (GSPs)circularity AcknowledgmentsThe authors thank Covestro (India) Private Limited for providing us with the necessary materials on- gratis.Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementThe data that support the findings of this study are available from the corresponding author upon reasonable request.Additional informationFundingWe acknowledge the contribution of SAP (UGC, New Delhi), PURSE (DST, New Delhi) and TEQIP-III grants accorded to Dr. SSBUICET. We acknowledge the financial assistance given by DST-UT (S&T&RE/RP/147/Sanc/09/2017/1123-1129) and DRDO (DMSDE Kanpur) (TR/0569/CARS-130 dated 16/12/2021). We acknowledge the receiving of collaborative grant from Nottingham Trent University (NTU), United Kingdom under the science and technology initiative.","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135817818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-11DOI: 10.1080/1023666x.2023.2254034
Saravanan P, Anandkumar S, Sharmila J, Chamundeeswari M, Suresh S, Nisha P
Abstract Tetraethylenetetramine (TETA), 3-aminopropylethoxysilane-treated ZrO2 nanoparticles, and diglycidyl ethers of bisphenol-A (DGEBA) were used to create an epoxy nanocomposite (DGEBA-APTES-ZrO2). The newly synthesized APTES-ZrO2 was evaluated using FTIR, XRD, SEM, AFM, TEM and elemental analysis for structural and compositional analysis. Due to its resilience in acidic, basic and saline conditions, mild steel is crucial in sectors like shipbuilding and the automobile industry. ZrO2 nanoparticles have excellent corrosion resistance. As a result, it is intended to prepare DGEBA-APTES-ZrO2 for a barrier layer that prevents corrosion on mild steel surfaces. FTIR spectroscopy tests provided proof of DGEBA-APTES-ZrO2-coated mild steel’s ability to limit corrosion and microbiological growth. Using salt spray and an electrochemical impedance technique, corrosion inhibition was evaluated. On mild steel surfaces, DGEBA-APTES-ZrO2 nanohybrid coatings demonstrated excellent corrosion prevention and antifouling.
{"title":"Development and characterization of DGEBA-APTES-ZrO<sub>2</sub> nanocomposite coatings for anti-corrosion and anti-fouling","authors":"Saravanan P, Anandkumar S, Sharmila J, Chamundeeswari M, Suresh S, Nisha P","doi":"10.1080/1023666x.2023.2254034","DOIUrl":"https://doi.org/10.1080/1023666x.2023.2254034","url":null,"abstract":"Abstract Tetraethylenetetramine (TETA), 3-aminopropylethoxysilane-treated ZrO2 nanoparticles, and diglycidyl ethers of bisphenol-A (DGEBA) were used to create an epoxy nanocomposite (DGEBA-APTES-ZrO2). The newly synthesized APTES-ZrO2 was evaluated using FTIR, XRD, SEM, AFM, TEM and elemental analysis for structural and compositional analysis. Due to its resilience in acidic, basic and saline conditions, mild steel is crucial in sectors like shipbuilding and the automobile industry. ZrO2 nanoparticles have excellent corrosion resistance. As a result, it is intended to prepare DGEBA-APTES-ZrO2 for a barrier layer that prevents corrosion on mild steel surfaces. FTIR spectroscopy tests provided proof of DGEBA-APTES-ZrO2-coated mild steel’s ability to limit corrosion and microbiological growth. Using salt spray and an electrochemical impedance technique, corrosion inhibition was evaluated. On mild steel surfaces, DGEBA-APTES-ZrO2 nanohybrid coatings demonstrated excellent corrosion prevention and antifouling.","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":"68 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135980927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-24DOI: 10.1080/1023666X.2023.2218696
Joanna Ludwiczak , Anna Dmitruk , Mateusz Skwarski , Paweł Kaczyński , Piotr Makuła
The design of new biodegradable polymers is important for solving the fossil resource and environmental pollution problems associated with conventional plastics. New PLA-based mixtures with the addition of PBAT, PBS and TPS, with different contents, were prepared to investigate their behavior after accelerated aging, as well as their potential for the biodegradation process. Their mechanical properties, mass, hardness, morphology, gloss and color change during UV irradiation progress, have been investigated. The samples were exposed to UV radiation for 21 d, their accelerated aging properties, were assessed weekly and compared with the non-aged samples. The degree of disintegration was determined after soil burial. The results showed that the mechanical properties, especially formability, as well as gloss and color, changed significantly after accelerated aging. All tested matrices are degradable, as shown by soil burial tests. Testing the stability of the functional properties of biodegradable plastics, which are assessed by end users, is important for the wider use of these plastics.
{"title":"UV resistance and biodegradation of PLA-based polymeric blends doped with PBS, PBAT, TPS","authors":"Joanna Ludwiczak , Anna Dmitruk , Mateusz Skwarski , Paweł Kaczyński , Piotr Makuła","doi":"10.1080/1023666X.2023.2218696","DOIUrl":"https://doi.org/10.1080/1023666X.2023.2218696","url":null,"abstract":"<div><p>The design of new biodegradable polymers is important for solving the fossil resource and environmental pollution problems associated with conventional plastics. New PLA-based mixtures with the addition of PBAT, PBS and TPS, with different contents, were prepared to investigate their behavior after accelerated aging, as well as their potential for the biodegradation process. Their mechanical properties, mass, hardness, morphology, gloss and color change during UV irradiation progress, have been investigated. The samples were exposed to UV radiation for 21 d, their accelerated aging properties, were assessed weekly and compared with the non-aged samples. The degree of disintegration was determined after soil burial. The results showed that the mechanical properties, especially formability, as well as gloss and color, changed significantly after accelerated aging. All tested matrices are degradable, as shown by soil burial tests. Testing the stability of the functional properties of biodegradable plastics, which are assessed by end users, is important for the wider use of these plastics.</p></div>","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":"28 4","pages":"Pages 366-382"},"PeriodicalIF":1.9,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49866706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-18DOI: 10.1080/1023666X.2023.2251792
Jitesh Kumar Singh, A. Rout
Abstract The aim of this study is to investigate the dynamic mechanical and thermal stability behavior of rice husk nano-biofillers blend epoxy hybrid composites reinforced by Borassus flabellifer L. leaf fiber. The raw Borassus leaf fibers were treated with 5 wt.% NaOH solution to reduce the disadvantages of hydroxyl bonding. Rice husk nano-fillers (RHNFs) were blended with epoxy resin to modify them with 0.25, 0.45, and 0.65 wt.%, respectively, using sonication and mechanical stirring process. The prepared samples were assessed to evaluate the thermal stability, maximum degradation temperature, storage modulus (E′), loss modulus (E″), damping factor (tan δ) and Cole–Cole plot of the composites. EDX spectroscopy was used to confirm the elemental composition of nano-biofillers. The morphology of RHNFs was analyzed using a scanning electron microscope (SEM). The TG analysis confirmed that the 0.45 wt.% RHNFs blended Borassus leaf fiber (BLF) composites exhibited superior thermal stability (371–384 °C). Derivative thermogravimetry (DTG) analysis exposed that the maximum mass-loss degradation temperature of 0.45 wt.% RHNFs blend composites was 411 °C for the first stage and 678 °C for the second stage, which were more than raw and RHNFs blend (0.25 and 0.65 wt.%) composites. Accordingly, improved E′ (959.16–1637.75 MPa), glass transition temperature (T g) from E″ (90.48–97.69 °C) and, T g from tan δ (103.35–109.67 °C) were derived from the modified composites. Owing to the improved dispersion of the nano-filler, the 0.45 wt.% RHNFs blend composites had a homogeneous polymer system, as verified by the Cole–Cole diagram. The analyzed composites are to be used with versatile functionality for their intended purpose.
{"title":"Thermal stability and dynamic mechanical analysis of nano-biofillers blended hybrid composites reinforced by cellulosic Borassus flabellifer L. fiber","authors":"Jitesh Kumar Singh, A. Rout","doi":"10.1080/1023666X.2023.2251792","DOIUrl":"https://doi.org/10.1080/1023666X.2023.2251792","url":null,"abstract":"Abstract The aim of this study is to investigate the dynamic mechanical and thermal stability behavior of rice husk nano-biofillers blend epoxy hybrid composites reinforced by Borassus flabellifer L. leaf fiber. The raw Borassus leaf fibers were treated with 5 wt.% NaOH solution to reduce the disadvantages of hydroxyl bonding. Rice husk nano-fillers (RHNFs) were blended with epoxy resin to modify them with 0.25, 0.45, and 0.65 wt.%, respectively, using sonication and mechanical stirring process. The prepared samples were assessed to evaluate the thermal stability, maximum degradation temperature, storage modulus (E′), loss modulus (E″), damping factor (tan δ) and Cole–Cole plot of the composites. EDX spectroscopy was used to confirm the elemental composition of nano-biofillers. The morphology of RHNFs was analyzed using a scanning electron microscope (SEM). The TG analysis confirmed that the 0.45 wt.% RHNFs blended Borassus leaf fiber (BLF) composites exhibited superior thermal stability (371–384 °C). Derivative thermogravimetry (DTG) analysis exposed that the maximum mass-loss degradation temperature of 0.45 wt.% RHNFs blend composites was 411 °C for the first stage and 678 °C for the second stage, which were more than raw and RHNFs blend (0.25 and 0.65 wt.%) composites. Accordingly, improved E′ (959.16–1637.75 MPa), glass transition temperature (T g) from E″ (90.48–97.69 °C) and, T g from tan δ (103.35–109.67 °C) were derived from the modified composites. Owing to the improved dispersion of the nano-filler, the 0.45 wt.% RHNFs blend composites had a homogeneous polymer system, as verified by the Cole–Cole diagram. The analyzed composites are to be used with versatile functionality for their intended purpose.","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":"11 1","pages":"552 - 563"},"PeriodicalIF":1.9,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85494093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}