首页 > 最新文献

International Journal of Solids and Structures最新文献

英文 中文
Elastic wave propagation in cubic non-centrosymmetric and chiral architectured materials: Insights from strain gradient elasticity 立方非中心对称和手性结构材料中的弹性波传播:应变梯度弹性的启示
IF 3.4 3区 工程技术 Q1 MECHANICS Pub Date : 2024-09-06 DOI: 10.1016/j.ijsolstr.2024.113059

In this paper, we investigate wave propagation in cubic periodic architectured materials. We analyse three different types of unit cells, with distinct symmetries (centrosymmetric, non-centrosymmetric chiral and non-centrosymmetric achiral) with the aim of investigating the consequences of such symmetries on the elastodynamic behaviour of the architectured material. To this end, numerical simulations are performed on unit cells representative of the three types, to extract phase velocities and polarisations of waves along different directions. It is shown that some unconventional couplings between the different eigensolutions give rise to circular or elliptically polarised waves, associated with dispersive effects (acoustical activity). Subsequently, a theoretical analysis using a generalised equivalent continuum model (strain gradient elasticity) is performed to analyse these results and unveil the links between the symmetries of the architecture and the macroscopic elastodynamic behaviour. Indeed, it is shown that strain gradient elasticity is able to discriminate between the three symmetry classes, that are seen as equivalent by a classic continuum theory.

本文研究了立方周期结构材料中的波传播。我们分析了具有不同对称性(中心对称、非中心对称手性和非中心对称非手性)的三种不同类型的单元格,旨在研究这些对称性对建筑材料弹性力学行为的影响。为此,对这三种类型的代表性单元格进行了数值模拟,以提取沿不同方向的相速度和波的极性。结果表明,不同等效解之间的一些非常规耦合会产生圆形或椭圆形极化波,这与分散效应(声学活动)有关。随后,利用广义等效连续模型(应变梯度弹性)进行了理论分析,对这些结果进行了分析,并揭示了结构对称性与宏观弹性力学行为之间的联系。结果表明,应变梯度弹性能够区分经典连续体理论认为等同的三个对称类别。
{"title":"Elastic wave propagation in cubic non-centrosymmetric and chiral architectured materials: Insights from strain gradient elasticity","authors":"","doi":"10.1016/j.ijsolstr.2024.113059","DOIUrl":"10.1016/j.ijsolstr.2024.113059","url":null,"abstract":"<div><p>In this paper, we investigate wave propagation in cubic periodic architectured materials. We analyse three different types of unit cells, with distinct symmetries (centrosymmetric, non-centrosymmetric chiral and non-centrosymmetric achiral) with the aim of investigating the consequences of such symmetries on the elastodynamic behaviour of the architectured material. To this end, numerical simulations are performed on unit cells representative of the three types, to extract phase velocities and polarisations of waves along different directions. It is shown that some unconventional couplings between the different eigensolutions give rise to circular or elliptically polarised waves, associated with dispersive effects (acoustical activity). Subsequently, a theoretical analysis using a generalised equivalent continuum model (strain gradient elasticity) is performed to analyse these results and unveil the links between the symmetries of the architecture and the macroscopic elastodynamic behaviour. Indeed, it is shown that strain gradient elasticity is able to discriminate between the three symmetry classes, that are seen as equivalent by a classic continuum theory.</p></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0020768324004189/pdfft?md5=eae4b1d20f1a7b36eda3f7a25c32fb04&pid=1-s2.0-S0020768324004189-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142239781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Competing behavior of interface delamination and wafer cracking during peeling film from ultra-thin wafer 从超薄晶片剥离薄膜时界面脱层和晶片开裂的竞争行为
IF 3.4 3区 工程技术 Q1 MECHANICS Pub Date : 2024-09-04 DOI: 10.1016/j.ijsolstr.2024.113058

Peeling the front-side film from the flexible and ultra-thin wafer is a critical procedure for the fabrication of ultra-thin chips. For a successful peeling process, the following conditions are required simultaneously: the interface between the film and the wafer is debonded, the interface between the wafer and the substrate remains undelaminated, and the wafer stays intact. However, there are relatively few studies focusing on the underlying mechanism in this peeling process. Here, a theoretical model is developed to investigate the competing behavior of interface delamination and wafer cracking for the bilayer film-substrate system. Based on the constant-stress (Dugdale) cohesive law and Euler-Bernoulli beam theory, both the competing interface delamination criterion and the wafer cracking criterion are determined. The corresponding competing maps of interface delamination and wafer cracking are obtained, in which the interface delamination path and the wafer safety status can be predicted. The effect of several dimensionless parameters on the competing behavior of interface delamination and wafer cracking is examined systematically, including the property of the geometry, the material, and the interface of the bilayer film-substrate system. The theoretical model is validated by both finite element analysis (FEA) and experimental results. This research aims to provide some guidance for optimizing the peeling parameters and contribute to a higher success rate of peeling process.

从柔性超薄晶片上剥离正面薄膜是制造超薄芯片的关键步骤。成功的剥离过程需要同时满足以下条件:薄膜与晶片之间的界面脱粘,晶片与基底之间的界面保持未分层,晶片保持完好。然而,对这一剥离过程的基本机制的研究相对较少。本文建立了一个理论模型,以研究双层薄膜-基底系统中界面分层和晶片开裂的竞争行为。根据恒应力(Dugdale)内聚定律和欧拉-伯努利梁理论,确定了竞争性界面分层准则和晶片开裂准则。得到了相应的界面分层和晶片开裂竞争图,并据此预测了界面分层路径和晶片安全状态。系统研究了几个无量纲参数对界面分层和晶片开裂竞争行为的影响,包括双层薄膜-基底系统的几何特性、材料特性和界面特性。有限元分析(FEA)和实验结果对理论模型进行了验证。这项研究旨在为优化剥离参数提供一些指导,从而提高剥离过程的成功率。
{"title":"Competing behavior of interface delamination and wafer cracking during peeling film from ultra-thin wafer","authors":"","doi":"10.1016/j.ijsolstr.2024.113058","DOIUrl":"10.1016/j.ijsolstr.2024.113058","url":null,"abstract":"<div><p>Peeling the front-side film from the flexible and ultra-thin wafer is a critical procedure for the fabrication of ultra-thin chips. For a successful peeling process, the following conditions are required simultaneously: the interface between the film and the wafer is debonded, the interface between the wafer and the substrate remains undelaminated, and the wafer stays intact. However, there are relatively few studies focusing on the underlying mechanism in this peeling process. Here, a theoretical model is developed to investigate the competing behavior of interface delamination and wafer cracking for the bilayer film-substrate system. Based on the constant-stress (Dugdale) cohesive law and Euler-Bernoulli beam theory, both the competing interface delamination criterion and the wafer cracking criterion are determined. The corresponding competing maps of interface delamination and wafer cracking are obtained, in which the interface delamination path and the wafer safety status can be predicted. The effect of several dimensionless parameters on the competing behavior of interface delamination and wafer cracking is examined systematically, including the property of the geometry, the material, and the interface of the bilayer film-substrate system. The theoretical model is validated by both finite element analysis (FEA) and experimental results. This research aims to provide some guidance for optimizing the peeling parameters and contribute to a higher success rate of peeling process.</p></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142173307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A “poor-man’s” deformation plasticity based approach to topology optimization of elastoplastic structures 基于 "穷人 "变形塑性的弹塑性结构拓扑优化方法
IF 3.4 3区 工程技术 Q1 MECHANICS Pub Date : 2024-09-03 DOI: 10.1016/j.ijsolstr.2024.113056

This paper presents a topology optimization framework utilizing a deformation plasticity model to approximate the isotropic hardening von-Mises incremental elastoplasticity model under monotone proportional loading. One advantage of the model is that it is based on a yield surface allowing for precise matching to uniaxial elastoplastic isotropic hardening response. The deformation plasticity model and the incremental plasticity model coincides for proportional loading and since the deformation plasticity model is path-independent, the computational cost and implementation complexity reduce significantly compared to the conventional incremental elastoplasticity. To investigate the deformation plasticity model combined with topology optimization, we compare three common elastoplastic optimization objectives: stiffness, strain energy and plastic work. The possibility to limit the peak local plastic work while maximizing the strain energy is also investigated. The consistent analytical sensitivity analysis which only requires the terminal state is derived using adjoint method. Numerical examples demonstrate that the proportionality assumption is reasonable and the deformation plasticity model combined with topology optimization is a competitive alternative to cumbersome incremental elastoplasticity.

本文提出了一个拓扑优化框架,利用变形塑性模型来近似单调比例加载下的各向同性硬化 von-Mises 增量弹塑性模型。该模型的优点之一是以屈服面为基础,可精确匹配单轴弹塑性各向同性硬化响应。变形塑性模型和增量塑性模型在比例加载时是一致的,而且由于变形塑性模型与路径无关,因此与传统的增量弹塑性模型相比,计算成本和实施复杂性大大降低。为了研究与拓扑优化相结合的变形塑性模型,我们比较了三种常见的弹塑性优化目标:刚度、应变能和塑性功。我们还研究了在最大化应变能的同时限制局部塑性功峰值的可能性。通过使用邻接法,得出了一致的分析灵敏度分析,该分析只需要终端状态。数值示例表明,比例假设是合理的,而且变形塑性模型与拓扑优化相结合,可替代繁琐的增量弹塑性模型。
{"title":"A “poor-man’s” deformation plasticity based approach to topology optimization of elastoplastic structures","authors":"","doi":"10.1016/j.ijsolstr.2024.113056","DOIUrl":"10.1016/j.ijsolstr.2024.113056","url":null,"abstract":"<div><p>This paper presents a topology optimization framework utilizing a deformation plasticity model to approximate the isotropic hardening von-Mises incremental elastoplasticity model under monotone proportional loading. One advantage of the model is that it is based on a yield surface allowing for precise matching to uniaxial elastoplastic isotropic hardening response. The deformation plasticity model and the incremental plasticity model coincides for proportional loading and since the deformation plasticity model is path-independent, the computational cost and implementation complexity reduce significantly compared to the conventional incremental elastoplasticity. To investigate the deformation plasticity model combined with topology optimization, we compare three common elastoplastic optimization objectives: stiffness, strain energy and plastic work. The possibility to limit the peak local plastic work while maximizing the strain energy is also investigated. The consistent analytical sensitivity analysis which only requires the terminal state is derived using adjoint method. Numerical examples demonstrate that the proportionality assumption is reasonable and the deformation plasticity model combined with topology optimization is a competitive alternative to cumbersome incremental elastoplasticity.</p></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142157712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cyclic mechanical response of LPBF Hastelloy X over a wide temperature and strain range: Experiments and modelling LPBF 哈氏合金 X 在宽温度和应变范围内的循环机械响应:实验和建模
IF 3.4 3区 工程技术 Q1 MECHANICS Pub Date : 2024-09-02 DOI: 10.1016/j.ijsolstr.2024.113047

Additive manufacturing (AM) of high-temperature alloys through processes such as laser powder bed fusion (LPBF) has gained significant interest and is rapidly expanding due to its exceptional design freedom, which enables the fabrication of complex parts that contribute to the increased efficiency of aerospace and energy systems. The materials produced through this process exhibit unique microstructures and mechanical properties, which necessitate dedicated study and characterization. In this context, our research focuses on the experimental characterization of the isothermal cyclic viscoplastic mechanical response of Hastelloy X (HX) over the temperature range of 22 to 1000 °C and at various strain rates, addressing a current gap in the literature. Recognizing the need for material models that can accurately represent the cyclic mechanical response of LPBF HX across a broad temperature range, we developed a robust extension of the viscoplastic isotropic-kinematic hardening Chaboche model, intended for applications in the thermomechanical simulation of the LPBF process for the analysis of residual stress and distortion, as well as for assessing the mechanical integrity of LPBF components. The extension involves expressing the entire set of model parameters explicitly with analytical functions to account for their temperature dependence. Consequently, the model includes a relatively large number of parameters to represent the isotropic-kinematic hardening viscoplastic response of the alloy over a wide temperature range, and hence to overcome the endeavor of its systematic calibration, a dedicated calibration approach was introduced. The model ultimately demonstrated its capability to precisely represent the isothermal response of the alloy over the examined temperatures and strain rates. To evaluate the model’s predictiveness for non-isothermal conditions, out-of-phase thermomechanical cyclic experiments were also conducted as independent benchmark tests, where the model’s predictions were fairly consistent with the experimental results. As a part of this study, the derived material model has been integrated into the UMAT subroutine, complete with an analytical derivation of the consistent Jacobian matrix.

通过激光粉末床熔融(LPBF)等工艺对高温合金进行增材制造(AM),由于其设计自由度极高,可制造出有助于提高航空航天和能源系统效率的复杂零件,因而受到了广泛关注,并正在迅速发展。通过这种工艺生产的材料具有独特的微观结构和机械性能,因此有必要对其进行专门的研究和表征。在此背景下,我们的研究重点是对哈氏合金 X (HX) 在 22 至 1000 °C 的温度范围内和各种应变速率下的等温循环粘塑性机械响应进行实验表征,以填补目前文献中的空白。我们认识到需要能够准确表示 LPBF HX 在广泛温度范围内的循环机械响应的材料模型,因此开发了粘塑性各向同性运动硬化 Chaboche 模型的稳健扩展,旨在应用于 LPBF 过程的热机械模拟,以分析残余应力和变形,以及评估 LPBF 组件的机械完整性。该模型的扩展包括用分析函数明确表达整套模型参数,以考虑其温度依赖性。因此,该模型包含了相对较多的参数,以表示合金在较宽温度范围内的各向同性运动硬化粘塑性响应。该模型最终证明了它有能力在所考察的温度和应变率范围内精确表示合金的等温响应。为了评估该模型对非等温条件的预测能力,还进行了相外热机械循环实验作为独立的基准测试,模型的预测结果与实验结果相当一致。作为本研究的一部分,已将推导出的材料模型集成到 UMAT 子程序中,并对一致的雅各布矩阵进行了分析推导。
{"title":"Cyclic mechanical response of LPBF Hastelloy X over a wide temperature and strain range: Experiments and modelling","authors":"","doi":"10.1016/j.ijsolstr.2024.113047","DOIUrl":"10.1016/j.ijsolstr.2024.113047","url":null,"abstract":"<div><p>Additive manufacturing (AM) of high-temperature alloys through processes such as laser powder bed fusion (LPBF) has gained significant interest and is rapidly expanding due to its exceptional design freedom, which enables the fabrication of complex parts that contribute to the increased efficiency of aerospace and energy systems. The materials produced through this process exhibit unique microstructures and mechanical properties, which necessitate dedicated study and characterization. In this context, our research focuses on the experimental characterization of the isothermal cyclic viscoplastic mechanical response of Hastelloy X (HX) over the temperature range of 22 to 1000 °C and at various strain rates, addressing a current gap in the literature. Recognizing the need for material models that can accurately represent the cyclic mechanical response of LPBF HX across a broad temperature range, we developed a robust extension of the viscoplastic isotropic-kinematic hardening Chaboche model, intended for applications in the thermomechanical simulation of the LPBF process for the analysis of residual stress and distortion, as well as for assessing the mechanical integrity of LPBF components. The extension involves expressing the entire set of model parameters explicitly with analytical functions to account for their temperature dependence. Consequently, the model includes a relatively large number of parameters to represent the isotropic-kinematic hardening viscoplastic response of the alloy over a wide temperature range, and hence to overcome the endeavor of its systematic calibration, a dedicated calibration approach was introduced. The model ultimately demonstrated its capability to precisely represent the isothermal response of the alloy over the examined temperatures and strain rates. To evaluate the model’s predictiveness for non-isothermal conditions, out-of-phase thermomechanical cyclic experiments were also conducted as independent benchmark tests, where the model’s predictions were fairly consistent with the experimental results. As a part of this study, the derived material model has been integrated into the UMAT subroutine, complete with an analytical derivation of the consistent Jacobian matrix.</p></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0020768324004062/pdfft?md5=a0067fd251b0fcba368e7225e8b11e0b&pid=1-s2.0-S0020768324004062-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142151148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A multi-step auxetic metamaterial with instability regulation 具有不稳定性调节功能的多级辅助超材料
IF 3.4 3区 工程技术 Q1 MECHANICS Pub Date : 2024-09-02 DOI: 10.1016/j.ijsolstr.2024.113040

A stable deformation mode is highly desired for mechanical metamaterials, especially when coupled with a negative Poisson’s ratio. However, such metamaterials often face challenges in terms of scalability toward large deformation or strain. In response, we propose a multi-step hierarchical auxetic metamaterial design paradigm, incorporating a series of incrementally scaled-down structures with same scale factor α into a re-entrant framework. This design enables instability regulation and multi-step deformation capabilities while preserving auxetic behavior, even under significant strain. Such multi-step metamaterials exhibit excellent properties, including tailored multi-phase compression modulus and strength, along with an enhanced energy absorption capacity that is as large as 2.1 times that of the original auxetic metamaterial. Experiments and simulations demonstrate that the deformation mechanism and compression response of the proposed multi-step auxetics are strongly influenced by the reduction factor and the order of the inner structure. A particularly intriguing observation is that the incorporation of embedded microstructures can restore stable deformation, even in the presence of significant initial instability, particularly with a reduction factor of 1/5. At high relative density, its specific energy absorption stands out favorably compared to other configurations, highlighting the success of the recoverable buckling mechanism. This work paves the way for designing multi-step mechanical metamaterials for use in impact resistance and body protection.

机械超材料非常需要稳定的变形模式,尤其是在负泊松比的情况下。然而,这种超材料在大变形或大应变的可扩展性方面往往面临挑战。为此,我们提出了一种多步骤分层辅助超材料设计范例,将一系列具有相同尺度系数 α 的增量缩小结构纳入一个重入框架。这种设计能够调节不稳定性和实现多级变形能力,同时保持辅助行为,即使在巨大应变下也是如此。这种多级超材料表现出卓越的性能,包括量身定制的多相压缩模量和强度,以及增强的能量吸收能力,是原始辅助超材料的 2.1 倍。实验和模拟证明,所提出的多级辅助材料的变形机制和压缩响应受到内部结构的缩减因子和阶次的强烈影响。一个特别有趣的观察结果是,即使存在显著的初始不稳定性,嵌入式微结构也能恢复稳定的变形,尤其是在缩减因子为 1/5 的情况下。在相对密度较高的情况下,与其他结构相比,它的比能量吸收能力更强,这凸显了可恢复屈曲机制的成功。这项工作为设计用于抗冲击和人体保护的多级机械超材料铺平了道路。
{"title":"A multi-step auxetic metamaterial with instability regulation","authors":"","doi":"10.1016/j.ijsolstr.2024.113040","DOIUrl":"10.1016/j.ijsolstr.2024.113040","url":null,"abstract":"<div><p>A stable deformation mode is highly desired for mechanical metamaterials, especially when coupled with a negative Poisson’s ratio. However, such metamaterials often face challenges in terms of scalability toward large deformation or strain. In response, we propose a multi-step hierarchical auxetic metamaterial design paradigm, incorporating a series of incrementally scaled-down structures with same scale factor <span><math><mi>α</mi></math></span> into a re-entrant framework. This design enables instability regulation and multi-step deformation capabilities while preserving auxetic behavior, even under significant strain. Such multi-step metamaterials exhibit excellent properties, including tailored multi-phase compression modulus and strength, along with an enhanced energy absorption capacity that is as large as 2.1 times that of the original auxetic metamaterial. Experiments and simulations demonstrate that the deformation mechanism and compression response of the proposed multi-step auxetics are strongly influenced by the reduction factor and the order of the inner structure. A particularly intriguing observation is that the incorporation of embedded microstructures can restore stable deformation, even in the presence of significant initial instability, particularly with a reduction factor of <span><math><mrow><mn>1</mn><mo>/</mo><mn>5</mn></mrow></math></span>. At high relative density, its specific energy absorption stands out favorably compared to other configurations, highlighting the success of the recoverable buckling mechanism. This work paves the way for designing multi-step mechanical metamaterials for use in impact resistance and body protection.</p></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142151146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel cohesive interlayer model considering friction 考虑摩擦力的新型内聚层间模型
IF 3.4 3区 工程技术 Q1 MECHANICS Pub Date : 2024-08-31 DOI: 10.1016/j.ijsolstr.2024.113049

To understand the influence of friction on the shear-slip behavior of heterogeneous brittle composites, a novel cohesive interlayer model that can effectively capture the friction effect was proposed based on the classical Park-Paulino-Roesler model. Meanwhile, the unified potential energy function governing the interface tangential and normal behaviors was introduced to realize the mechanical interaction between Mode I fracture and Mode II fracture, and a smooth friction growth function was added in the elastic deformation stage for calculating the accurate contact pressure and friction force. Furthermore, the capability of the proposed model in addressing unloading and reloading was improved, and the fracture energy can vary accordingly during cyclic loading. To verify the effectiveness of the proposed model, it was examined by modelling the shear behavior of a masonry wallette. The results show that the relative error of the proposed model is 14.92% which is much lower than those of the other three pre-existing models when calculating the displacement corresponding to peak shear stress. Meanwhile, in terms of peak shear stress and initial displacement at residual stage, the relative errors of the proposed model are only 1.82% and 5.04%, respectively, indicating the high accuracy. Besides, the tangent stiffness determined by the second-order integration of the potential energy function is also continuous and smooth, which ensures the effective convergence of the proposed cohesive model.

为了解摩擦对异质脆性复合材料剪切滑移行为的影响,在经典的 Park-Paulino-Roesler 模型基础上,提出了一种能有效捕捉摩擦效应的新型内聚层间模型。同时,引入了支配界面切向行为和法向行为的统一势能函数,以实现模式 I 断裂和模式 II 断裂之间的力学相互作用,并在弹性变形阶段添加了平滑摩擦增长函数,以计算精确的接触压力和摩擦力。此外,所提出模型在处理卸载和重载方面的能力也得到了提高,在循环加载过程中,断裂能量也会相应变化。为了验证所提模型的有效性,我们对砌体围檩的剪切行为进行了建模检验。结果表明,在计算峰值剪应力对应的位移时,所提出模型的相对误差为 14.92%,远低于其他三个已有模型。同时,在计算峰值剪应力和残余阶段的初始位移时,所提出模型的相对误差分别仅为 1.82% 和 5.04%,表明其精度较高。此外,势能函数二阶积分确定的切线刚度也是连续平滑的,这确保了所提出内聚模型的有效收敛性。
{"title":"A novel cohesive interlayer model considering friction","authors":"","doi":"10.1016/j.ijsolstr.2024.113049","DOIUrl":"10.1016/j.ijsolstr.2024.113049","url":null,"abstract":"<div><p>To understand the influence of friction on the shear-slip behavior of heterogeneous brittle composites, a novel cohesive interlayer model that can effectively capture the friction effect was proposed based on the classical Park-Paulino-Roesler model. Meanwhile, the unified potential energy function governing the interface tangential and normal behaviors was introduced to realize the mechanical interaction between Mode I fracture and Mode II fracture, and a smooth friction growth function was added in the elastic deformation stage for calculating the accurate contact pressure and friction force. Furthermore, the capability of the proposed model in addressing unloading and reloading was improved, and the fracture energy can vary accordingly during cyclic loading. To verify the effectiveness of the proposed model, it was examined by modelling the shear behavior of a masonry wallette. The results show that the relative error of the proposed model is 14.92% which is much lower than those of the other three pre-existing models when calculating the displacement corresponding to peak shear stress. Meanwhile, in terms of peak shear stress and initial displacement at residual stage, the relative errors of the proposed model are only 1.82% and 5.04%, respectively, indicating the high accuracy. Besides, the tangent stiffness determined by the second-order integration of the potential energy function is also continuous and smooth, which ensures the effective convergence of the proposed cohesive model.</p></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0020768324004086/pdfft?md5=c8cc2ff1f52a818faea2f9fee413f190&pid=1-s2.0-S0020768324004086-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142151145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ANN based optimization of nano-beam oscillations with intermolecular forces and geometric nonlinearity 基于 ANN 的分子间作用力和几何非线性纳米光束振荡优化技术
IF 3.4 3区 工程技术 Q1 MECHANICS Pub Date : 2024-08-30 DOI: 10.1016/j.ijsolstr.2024.113054

In this study, we investigate the effect of Van der Waals and Casimir forces on the mathematical model of nano-electromechanical systems (NEMS) such as nano-beam actuators that contain cantilever and double cantilever beams. The singular nonlinear boundary value problem governing the beam-type actuators, including geometric nonlinearity is solved by using an intelligent strength of feedforward artificial neural networks (ANNs) and hybridization of optimization algorithms such as arithmetic optimization algorithm (AOA) and active set algorithm (ASA). The proposed ANN-AOA-AS algorithm is employed to quantify the effect of changes in applied voltage, dispersion forces, geometric nonlinearity parameters, and initial axial strain on the deflection of the beam. Furthermore, to validate the results obtained by the proposed algorithm, statistical analyses are conducted to compare the approximate solutions with state-of-the-art methodologies available in the latest literature. In addition, performance indicators are defined such as mean square error (MSE), Nash–Sutcliffe efficiency (NSE), mean absolute deviations (MAD), root mean square error (RMSE), and Error in Nash–Sutcliffe efficiency (ENSE) to study the accuracy and efficiency of the solutions. The results show that these indicators’ mean percentage values lie around 104 to 106 which reflects the perfect modeling of the approximate solutions.

在本研究中,我们研究了范德华力和卡西米尔力对纳米机电系统(NEMS)数学模型的影响,例如包含悬臂梁和双悬臂梁的纳米梁式致动器。利用前馈人工神经网络(ANN)的智能优势以及算术优化算法(AOA)和主动集算法(ASA)等优化算法的混合,解决了支配梁型致动器(包括几何非线性)的奇异非线性边界值问题。所提出的 ANN-AOA-AS 算法用于量化外加电压、分散力、几何非线性参数和初始轴向应变的变化对梁挠度的影响。此外,为了验证拟议算法获得的结果,还进行了统计分析,将近似解与最新文献中的先进方法进行比较。此外,还定义了性能指标,如均方误差 (MSE)、纳什-苏克里夫效率 (NSE)、平均绝对偏差 (MAD)、均方根误差 (RMSE) 和纳什-苏克里夫效率误差 (ENSE),以研究求解的准确性和效率。结果表明,这些指标的平均百分比值在 10-4 至 10-6 之间,反映了近似解的完美建模。
{"title":"ANN based optimization of nano-beam oscillations with intermolecular forces and geometric nonlinearity","authors":"","doi":"10.1016/j.ijsolstr.2024.113054","DOIUrl":"10.1016/j.ijsolstr.2024.113054","url":null,"abstract":"<div><p>In this study, we investigate the effect of Van der Waals and Casimir forces on the mathematical model of nano-electromechanical systems (NEMS) such as nano-beam actuators that contain cantilever and double cantilever beams. The singular nonlinear boundary value problem governing the beam-type actuators, including geometric nonlinearity is solved by using an intelligent strength of feedforward artificial neural networks (ANNs) and hybridization of optimization algorithms such as arithmetic optimization algorithm (AOA) and active set algorithm (ASA). The proposed ANN-AOA-AS algorithm is employed to quantify the effect of changes in applied voltage, dispersion forces, geometric nonlinearity parameters, and initial axial strain on the deflection of the beam. Furthermore, to validate the results obtained by the proposed algorithm, statistical analyses are conducted to compare the approximate solutions with state-of-the-art methodologies available in the latest literature. In addition, performance indicators are defined such as mean square error (MSE), Nash–Sutcliffe efficiency (NSE), mean absolute deviations (MAD), root mean square error (RMSE), and Error in Nash–Sutcliffe efficiency (ENSE) to study the accuracy and efficiency of the solutions. The results show that these indicators’ mean percentage values lie around <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup></mrow></math></span> to <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>6</mn></mrow></msup></mrow></math></span> which reflects the perfect modeling of the approximate solutions.</p></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142097039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid intelligent framework for designing band gap-rich 2D metamaterials 设计带隙丰富的二维超材料的混合智能框架
IF 3.4 3区 工程技术 Q1 MECHANICS Pub Date : 2024-08-30 DOI: 10.1016/j.ijsolstr.2024.113053

An artificial intelligence machine learning-based design framework is proposed to design lattice-based metamaterials with hexagonal symmetry that deliver wide band gaps at user-desired frequency ranges between 0 and 1000 kHz. The design approach starts by selecting a traditional, easy-to-manufacture parent lattice-based material that does not necessarily exhibit wide or functional band gaps. Subsequently, the parent lattice is transformed into a band-gap-rich lattice by superposing periodic triangular-shaped perturbations (i.e., zigzag-sine-based curvatures) with controllable frequencies and magnitudes on its ligaments. Finally, the frequency and magnitude parameters needed to deliver a specific band gap between 0 and 1000 kHz are determined using a hybrid intelligent framework, developed based on an Adaptive Neuro-Fuzzy Inference Systems (ANFIS). The ANFIS network integrates fuzzy logic expert models and artificial neural networks’ machine learning capabilities. Such a hybrid network is known for its ability to model strongly nonlinear and complex data. The data used in training the ANFIS models is generated using parametric finite element-based simulations where band gaps corresponding to a wide range of perturbation frequencies and magnitudes are computationally determined. The parametric study showed a nonlinear and complex topology-band gap characteristic relation; however, the Adaptive Neuro-Fuzzy Inference System (ANFIS) proved capable of modeling the observed complex topology-band gap behavior efficiently. The accuracy of the ANFIS models exceeded 99 % in several design ranges (i.e., perturbation parameters ranges). These were designated as high-accuracy design regions and were highlighted in the proposed design approach. Using multiple case studies with different band gap requirements, the ANFIS-based design framework proved effective in delivering customized lattice-based metamaterials with user-defined band gap frequencies.

本文提出了一种基于人工智能机器学习的设计框架,用于设计具有六边形对称性的基于晶格的超材料,在用户希望的 0 至 1000 kHz 频率范围内提供宽带隙。该设计方法首先选择一种传统的、易于制造的基于晶格的母体材料,这种材料不一定具有宽带隙或功能带隙。随后,通过在母晶格的韧带上叠加频率和幅度可控的周期性三角形扰动(即人字正弦曲线),将母晶格转化为带隙丰富的晶格。最后,利用基于自适应神经模糊推理系统(ANFIS)开发的混合智能框架,确定了提供 0 至 1000 kHz 特定带隙所需的频率和幅度参数。ANFIS 网络综合了模糊逻辑专家模型和人工神经网络的机器学习能力。这种混合网络以其对强烈非线性和复杂数据的建模能力而著称。用于训练 ANFIS 模型的数据是通过基于参数的有限元模拟生成的,其中对应于各种扰动频率和幅度的带隙是通过计算确定的。参数研究显示了非线性和复杂的拓扑-带隙特性关系;然而,自适应神经模糊推理系统 (ANFIS) 被证明能够有效地模拟观察到的复杂拓扑-带隙行为。在几个设计范围(即扰动参数范围)内,ANFIS 模型的精确度超过 99%。这些区域被指定为高精度设计区域,并在建议的设计方法中予以强调。通过对具有不同带隙要求的多个案例进行研究,证明基于 ANFIS 的设计框架能有效提供基于晶格的定制超材料,并具有用户定义的带隙频率。
{"title":"Hybrid intelligent framework for designing band gap-rich 2D metamaterials","authors":"","doi":"10.1016/j.ijsolstr.2024.113053","DOIUrl":"10.1016/j.ijsolstr.2024.113053","url":null,"abstract":"<div><p>An artificial intelligence machine learning-based design framework is proposed to design lattice-based metamaterials with hexagonal symmetry that deliver wide band gaps at user-desired frequency ranges between 0 and 1000 kHz. The design approach starts by selecting a traditional, easy-to-manufacture parent lattice-based material that does not necessarily exhibit wide or functional band gaps. Subsequently, the parent lattice is transformed into a band-gap-rich lattice by superposing periodic triangular-shaped perturbations (i.e., zigzag-sine-based curvatures) with controllable frequencies and magnitudes on its ligaments. Finally, the frequency and magnitude parameters needed to deliver a specific band gap between 0 and 1000 kHz are determined using a hybrid intelligent framework, developed based on an Adaptive Neuro-Fuzzy Inference Systems (ANFIS). The ANFIS network integrates fuzzy logic expert models and artificial neural networks’ machine learning capabilities. Such a hybrid network is known for its ability to model strongly nonlinear and complex data. The data used in training the ANFIS models is generated using parametric finite element-based simulations where band gaps corresponding to a wide range of perturbation frequencies and magnitudes are computationally determined. The parametric study showed a nonlinear and complex topology-band gap characteristic relation; however, the Adaptive Neuro-Fuzzy Inference System (ANFIS) proved capable of modeling the observed complex topology-band gap behavior efficiently. The accuracy of the ANFIS models exceeded 99 % in several design ranges (i.e., perturbation parameters ranges). These were designated as high-accuracy design regions and were highlighted in the proposed design approach. Using multiple case studies with different band gap requirements, the ANFIS-based design framework proved effective in delivering customized lattice-based metamaterials with user-defined band gap frequencies.</p></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142128627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neural network based rYld2004 anisotropic hardening model under non-associated flow rule for BCC and FCC metals 基于神经网络的 rYld2004 各向异性硬化模型,适用于 BCC 和 FCC 金属的非关联流动规则
IF 3.4 3区 工程技术 Q1 MECHANICS Pub Date : 2024-08-30 DOI: 10.1016/j.ijsolstr.2024.113052

This paper extends the reduced Yld2004 (rYld2004) function to present the anisotropic hardening behavior for body-centered cubic and face-centered cubic metals under the proportional loading conditions based on neural network. The parameters of the rYld2004 anisotropic hardening model (AH_rYld2004) are determined by the uniaxial tensile yield stresses along 0°, 15°, 30°, 45°, 60°, 75° and 90° from the rolling direction as well as equibiaxial tension. The evolution of anisotropic parameters are described by the back propagation neural network optimized by ant colony optimization algorithm. The predicted data by AH_rYld2004 and some common anisotropic models are compared with the experimental results to verify the precision of the AH_rYld2004 in characterizing anisotropic hardening. The comparison proves that the AH_rYld2004 precisely characterize the anisotropic evolution with increasing plastic deformation for AA 3003-O and QP980. Simultaneously, the AH_rYld2004 function based on neural network is used to accurately simulate of circular cup deep drawing for AA 3003-O and uniaxial tension for QP980. The results indicate that the AH_rYld2004 model is capable to accurately represent the plastic anisotropic evolution for uniaxial tension along seven loading directions and equibiaxial tension.

本文扩展了简化 Yld2004(rYld2004)函数,在神经网络的基础上提出了体心立方和面心立方金属在比例加载条件下的各向异性硬化行为。rYld2004 各向异性硬化模型 (AH_rYld2004) 的参数由与轧制方向成 0°、15°、30°、45°、60°、75° 和 90°的单轴拉伸屈服应力以及等轴拉伸决定。各向异性参数的演变是通过蚁群优化算法优化的反向传播神经网络来描述的。将 AH_rYld2004 和一些常见各向异性模型的预测数据与实验结果进行比较,以验证 AH_rYld2004 在表征各向异性硬化方面的精确性。比较结果证明,AH_rYld2004 能精确表征 AA 3003-O 和 QP980 随塑性变形增加而发生的各向异性演变。同时,使用基于神经网络的 AH_rYld2004 函数精确模拟了 AA 3003-O 的圆杯深冲和 QP980 的单轴拉伸。结果表明,AH_rYld2004 模型能够准确表示七个加载方向的单轴拉伸和等轴拉伸的塑性各向异性演变。
{"title":"Neural network based rYld2004 anisotropic hardening model under non-associated flow rule for BCC and FCC metals","authors":"","doi":"10.1016/j.ijsolstr.2024.113052","DOIUrl":"10.1016/j.ijsolstr.2024.113052","url":null,"abstract":"<div><p>This paper extends the reduced Yld2004 (rYld2004) function to present the anisotropic hardening behavior for body-centered cubic and face-centered cubic metals under the proportional loading conditions based on neural network. The parameters of the rYld2004 anisotropic hardening model (AH_rYld2004) are determined by the uniaxial tensile yield stresses along <span><math><msup><mrow><mtext>0</mtext></mrow><mo>°</mo></msup></math></span>, <span><math><msup><mrow><mtext>15</mtext></mrow><mo>°</mo></msup></math></span>, <span><math><msup><mrow><mtext>30</mtext></mrow><mo>°</mo></msup></math></span>, <span><math><msup><mrow><mtext>45</mtext></mrow><mo>°</mo></msup></math></span>, <span><math><msup><mrow><mtext>60</mtext></mrow><mo>°</mo></msup></math></span>, <span><math><msup><mrow><mtext>75</mtext></mrow><mo>°</mo></msup></math></span> and <span><math><msup><mrow><mtext>90</mtext></mrow><mo>°</mo></msup></math></span> from the rolling direction as well as equibiaxial tension. The evolution of anisotropic parameters are described by the back propagation neural network optimized by ant colony optimization algorithm. The predicted data by AH_rYld2004 and some common anisotropic models are compared with the experimental results to verify the precision of the AH_rYld2004 in characterizing anisotropic hardening. The comparison proves that the AH_rYld2004 precisely characterize the anisotropic evolution with increasing plastic deformation for AA 3003-O and QP980. Simultaneously, the AH_rYld2004 function based on neural network is used to accurately simulate of circular cup deep drawing for AA 3003-O and uniaxial tension for QP980. The results indicate that the AH_rYld2004 model is capable to accurately represent the plastic anisotropic evolution for uniaxial tension along seven loading directions and equibiaxial tension.</p></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142151147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flexural wave propagation in canonical quasicrystalline-generated waveguides 典型准晶体生成波导中的挠性波传播
IF 3.4 3区 工程技术 Q1 MECHANICS Pub Date : 2024-08-30 DOI: 10.1016/j.ijsolstr.2024.113050

We investigate the propagation of harmonic flexural waves in periodic two-phase phononic multi-supported continuous beams whose elementary cells are designed according to the quasicrystalline standard Fibonacci substitution rule. The resulting dynamic frequency spectra are studied with the aid of a trace-map formalism which provides a geometrical interpretation of the recursive rule governing traces of the relevant transmission matrices: the traces of three consecutive elementary cells can be represented as a point on the surface defined by an invariant function of the square root of the circular frequency, and the recursivity implies the description of a discrete orbit on the surface. In analogy with the companion axial problem, we show that, for specific layouts of the elementary cell (the canonical configurations), the orbits are almost periodic. Likewise, for the same layouts, the stop-/pass-band diagrams along the frequency domain are almost periodic. Several periodic orbits exist and each corresponds to a self-similar portion of the dynamic spectra whose scaling law can be investigated by linearising the trace map in the neighbourhood of the orbit. The obtained results provide a new piece of theory to better understand the dynamic behaviour of two-phase flexural periodic waveguides whose elementary cell is obtained from quasicrystalline generation rules.

我们研究了周期性两相声波多支撑连续梁中谐波挠曲波的传播,该梁的基本单元是根据准晶体标准斐波那契置换规则设计的。我们借助迹图形式主义研究了由此产生的动态频谱,该形式主义为相关传输矩阵迹线的递归规则提供了几何解释:三个连续基本单元的迹线可表示为圆周频率平方根不变函数所定义曲面上的一个点,递归性意味着对曲面上离散轨道的描述。与配套的轴向问题类似,我们证明,对于基本单元的特定布局(典型配置),轨道几乎是周期性的。同样,对于相同的布局,沿频域的阻带/通带图也几乎是周期性的。存在多个周期性轨道,每个轨道都对应于动态频谱的自相似部分,其缩放规律可通过轨道邻域的迹图线性化来研究。所获得的结果提供了一种新的理论,有助于更好地理解两相挠性周期波导的动态行为,其基本单元由准晶体生成规则获得。
{"title":"Flexural wave propagation in canonical quasicrystalline-generated waveguides","authors":"","doi":"10.1016/j.ijsolstr.2024.113050","DOIUrl":"10.1016/j.ijsolstr.2024.113050","url":null,"abstract":"<div><p>We investigate the propagation of harmonic flexural waves in periodic two-phase phononic multi-supported continuous beams whose elementary cells are designed according to the quasicrystalline standard Fibonacci substitution rule. The resulting dynamic frequency spectra are studied with the aid of a trace-map formalism which provides a geometrical interpretation of the recursive rule governing traces of the relevant transmission matrices: the traces of three consecutive elementary cells can be represented as a point on the surface defined by an invariant function of the square root of the circular frequency, and the recursivity implies the description of a discrete orbit on the surface. In analogy with the companion axial problem, we show that, for specific layouts of the elementary cell (the <em>canonical</em> configurations), the orbits are almost periodic. Likewise, for the same layouts, the stop-/pass-band diagrams along the frequency domain are almost periodic. Several periodic orbits exist and each corresponds to a self-similar portion of the dynamic spectra whose scaling law can be investigated by linearising the trace map in the neighbourhood of the orbit. The obtained results provide a new piece of theory to better understand the dynamic behaviour of two-phase flexural periodic waveguides whose elementary cell is obtained from quasicrystalline generation rules.</p></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0020768324004098/pdfft?md5=6e9f92d86384657bf287795703c5725f&pid=1-s2.0-S0020768324004098-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142151144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Solids and Structures
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1