首页 > 最新文献

International Microbiology最新文献

英文 中文
The emergence of clonally diverse carbapenem-resistant Enterobacter cloacae complex in West Bengal, India: a dockyard of β-lactamases periling nosocomial infections. 印度西孟加拉邦出现了多种碳青霉烯耐药阴沟肠杆菌复合体:一个危及医院感染的β-内酰胺酶的基地。
IF 2.3 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-08-01 Epub Date: 2023-11-21 DOI: 10.1007/s10123-023-00451-0
Surojit Das, Abhi Mallick, Mili Barik, Soma Sarkar, Puranjoy Saha

Carbapenem-resistant Enterobacter cloacae complex (CRECC) constitutes a global public health threat challenging clinical treatment and infection control, especially in low- and middle-income countries such as India. We analyzed the antimicrobial susceptibility, major β-lactamase genes, plasmid profiles, and genetic relatedness to understand the molecular epidemiology of CRECC clinical isolates (n = 44) in West Bengal, India, during 2021-2022. The majority (> 55%) of the isolates were resistant to fluoroquinolones, aminoglycosides, and co-trimoxazole, even > 20% for tigecycline and > 35% were extensively drug-resistant. Co-β-lactamase production was categorized into twenty-seven types, importantly NDM (84%), OXA-48 (40%), TEM (61%), CTX-M (46%), OXA-1 (55%), and MIR (27%). The NDM-1 and OXA-181 were major variants with the first observations of NDM-24 and -29 variants in India. Wide-range of plasmids (2 to > 212 kb) were harbored by the β-lactamase-producing isolates: small (91%), medium (27%), large (9%), and mega (71%). IncX3, ColE1, and HI2 were noted in about 30% of isolates, while IncF and R were carried by < 20% of isolates. The clonally diverse CRECC isolates were noted to cause cross-infections, especially at superficial site, bloodstream, and urinary-tract. This is the first molecular surveillance on CRECC in India. The study isolates serve as the dockyard of NDM, TEM, and CTX-M harboring a wide range of plasmids. The outcomes of the study may strengthen local and national policies for infection prevention and control practices, clarifying the genetic diversity among CRECC. Extensive genomic study may further intersect the relationships between these different plasmids, especially with their sizes, types, and antibiotic resistance markers.

耐碳青霉烯阴沟肠杆菌(CRECC)构成全球公共卫生威胁,对临床治疗和感染控制构成挑战,特别是在印度等低收入和中等收入国家。我们分析了2021-2022年印度西孟加拉邦CRECC临床分离株(n = 44)的抗菌药物敏感性、主要β-内酰胺酶基因、质粒谱和遗传相关性,以了解CRECC的分子流行病学。大多数(bbb55%)菌株对氟喹诺酮类药物、氨基糖苷类药物和复方新诺明耐药,>20%对替加环素耐药,>35%对广泛耐药。Co-β-内酰胺酶的产生分为27种类型,主要是NDM (84%), OXA-48 (40%), TEM (61%), CTX-M (46%), OXA-1(55%)和MIR(27%)。NDM-1和OXA-181是主要的变异,在印度首次观察到NDM-24和-29变异。产生β-内酰胺酶的分离株所携带的质粒范围广泛(2至bb0 212 kb):小(91%),中(27%),大(9%)和大(71%)。大约30%的分离株携带IncX3、ColE1和HI2,而IncF和R由
{"title":"The emergence of clonally diverse carbapenem-resistant Enterobacter cloacae complex in West Bengal, India: a dockyard of β-lactamases periling nosocomial infections.","authors":"Surojit Das, Abhi Mallick, Mili Barik, Soma Sarkar, Puranjoy Saha","doi":"10.1007/s10123-023-00451-0","DOIUrl":"10.1007/s10123-023-00451-0","url":null,"abstract":"<p><p>Carbapenem-resistant Enterobacter cloacae complex (CRECC) constitutes a global public health threat challenging clinical treatment and infection control, especially in low- and middle-income countries such as India. We analyzed the antimicrobial susceptibility, major β-lactamase genes, plasmid profiles, and genetic relatedness to understand the molecular epidemiology of CRECC clinical isolates (n = 44) in West Bengal, India, during 2021-2022. The majority (> 55%) of the isolates were resistant to fluoroquinolones, aminoglycosides, and co-trimoxazole, even > 20% for tigecycline and > 35% were extensively drug-resistant. Co-β-lactamase production was categorized into twenty-seven types, importantly NDM (84%), OXA-48 (40%), TEM (61%), CTX-M (46%), OXA-1 (55%), and MIR (27%). The NDM-1 and OXA-181 were major variants with the first observations of NDM-24 and -29 variants in India. Wide-range of plasmids (2 to > 212 kb) were harbored by the β-lactamase-producing isolates: small (91%), medium (27%), large (9%), and mega (71%). IncX3, ColE1, and HI2 were noted in about 30% of isolates, while IncF and R were carried by < 20% of isolates. The clonally diverse CRECC isolates were noted to cause cross-infections, especially at superficial site, bloodstream, and urinary-tract. This is the first molecular surveillance on CRECC in India. The study isolates serve as the dockyard of NDM, TEM, and CTX-M harboring a wide range of plasmids. The outcomes of the study may strengthen local and national policies for infection prevention and control practices, clarifying the genetic diversity among CRECC. Extensive genomic study may further intersect the relationships between these different plasmids, especially with their sizes, types, and antibiotic resistance markers.</p>","PeriodicalId":14318,"journal":{"name":"International Microbiology","volume":" ","pages":"1023-1033"},"PeriodicalIF":2.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138176113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enrichment of microbial consortia for MEOR in crude oil phase of reservoir-produced liquid and their response to environmental disturbance. 油藏采出液原油相MEOR微生物群落的富集及其对环境扰动的响应
IF 2.3 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-08-01 Epub Date: 2023-11-27 DOI: 10.1007/s10123-023-00458-7
Fangfang Zhu, Yanfeng Wei, Fangzhou Wang, Ziyuan Xia, Min Gou, Yueqin Tang

Developing microbial consortiums is necessary for microbial enhanced oil recovery (MEOR) in heavy crude oil production. The aqueous phase of produced fluid has long been considered an ideal source of microorganisms for MEOR. However, it is recently found that rich microorganisms (including hydrocarbon-degrading bacteria) are present in the crude oil phase, which is completely different from the aqueous phase of produced fluid. So, in this study, the microbial consortia from the crude oil phase of produced fluids derived from four wells were enriched, respectively. The microbial community structure during passage was dynamically tracked, and the response of enriched consortia to successive disturbance of environmental factors was investigated. The results showed the crude oil phase had high microbial diversity, and the original microbial community structure from four wells was significantly different. After ten generations of consecutive enrichment, different genera were observed in the four enriched microbial consortia, namely, Geobacillus, Bacillus, Brevibacillus, Chelativorans, Ureibacillus, and Ornithinicoccus. In addition, two enriched consortia (eG1614 and eP30) exhibited robustness to temperature and oxygen perturbations. These results further suggested that the crude oil phase of produced fluids can serve as a potential microbial source for MEOR.

发展微生物联合体是稠油微生物提高采收率的必要条件。采出液的水相一直被认为是MEOR的理想微生物来源。然而,最近发现原油相中存在丰富的微生物(包括烃降解细菌),这与采出液的水相完全不同。因此,在本研究中,4口井的采出液原油相的微生物群落分别得到了富集。动态跟踪传代过程中的微生物群落结构,研究富集菌群对环境因子连续扰动的响应。结果表明:原油相中微生物多样性较高,4口井的微生物群落结构存在显著差异;连续富集10代后,发现富集的4个菌群分别为Geobacillus、Bacillus、Brevibacillus、Chelativorans、Ureibacillus和Ornithinicoccus。此外,两个富集的联合体(eG1614和eP30)对温度和氧扰动表现出鲁棒性。这些结果进一步表明,采出液的原油相可以作为MEOR的潜在微生物源。
{"title":"Enrichment of microbial consortia for MEOR in crude oil phase of reservoir-produced liquid and their response to environmental disturbance.","authors":"Fangfang Zhu, Yanfeng Wei, Fangzhou Wang, Ziyuan Xia, Min Gou, Yueqin Tang","doi":"10.1007/s10123-023-00458-7","DOIUrl":"10.1007/s10123-023-00458-7","url":null,"abstract":"<p><p>Developing microbial consortiums is necessary for microbial enhanced oil recovery (MEOR) in heavy crude oil production. The aqueous phase of produced fluid has long been considered an ideal source of microorganisms for MEOR. However, it is recently found that rich microorganisms (including hydrocarbon-degrading bacteria) are present in the crude oil phase, which is completely different from the aqueous phase of produced fluid. So, in this study, the microbial consortia from the crude oil phase of produced fluids derived from four wells were enriched, respectively. The microbial community structure during passage was dynamically tracked, and the response of enriched consortia to successive disturbance of environmental factors was investigated. The results showed the crude oil phase had high microbial diversity, and the original microbial community structure from four wells was significantly different. After ten generations of consecutive enrichment, different genera were observed in the four enriched microbial consortia, namely, Geobacillus, Bacillus, Brevibacillus, Chelativorans, Ureibacillus, and Ornithinicoccus. In addition, two enriched consortia (eG1614 and eP30) exhibited robustness to temperature and oxygen perturbations. These results further suggested that the crude oil phase of produced fluids can serve as a potential microbial source for MEOR.</p>","PeriodicalId":14318,"journal":{"name":"International Microbiology","volume":" ","pages":"1049-1062"},"PeriodicalIF":2.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138444647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unravelling the key steps impairing the metabolic state of Xanthomonas cells undergoing programmed cell death. 揭示影响黄单胞菌细胞程序性细胞死亡代谢状态的关键步骤。
IF 2.3 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-08-01 Epub Date: 2024-01-08 DOI: 10.1007/s10123-023-00471-w
Jyoti Tripathi, Satyendra Gautam

Programmed cell death (PCD) has been reported in Xanthomonas axonopodis pv. glycines (Xag) wild type earlier and was indirectly shown to be induced by metabolic stress; however, deciphering the key proteins regulating the metabolic stress remained unrevealed. In this study, transcriptomic and proteomic analyses were performed to investigate the prominent pathways, having a role in the induction of metabolic stress in Xag cells undergoing PCD. A comprehensive analysis of transcriptome and proteome data revealed the major involvement of metabolic pathways related to branched chain amino acid degradation, such as acyl-CoA dehydrogenase and energy-yielding, ubiquinol:cytochrome c oxidoreductase complex, in Xag cells undergoing PCD. Consequently, oxidative stress response genes showed major upregulation in Xag cells in PCD-inducing medium; however, no such upregulation was observed at the protein level, indicative of depleted protein levels under excessive stress conditions. Activation of stress response and DNA repair proteins was also observed in Xag cells grown in PCD-inducing medium, which is indicative of excessive cellular damage. Thus, the findings indicate that programmed cell death in Xag is an outcome of metabolic stress in nutrient condition not suitable for a plant pathogen like Xanthomonas, which is more acclimatised with altogether a different nutritional requirement predominantly having an enriched carbohydrate source.

早先已报道了黄单胞菌(Xanthomonas axonopodis pv. glycines, Xag)野生型细胞的程序性细胞死亡(PCD),并间接证明代谢胁迫诱导了PCD;然而,调控代谢胁迫的关键蛋白仍未被揭示。本研究对转录组和蛋白质组进行了分析,以研究在 Xag 细胞发生 PCD 诱导代谢胁迫过程中发挥作用的主要途径。对转录组和蛋白质组数据的综合分析表明,在发生 PCD 的 Xag 细胞中,与支链氨基酸降解相关的代谢通路,如酰基-CoA 脱氢酶和能量生成的泛醌醇:细胞色素 c 氧化还原酶复合物,主要参与了 PCD 的发生。因此,在 PCD 诱导培养基中,Xag 细胞中的氧化应激反应基因出现了大幅上调;然而,在蛋白质水平上却没有观察到这种上调,这表明在过度应激条件下蛋白质水平已经耗竭。在 PCD 诱导培养基中生长的 Xag 细胞中也观察到了应激反应和 DNA 修复蛋白的激活,这表明细胞受到了过度损伤。因此,研究结果表明,Xag 细胞中的程序性细胞死亡是营养条件下新陈代谢压力的结果,不适合像黄单胞菌这样的植物病原体。
{"title":"Unravelling the key steps impairing the metabolic state of Xanthomonas cells undergoing programmed cell death.","authors":"Jyoti Tripathi, Satyendra Gautam","doi":"10.1007/s10123-023-00471-w","DOIUrl":"10.1007/s10123-023-00471-w","url":null,"abstract":"<p><p>Programmed cell death (PCD) has been reported in Xanthomonas axonopodis pv. glycines (Xag) wild type earlier and was indirectly shown to be induced by metabolic stress; however, deciphering the key proteins regulating the metabolic stress remained unrevealed. In this study, transcriptomic and proteomic analyses were performed to investigate the prominent pathways, having a role in the induction of metabolic stress in Xag cells undergoing PCD. A comprehensive analysis of transcriptome and proteome data revealed the major involvement of metabolic pathways related to branched chain amino acid degradation, such as acyl-CoA dehydrogenase and energy-yielding, ubiquinol:cytochrome c oxidoreductase complex, in Xag cells undergoing PCD. Consequently, oxidative stress response genes showed major upregulation in Xag cells in PCD-inducing medium; however, no such upregulation was observed at the protein level, indicative of depleted protein levels under excessive stress conditions. Activation of stress response and DNA repair proteins was also observed in Xag cells grown in PCD-inducing medium, which is indicative of excessive cellular damage. Thus, the findings indicate that programmed cell death in Xag is an outcome of metabolic stress in nutrient condition not suitable for a plant pathogen like Xanthomonas, which is more acclimatised with altogether a different nutritional requirement predominantly having an enriched carbohydrate source.</p>","PeriodicalId":14318,"journal":{"name":"International Microbiology","volume":" ","pages":"1285-1296"},"PeriodicalIF":2.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139377580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation and characterization of Aliarcobacter spp. isolated from cattle slaughterhouse in Türkiye. 图尔基耶牛屠宰场分离出的阿里卡菌属的调查和特征描述。
IF 2.3 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-08-01 Epub Date: 2024-01-11 DOI: 10.1007/s10123-023-00478-3
Huseyin Burak Disli, Harun Hizlisoy, Candan Gungor, Mukaddes Barel, Adalet Dishan, Dursun Alp Gundog, Serhat Al, Nurhan Ertas Onmaz, Yeliz Yildirim, Zafer Gonulalan

Aliarcobacter spp. have been isolated from numerous food products at retail and from animal carcasses and feces at slaughter. The objectives of this study were as follows: (i) to isolate Aliarcobacter species from different slaughterhouses' samples and (ii) to detect genetic diversity, antibiotic resistance, biofilm ability, and putative virulence gene profiles of the isolates. A molecular investigation of antibiotic resistance and virulence factors was also conducted using polymerase chain reaction (PCR). Among 150 samples, a total of 22 (14.6%) Aliarcobacter spp. isolates were obtained, with varying levels of antibiotic resistance observed. The genes tetO, tetW, and gyrA were detected in 0%, 31.8%, and 27.2% of the isolates, respectively. All isolates were resistant to ampicillin, rifampin, and erythromycin, while tetracycline was found to be the most effective antibiotic, with 81.8% of the isolates showing susceptibility to it. All isolates (100%) harbored more than one of the nine putative virulence genes tested, with 18.1% of isolates carrying more than three. Regarding biofilm formation, 7 (31.8%) and 4 (18.1%) isolates were found to form strong and moderate biofilms, respectively, while one (4.5%) isolate was classified as a weak biofilm producer. ERIC-PCR band patterns suggested that the isolated Aliarcobacter spp. from slaughterhouses had different sources of contamination. These findings highlight the potential risk posed by pathogenic and multidrug-resistant Aliarcobacter spp. in food and the need for control measures throughout the food chain to prevent the spread of these strains. The results indicate that foods of animal origin and cattle slaughterhouses are significant sources of antimicrobial resistant Aliarcobacter.

从零售的许多食品以及屠宰的动物尸体和粪便中分离出了阿利卡氏菌属。本研究的目的如下(i) 从不同的屠宰场样本中分离出阿里卡菌;(ii) 检测分离物的遗传多样性、抗生素耐药性、生物膜能力和推测的毒力基因图谱。此外,还利用聚合酶链反应(PCR)对抗生素耐药性和毒力因子进行了分子调查。在 150 个样本中,共发现 22 个(14.6%)阿里卡菌属分离株,它们对抗生素的耐药性各不相同。在 0%、31.8% 和 27.2% 的分离物中分别检测到了 tetO、tetW 和 gyrA 基因。所有分离株都对氨苄西林、利福平和红霉素有抗药性,而四环素是最有效的抗生素,81.8%的分离株对其有敏感性。所有分离菌株(100%)都携带测试的九种假定毒力基因中的一种以上,其中 18.1%的分离菌株携带三种以上。在生物膜形成方面,发现分别有 7 个(31.8%)和 4 个(18.1%)分离物形成强生物膜和中度生物膜,而 1 个(4.5%)分离物被归类为弱生物膜产生者。ERIC-PCR条带模式表明,从屠宰场分离出的阿里卡菌属有不同的污染源。这些发现凸显了食品中的致病性和耐多药阿利巴尔氏菌所带来的潜在风险,以及在整个食物链中采取控制措施以防止这些菌株扩散的必要性。研究结果表明,动物源性食品和牛屠宰场是耐抗菌素阿利巴氏菌的重要来源。
{"title":"Investigation and characterization of Aliarcobacter spp. isolated from cattle slaughterhouse in Türkiye.","authors":"Huseyin Burak Disli, Harun Hizlisoy, Candan Gungor, Mukaddes Barel, Adalet Dishan, Dursun Alp Gundog, Serhat Al, Nurhan Ertas Onmaz, Yeliz Yildirim, Zafer Gonulalan","doi":"10.1007/s10123-023-00478-3","DOIUrl":"10.1007/s10123-023-00478-3","url":null,"abstract":"<p><p>Aliarcobacter spp. have been isolated from numerous food products at retail and from animal carcasses and feces at slaughter. The objectives of this study were as follows: (i) to isolate Aliarcobacter species from different slaughterhouses' samples and (ii) to detect genetic diversity, antibiotic resistance, biofilm ability, and putative virulence gene profiles of the isolates. A molecular investigation of antibiotic resistance and virulence factors was also conducted using polymerase chain reaction (PCR). Among 150 samples, a total of 22 (14.6%) Aliarcobacter spp. isolates were obtained, with varying levels of antibiotic resistance observed. The genes tetO, tetW, and gyrA were detected in 0%, 31.8%, and 27.2% of the isolates, respectively. All isolates were resistant to ampicillin, rifampin, and erythromycin, while tetracycline was found to be the most effective antibiotic, with 81.8% of the isolates showing susceptibility to it. All isolates (100%) harbored more than one of the nine putative virulence genes tested, with 18.1% of isolates carrying more than three. Regarding biofilm formation, 7 (31.8%) and 4 (18.1%) isolates were found to form strong and moderate biofilms, respectively, while one (4.5%) isolate was classified as a weak biofilm producer. ERIC-PCR band patterns suggested that the isolated Aliarcobacter spp. from slaughterhouses had different sources of contamination. These findings highlight the potential risk posed by pathogenic and multidrug-resistant Aliarcobacter spp. in food and the need for control measures throughout the food chain to prevent the spread of these strains. The results indicate that foods of animal origin and cattle slaughterhouses are significant sources of antimicrobial resistant Aliarcobacter.</p>","PeriodicalId":14318,"journal":{"name":"International Microbiology","volume":" ","pages":"1321-1332"},"PeriodicalIF":2.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139417010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dissecting the impact of Anaplasma phagocytophilum infection on functional networks and community stability of the tick microbiome. 剖析噬细胞原虫感染对蜱微生物群功能网络和群落稳定性的影响。
IF 2.3 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-08-01 Epub Date: 2023-12-28 DOI: 10.1007/s10123-023-00473-8
Patrícia Gonzaga Paulino, Lianet Abuin-Denis, Apolline Maitre, Elianne Piloto-Sardiñas, Dasiel Obregon, Huarrisson Azevedo Santos, Alejandro Cabezas-Cruz

Context: Pathogens can manipulate microbial interactions to ensure survival, potentially altering the functional patterns and microbiome assembly. The present study investigates how Anaplasma phagocytophilum infection affects the functional diversity, composition, and assembly of the Ixodes scapularis microbiome, with a focus on high central pathways-those characterized by elevated values in centrality metrics such as eigenvector, betweenness, and degree measures, in the microbial community.

Methods: Using previously published data from nymphs' gut V4 region's amplicons of bacterial 16S rRNA, we predicted the functional diversity and composition in control and A. phagocytophilum-infected ticks and inferred co-occurrence networks of taxa and ubiquitous pathways in each condition to associate the high central pathways to the microbial community assembly.

Results: Although no differences were observed concerning pathways richness and diversity, there was a significant impact on taxa and functional assembly when ubiquitous pathways in each condition were filtered. Moreover, a notable shift was observed in the microbiome's high central functions. Specifically, pathways related to the degradation of nucleosides and nucleotides emerged as the most central functions in response to A. phagocytophilum infection. This finding suggests a reconfiguration of functional relationships within the microbial community, potentially influenced by the pathogen's limited metabolic capacity. This limitation implies that the tick microbiome may provide additional metabolic resources to support the pathogen's functional needs.

Conclusions: Understanding the metabolic interactions within the tick microbiome can enhance our knowledge of pathogen colonization mechanisms and uncover new disease control and prevention strategies. For example, certain pathways that were more abundant or highly central during infection may represent potential targets for microbiota-based vaccines.

背景:病原体可以操纵微生物之间的相互作用以确保生存,从而可能改变功能模式和微生物组的组合。本研究调查了噬吞噬细胞阿纳疟原虫感染如何影响黄斑伊蚊微生物组的功能多样性、组成和组合,重点是高中心通路--在微生物群落中以中心度量(如特征向量、间隔度和程度度量)值升高为特征的通路:方法:利用之前发表的若虫肠道 V4 区域细菌 16S rRNA 扩增子数据,我们预测了对照组和噬细胞甲虫感染蜱的功能多样性和组成,并推断了每种情况下类群和普遍途径的共现网络,从而将高中心途径与微生物群落的组装联系起来:结果:虽然在通路的丰富度和多样性方面没有观察到差异,但在过滤每个条件下的泛在通路后,对分类群和功能组合产生了显著影响。此外,还观察到微生物群的核心功能发生了显著变化。具体来说,与核苷酸和核苷酸降解相关的途径成为应对噬细胞甲虫感染的最核心功能。这一发现表明,微生物群落内部的功能关系发生了重新配置,这可能受到病原体代谢能力有限的影响。这种限制意味着蜱微生物群落可能会提供额外的代谢资源来支持病原体的功能需求:结论:了解蜱微生物组内的代谢相互作用可以增强我们对病原体定植机制的了解,并发现新的疾病控制和预防策略。例如,在感染期间更丰富或高度集中的某些途径可能是基于微生物群的疫苗的潜在靶标。
{"title":"Dissecting the impact of Anaplasma phagocytophilum infection on functional networks and community stability of the tick microbiome.","authors":"Patrícia Gonzaga Paulino, Lianet Abuin-Denis, Apolline Maitre, Elianne Piloto-Sardiñas, Dasiel Obregon, Huarrisson Azevedo Santos, Alejandro Cabezas-Cruz","doi":"10.1007/s10123-023-00473-8","DOIUrl":"10.1007/s10123-023-00473-8","url":null,"abstract":"<p><strong>Context: </strong>Pathogens can manipulate microbial interactions to ensure survival, potentially altering the functional patterns and microbiome assembly. The present study investigates how Anaplasma phagocytophilum infection affects the functional diversity, composition, and assembly of the Ixodes scapularis microbiome, with a focus on high central pathways-those characterized by elevated values in centrality metrics such as eigenvector, betweenness, and degree measures, in the microbial community.</p><p><strong>Methods: </strong>Using previously published data from nymphs' gut V4 region's amplicons of bacterial 16S rRNA, we predicted the functional diversity and composition in control and A. phagocytophilum-infected ticks and inferred co-occurrence networks of taxa and ubiquitous pathways in each condition to associate the high central pathways to the microbial community assembly.</p><p><strong>Results: </strong>Although no differences were observed concerning pathways richness and diversity, there was a significant impact on taxa and functional assembly when ubiquitous pathways in each condition were filtered. Moreover, a notable shift was observed in the microbiome's high central functions. Specifically, pathways related to the degradation of nucleosides and nucleotides emerged as the most central functions in response to A. phagocytophilum infection. This finding suggests a reconfiguration of functional relationships within the microbial community, potentially influenced by the pathogen's limited metabolic capacity. This limitation implies that the tick microbiome may provide additional metabolic resources to support the pathogen's functional needs.</p><p><strong>Conclusions: </strong>Understanding the metabolic interactions within the tick microbiome can enhance our knowledge of pathogen colonization mechanisms and uncover new disease control and prevention strategies. For example, certain pathways that were more abundant or highly central during infection may represent potential targets for microbiota-based vaccines.</p>","PeriodicalId":14318,"journal":{"name":"International Microbiology","volume":" ","pages":"1205-1218"},"PeriodicalIF":2.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139048670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome analysis of vB_SupP_AX, a novel N4-like phage infecting Sulfitobacter. 新型 N4 类噬菌体 vB_SupP_AX 的基因组分析。
IF 2.3 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-08-01 Epub Date: 2024-01-08 DOI: 10.1007/s10123-023-00476-5
Yundan Liu, Chengrui Zhu, Yantao Liang, Andrew McMinn, Kaiyang Zheng, Ziyue Wang, Hongmin Wang, Linyi Ren, Hongbing Shao, Yeong Yik Sung, Wen Jye Mok, Li Lian Wong, Min Wang

Sulfitobacter is a bacterium recognized for its production of AMP-independent sulfite oxidase, which is instrumental in the creation of sulfite biosensors. This capability underscores its ecological and economic relevance. In this study, we present a newly discovered phage, Sulfitobacter phage vB_SupP_AX, which was isolated from Maidao of Qingdao, China. The vB_SupP_AX genome is linear and double-stranded and measures 75,445 bp with a GC content of 49%. It encompasses four transfer RNA (tRNA) sequences and 79 open reading frames (ORFs), one of which is an auxiliary metabolic gene encoding thioredoxin. Consistent with other N4-like phages, vB_SupP_AX possesses three distinct RNA polymerases and is characterized by the presence of four tRNA molecules. Comparative genomic and phylogenetic analyses position vB_SupP_AX and three other viral genomes from the Integrated Microbial Genomes/Virus v4 database within the Rhodovirinae virus subfamily. The identification of vB_SupP_AX enhances our understanding of virus-host interactions within marine ecosystems.

亚硫酸盐杆菌是一种公认的能产生不依赖于 AMP 的亚硫酸盐氧化酶的细菌,这种氧化酶在制造亚硫酸盐生物传感器方面发挥着重要作用。这种能力凸显了它在生态和经济方面的重要性。在本研究中,我们介绍了一种新发现的噬菌体--硫酸杆菌噬菌体 vB_SupP_AX,它是从中国青岛麦岛分离出来的。vB_SupP_AX 基因组为线性双链,长度为 75,445 bp,GC 含量为 49%。它包括四个转运核糖核酸(tRNA)序列和 79 个开放阅读框(ORF),其中一个是编码硫代氧化酶的辅助代谢基因。与其他类似 N4 的噬菌体一样,vB_SupP_AX 拥有三种不同的 RNA 聚合酶,并以存在四个 tRNA 分子为特征。比较基因组学和系统发生学分析将 vB_SupP_AX 和集成微生物基因组/病毒 v4 数据库中的其他三个病毒基因组定位在 Rhodovirinae 病毒亚家族中。vB_SupP_AX 的鉴定加深了我们对海洋生态系统中病毒-宿主相互作用的了解。
{"title":"Genome analysis of vB_SupP_AX, a novel N4-like phage infecting Sulfitobacter.","authors":"Yundan Liu, Chengrui Zhu, Yantao Liang, Andrew McMinn, Kaiyang Zheng, Ziyue Wang, Hongmin Wang, Linyi Ren, Hongbing Shao, Yeong Yik Sung, Wen Jye Mok, Li Lian Wong, Min Wang","doi":"10.1007/s10123-023-00476-5","DOIUrl":"10.1007/s10123-023-00476-5","url":null,"abstract":"<p><p>Sulfitobacter is a bacterium recognized for its production of AMP-independent sulfite oxidase, which is instrumental in the creation of sulfite biosensors. This capability underscores its ecological and economic relevance. In this study, we present a newly discovered phage, Sulfitobacter phage vB_SupP_AX, which was isolated from Maidao of Qingdao, China. The vB_SupP_AX genome is linear and double-stranded and measures 75,445 bp with a GC content of 49%. It encompasses four transfer RNA (tRNA) sequences and 79 open reading frames (ORFs), one of which is an auxiliary metabolic gene encoding thioredoxin. Consistent with other N4-like phages, vB_SupP_AX possesses three distinct RNA polymerases and is characterized by the presence of four tRNA molecules. Comparative genomic and phylogenetic analyses position vB_SupP_AX and three other viral genomes from the Integrated Microbial Genomes/Virus v4 database within the Rhodovirinae virus subfamily. The identification of vB_SupP_AX enhances our understanding of virus-host interactions within marine ecosystems.</p>","PeriodicalId":14318,"journal":{"name":"International Microbiology","volume":" ","pages":"1297-1306"},"PeriodicalIF":2.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139377579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Factors affecting biofilm formation by bacteria on fabrics. 细菌在织物上形成生物膜的影响因素。
IF 2.3 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-08-01 Epub Date: 2023-12-07 DOI: 10.1007/s10123-023-00460-z
Shweta Dixit, Swati Varshney, Deepti Gupta, Shilpi Sharma

Fabrics act as fomites for microorganisms, thereby playing a significant role in infection transmission, especially in the healthcare and hospitality sectors. This study aimed to examine the biofilm formation ability of four nosocomial infection-causing bacteria (Acinetobacter calcoaceticus, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus) on cotton, polyester, polyester-cotton blend, silk, wool, viscose, and nylon, used frequently in the healthcare sector, by qualitative and quantitative methods. The impact of temperature, pH, and relative humidity (RH) on biofilm formation was also assessed. P. aeruginosa and S. aureus were strong biofilm producers, while E. coli produced weak biofilm. Wool (maximum roughness) showed the highest bacterial load, while silk (lowest roughness) showed the least. P. aeruginosa exhibited a higher load on all fabrics, than other test bacteria. Extracellular polymeric substances were characterized by infrared spectroscopy. Roughness of biofilms was assessed by atomic force microscopy. For biofilm formation, optimum temperature, pH, and RH were 30 °C, 7.0, and 62%, respectively. MgCl2 and CaCl2 were the most effective in removing bacterial biofilm. In conclusion, biofilm formation was observed to be influenced by the type of fabric, bacteria, and environmental conditions. Implementing recommended guidelines for the effective disinfection of fabrics is crucial to curb the risk of nosocomial infections. In addition, designing modified healthcare fabrics that inhibit pathogen load could be an effective method to mitigate the transmission of infections.

织物作为微生物的污染物,因此在感染传播中起着重要作用,特别是在医疗保健和酒店部门。本研究旨在通过定性和定量的方法,研究四种医院感染致病菌(钙酸不动杆菌、大肠杆菌、铜绿假单胞菌和金黄色葡萄球菌)对医疗保健部门常用的棉、涤纶、涤棉混纺、丝绸、羊毛、粘胶和尼龙的生物膜形成能力。还评估了温度、pH和相对湿度(RH)对生物膜形成的影响。铜绿假单胞菌和金黄色葡萄球菌是强生物膜生产者,而大肠杆菌是弱生物膜生产者。羊毛(粗糙度最大)的细菌负荷最高,而丝绸(粗糙度最低)的细菌负荷最低。铜绿假单胞菌对所有织物的负荷均高于其他试验菌。利用红外光谱对胞外高分子物质进行了表征。采用原子力显微镜观察生物膜的粗糙度。对于生物膜的形成,最适温度、pH和RH分别为30°C、7.0和62%。MgCl2和CaCl2对细菌生物膜的去除效果最好。总之,生物膜的形成受织物类型、细菌和环境条件的影响。实施建议的织物有效消毒指南对于遏制医院感染的风险至关重要。此外,设计抑制病原体负荷的改性保健织物可能是减轻感染传播的有效方法。
{"title":"Factors affecting biofilm formation by bacteria on fabrics.","authors":"Shweta Dixit, Swati Varshney, Deepti Gupta, Shilpi Sharma","doi":"10.1007/s10123-023-00460-z","DOIUrl":"10.1007/s10123-023-00460-z","url":null,"abstract":"<p><p>Fabrics act as fomites for microorganisms, thereby playing a significant role in infection transmission, especially in the healthcare and hospitality sectors. This study aimed to examine the biofilm formation ability of four nosocomial infection-causing bacteria (Acinetobacter calcoaceticus, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus) on cotton, polyester, polyester-cotton blend, silk, wool, viscose, and nylon, used frequently in the healthcare sector, by qualitative and quantitative methods. The impact of temperature, pH, and relative humidity (RH) on biofilm formation was also assessed. P. aeruginosa and S. aureus were strong biofilm producers, while E. coli produced weak biofilm. Wool (maximum roughness) showed the highest bacterial load, while silk (lowest roughness) showed the least. P. aeruginosa exhibited a higher load on all fabrics, than other test bacteria. Extracellular polymeric substances were characterized by infrared spectroscopy. Roughness of biofilms was assessed by atomic force microscopy. For biofilm formation, optimum temperature, pH, and RH were 30 °C, 7.0, and 62%, respectively. MgCl<sub>2</sub> and CaCl<sub>2</sub> were the most effective in removing bacterial biofilm. In conclusion, biofilm formation was observed to be influenced by the type of fabric, bacteria, and environmental conditions. Implementing recommended guidelines for the effective disinfection of fabrics is crucial to curb the risk of nosocomial infections. In addition, designing modified healthcare fabrics that inhibit pathogen load could be an effective method to mitigate the transmission of infections.</p>","PeriodicalId":14318,"journal":{"name":"International Microbiology","volume":" ","pages":"1111-1123"},"PeriodicalIF":2.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138498399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Euglena mutabilis exists in a FAB consortium with microbes that enhance cadmium tolerance. 变异丁香幼虫与微生物组成的 FAB 联合体能增强对镉的耐受性。
IF 2.3 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-08-01 Epub Date: 2024-01-03 DOI: 10.1007/s10123-023-00474-7
Emma Kaszecki, Daniel Palberg, Mikaella Grant, Sarah Griffin, Chetan Dhanjal, Michael Capperauld, R J Neil Emery, Barry J Saville

Background: Synthetic algal-fungal and algal-bacterial cultures have been investigated as a means to enhance the technological applications of the algae. This inclusion of other microbes has enhanced growth and improved stress tolerance of the algal culture. The goal of the current study was to investigate natural microbial consortia to gain an understanding of the occurrence and benefits of these associations in nature. The photosynthetic protist Euglena mutabilis is often found in association with other microbes in acidic environments with high heavy metal (HM) concentrations. This may suggest that microbial interactions are essential for the protist's ability to tolerate these extreme environments. Our study assessed the Cd tolerance of a natural fungal-algal-bacterial (FAB) association whereby the algae is E. mutabilis.

Results: This study provides the first assessment of antibiotic and antimycotic agents on an E. mutabilis culture. The results indicate that antibiotic and antimycotic applications significantly decreased the viability of E. mutabilis cells when they were also exposed to Cd. Similar antibiotic treatments of E. gracilis cultures had variable or non-significant impacts on Cd tolerance. E. gracilis also recovered better after pre-treatment with antibiotics and Cd than did E. mutabilis. The recoveries were assessed by heterotrophic growth without antibiotics or Cd. In contrast, both Euglena species displayed increased chlorophyll production upon Cd exposure. PacBio full-length amplicon sequencing and targeted Sanger sequencing identified the microbial species present in the E. mutabilis culture to be the fungus Talaromyces sp. and the bacterium Acidiphilium acidophilum.

Conclusion: This study uncovers a possible fungal, algal, and bacterial relationship, what we refer to as a FAB consortium. The members of this consortium interact to enhance the response to Cd exposure. This results in a E. mutabilis culture that has a higher tolerance to Cd than the axenic E. gracilis. The description of this interaction provides a basis for explore the benefits of natural interactions. This will provide knowledge and direction for use when creating or maintaining FAB interactions for biotechnological purposes, including bioremediation.

背景:藻类-真菌和藻类-细菌合成培养物已被研究作为提高藻类技术应用的一种手段。加入其他微生物可促进藻类培养物的生长并提高其抗压能力。本研究的目的是调查天然微生物联合体,以了解这些联合体在自然界中的出现和益处。在重金属(HM)浓度较高的酸性环境中,光合原生动物 Euglena mutabilis 经常与其他微生物结合在一起。这可能表明,微生物之间的相互作用对原生动物耐受这些极端环境的能力至关重要。我们的研究评估了天然真菌-藻类-细菌(FAB)联合体对镉的耐受性,其中的藻类是突变藻:本研究首次评估了抗生素和抗霉菌剂对变异藻培养物的影响。结果表明,当 E. mutabilis 细胞同时暴露于镉时,抗生素和抗霉菌剂的应用会显著降低其活力。对 E. gracilis 培养物进行类似的抗生素处理对镉耐受性的影响不一或不明显。经抗生素和镉预处理后,E. gracilis 也比 E. mutabilis 恢复得更好。恢复情况是通过不使用抗生素或镉的异养生长来评估的。与此相反,在接触镉后,这两种鳗鲡的叶绿素产量都有所增加。PacBio 全长扩增片段测序和目标 Sanger 测序确定了变异欧加氏菌培养物中的微生物物种为真菌 Talaromyces sp.和细菌 Acidiphilium acidophilum:本研究发现了真菌、藻类和细菌之间可能存在的关系,我们称之为 FAB 联合体。该联合体的成员相互作用,增强了对镉暴露的反应。这使得变异藻培养物对镉的耐受性高于轴生藻类。对这种相互作用的描述为探索自然相互作用的益处提供了基础。这将为为生物技术目的(包括生物修复)创建或维持 FAB 相互作用提供知识和方向。
{"title":"Euglena mutabilis exists in a FAB consortium with microbes that enhance cadmium tolerance.","authors":"Emma Kaszecki, Daniel Palberg, Mikaella Grant, Sarah Griffin, Chetan Dhanjal, Michael Capperauld, R J Neil Emery, Barry J Saville","doi":"10.1007/s10123-023-00474-7","DOIUrl":"10.1007/s10123-023-00474-7","url":null,"abstract":"<p><strong>Background: </strong>Synthetic algal-fungal and algal-bacterial cultures have been investigated as a means to enhance the technological applications of the algae. This inclusion of other microbes has enhanced growth and improved stress tolerance of the algal culture. The goal of the current study was to investigate natural microbial consortia to gain an understanding of the occurrence and benefits of these associations in nature. The photosynthetic protist Euglena mutabilis is often found in association with other microbes in acidic environments with high heavy metal (HM) concentrations. This may suggest that microbial interactions are essential for the protist's ability to tolerate these extreme environments. Our study assessed the Cd tolerance of a natural fungal-algal-bacterial (FAB) association whereby the algae is E. mutabilis.</p><p><strong>Results: </strong>This study provides the first assessment of antibiotic and antimycotic agents on an E. mutabilis culture. The results indicate that antibiotic and antimycotic applications significantly decreased the viability of E. mutabilis cells when they were also exposed to Cd. Similar antibiotic treatments of E. gracilis cultures had variable or non-significant impacts on Cd tolerance. E. gracilis also recovered better after pre-treatment with antibiotics and Cd than did E. mutabilis. The recoveries were assessed by heterotrophic growth without antibiotics or Cd. In contrast, both Euglena species displayed increased chlorophyll production upon Cd exposure. PacBio full-length amplicon sequencing and targeted Sanger sequencing identified the microbial species present in the E. mutabilis culture to be the fungus Talaromyces sp. and the bacterium Acidiphilium acidophilum.</p><p><strong>Conclusion: </strong>This study uncovers a possible fungal, algal, and bacterial relationship, what we refer to as a FAB consortium. The members of this consortium interact to enhance the response to Cd exposure. This results in a E. mutabilis culture that has a higher tolerance to Cd than the axenic E. gracilis. The description of this interaction provides a basis for explore the benefits of natural interactions. This will provide knowledge and direction for use when creating or maintaining FAB interactions for biotechnological purposes, including bioremediation.</p>","PeriodicalId":14318,"journal":{"name":"International Microbiology","volume":" ","pages":"1249-1268"},"PeriodicalIF":2.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11300505/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139086767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel complementary pathway of cordycepin biosynthesis in Cordyceps militaris. 蛹虫草中虫草素合成的一种新的互补途径。
IF 2.3 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-08-01 Epub Date: 2023-11-21 DOI: 10.1007/s10123-023-00448-9
Hucheng Zhang, Jun Yang, Shuai Luo, Linying Liu, Guowei Yang, Bo Gao, Haitao Fan, Lina Deng, Ming Yang

We determined whether there exists a complementary pathway of cordycepin biosynthesis in wild-type Cordyceps militaris, high-cordycepin-producing strain C. militaris GYS60, and low-cordycepin-producing strain C. militaris GYS80. Differentially expressed genes were identified from the transcriptomes of the three strains. Compared with C. militaris, in GYS60 and GYS80, we identified 145 and 470 upregulated and 96 and 594 downregulated genes. Compared with GYS80, in GYS60, we identified 306 upregulated and 207 downregulated genes. Gene Ontology analysis revealed that upregulated genes were mostly involved in detoxification, antioxidant, and molecular transducer in GYS60. By Clusters of Orthologous Groups of Proteins and Kyoto Encyclopedia of Genes and Genomes analyses, eight genes were significantly upregulated: five genes related to purine metabolism, one to ATP production, one to secondary metabolite transport, and one to RNA degradation. In GYS60, cordycepin was significantly increased by upregulation of ATP production, which promoted 3',5'-cyclic AMP production. Cyclic AMP accelerated 3'-AMP accumulation, and cordycepin continued to be synthesized and exported. We verified the novel complementary pathway by adding the precursor adenosine and analyzing the expression of four key genes involved in the main pathway of cordycepin biosynthesis. Adenosine addition increased cordycepin production by 51.2% and 10.1%, respectively, in C. militaris and GYS60. Four genes in the main pathway in GYS60 were not upregulated.

我们确定野生型蛹虫草、高产虫草素菌株C. militaris GYS60和低产虫草素菌株C. militaris GYS80中是否存在虫草素生物合成的互补途径。从三个菌株的转录组中鉴定出差异表达基因。在GYS60和GYS80中,分别鉴定出145和470个上调基因和96和594个下调基因。与GYS80相比,在GYS60中,我们鉴定出306个上调基因和207个下调基因。基因本体分析显示,GYS60中表达上调的基因主要与解毒、抗氧化和分子换能器有关。通过蛋白质簇和京都基因与基因组百科分析,8个基因显著上调:5个与嘌呤代谢有关的基因,1个与ATP产生有关的基因,1个与次级代谢物运输有关的基因,1个与RNA降解有关的基因。在GYS60中,虫草素通过上调ATP的产生而显著增加,ATP的产生促进了3',5'环AMP的产生。环状AMP加速了3′-AMP的积累,虫草素继续合成并输出。我们通过添加前体腺苷和分析虫草素生物合成主要途径中涉及的四个关键基因的表达,验证了新的互补途径。添加腺苷可使蛹虫草素产量分别提高51.2%和10.1%。GYS60主要通路上的4个基因未上调。
{"title":"A novel complementary pathway of cordycepin biosynthesis in Cordyceps militaris.","authors":"Hucheng Zhang, Jun Yang, Shuai Luo, Linying Liu, Guowei Yang, Bo Gao, Haitao Fan, Lina Deng, Ming Yang","doi":"10.1007/s10123-023-00448-9","DOIUrl":"10.1007/s10123-023-00448-9","url":null,"abstract":"<p><p>We determined whether there exists a complementary pathway of cordycepin biosynthesis in wild-type Cordyceps militaris, high-cordycepin-producing strain C. militaris GYS60, and low-cordycepin-producing strain C. militaris GYS80. Differentially expressed genes were identified from the transcriptomes of the three strains. Compared with C. militaris, in GYS60 and GYS80, we identified 145 and 470 upregulated and 96 and 594 downregulated genes. Compared with GYS80, in GYS60, we identified 306 upregulated and 207 downregulated genes. Gene Ontology analysis revealed that upregulated genes were mostly involved in detoxification, antioxidant, and molecular transducer in GYS60. By Clusters of Orthologous Groups of Proteins and Kyoto Encyclopedia of Genes and Genomes analyses, eight genes were significantly upregulated: five genes related to purine metabolism, one to ATP production, one to secondary metabolite transport, and one to RNA degradation. In GYS60, cordycepin was significantly increased by upregulation of ATP production, which promoted 3',5'-cyclic AMP production. Cyclic AMP accelerated 3'-AMP accumulation, and cordycepin continued to be synthesized and exported. We verified the novel complementary pathway by adding the precursor adenosine and analyzing the expression of four key genes involved in the main pathway of cordycepin biosynthesis. Adenosine addition increased cordycepin production by 51.2% and 10.1%, respectively, in C. militaris and GYS60. Four genes in the main pathway in GYS60 were not upregulated.</p>","PeriodicalId":14318,"journal":{"name":"International Microbiology","volume":" ","pages":"1009-1021"},"PeriodicalIF":2.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11300563/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138176099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Growth and protein response of rice plant with plant growth-promoting rhizobacteria inoculations under salt stress conditions. 盐胁迫条件下接种植物生长促进根瘤菌的水稻植株的生长和蛋白质反应。
IF 2.3 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-08-01 Epub Date: 2024-01-03 DOI: 10.1007/s10123-023-00469-4
Sayma Serine Chompa, Ali Tan Kee Zuan, Adibah Mohd Amin, Tan Geok Hun, Amir Hamzah Ahmad Ghazali, Buraq Musa Sadeq, Amaily Akter, Md Ekhlasur Rahman, Harun Or Rashid

Soil salinity has been one of the significant barriers to improving rice production and quality. According to reports, Bacillus spp. can be utilized to boost plant development in saline soil, although the molecular mechanisms behind the interaction of microbes towards salt stress are not fully known. Variations in rice plant protein expression in response to salt stress and plant growth-promoting rhizobacteria (PGPR) inoculations were investigated using a proteomic method and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Findings revealed that 54 salt-responsive proteins were identified by mass spectrometry analysis (LC-MS/MS) with the Bacillus spp. interaction, and the proteins were functionally classified as gene ontology. The initial study showed that all proteins were labeled by mass spectrometry analysis (LC-MS/MS) with Bacillus spp. interaction; the proteins were functionally classified into six groups. Approximately 18 identified proteins (up-regulated, 13; down-regulated, 5) were involved in the photosynthetic process. An increase in the expression of eight up-regulated and two down-regulated proteins in protein synthesis known as chaperones, such as the 60 kDa chaperonin, the 70 kDa heat shock protein BIP, and calreticulin, was involved in rice plant stress tolerance. Several proteins involved in protein metabolism and signaling pathways also experienced significant changes in their expression. The results revealed that phytohormones regulated the manifestation of various chaperones and protein abundance and that protein synthesis played a significant role in regulating salt stress. This study also described how chaperones regulate rice salt stress, their different subcellular localizations, and the activity of chaperones.

土壤盐碱化一直是提高水稻产量和质量的重要障碍之一。尽管微生物与盐胁迫相互作用背后的分子机制尚不完全清楚,但据报道,芽孢杆菌可用于促进盐碱土壤中的植物生长。本研究采用蛋白质组学方法和十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)研究了水稻植物蛋白质表达对盐胁迫和接种植物生长促进根瘤菌(PGPR)的响应变化。研究结果表明,通过质谱分析(LC-MS/MS)确定了 54 个与芽孢杆菌属相互作用的盐反应蛋白,并对这些蛋白进行了基因本体功能分类。初步研究表明,所有蛋白质都通过与枯草芽孢杆菌相互作用的质谱分析(LC-MS/MS)进行了标记;蛋白质在功能上被分为六组。经鉴定,约有 18 种蛋白质(上调 13 种,下调 5 种)参与光合作用过程。在蛋白质合成过程中,有 8 个上调蛋白和 2 个下调蛋白被称为伴侣蛋白,如 60 kDa 的伴侣蛋白、70 kDa 的热休克蛋白 BIP 和 calreticulin,它们的表达量增加与水稻植物的抗逆性有关。参与蛋白质代谢和信号通路的一些蛋白质的表达也发生了显著变化。研究结果表明,植物激素调节了各种伴侣蛋白的表达和蛋白质丰度,蛋白质合成在调节盐胁迫中发挥了重要作用。该研究还描述了伴侣蛋白如何调控水稻盐胁迫、其不同的亚细胞定位以及伴侣蛋白的活性。
{"title":"Growth and protein response of rice plant with plant growth-promoting rhizobacteria inoculations under salt stress conditions.","authors":"Sayma Serine Chompa, Ali Tan Kee Zuan, Adibah Mohd Amin, Tan Geok Hun, Amir Hamzah Ahmad Ghazali, Buraq Musa Sadeq, Amaily Akter, Md Ekhlasur Rahman, Harun Or Rashid","doi":"10.1007/s10123-023-00469-4","DOIUrl":"10.1007/s10123-023-00469-4","url":null,"abstract":"<p><p>Soil salinity has been one of the significant barriers to improving rice production and quality. According to reports, Bacillus spp. can be utilized to boost plant development in saline soil, although the molecular mechanisms behind the interaction of microbes towards salt stress are not fully known. Variations in rice plant protein expression in response to salt stress and plant growth-promoting rhizobacteria (PGPR) inoculations were investigated using a proteomic method and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Findings revealed that 54 salt-responsive proteins were identified by mass spectrometry analysis (LC-MS/MS) with the Bacillus spp. interaction, and the proteins were functionally classified as gene ontology. The initial study showed that all proteins were labeled by mass spectrometry analysis (LC-MS/MS) with Bacillus spp. interaction; the proteins were functionally classified into six groups. Approximately 18 identified proteins (up-regulated, 13; down-regulated, 5) were involved in the photosynthetic process. An increase in the expression of eight up-regulated and two down-regulated proteins in protein synthesis known as chaperones, such as the 60 kDa chaperonin, the 70 kDa heat shock protein BIP, and calreticulin, was involved in rice plant stress tolerance. Several proteins involved in protein metabolism and signaling pathways also experienced significant changes in their expression. The results revealed that phytohormones regulated the manifestation of various chaperones and protein abundance and that protein synthesis played a significant role in regulating salt stress. This study also described how chaperones regulate rice salt stress, their different subcellular localizations, and the activity of chaperones.</p>","PeriodicalId":14318,"journal":{"name":"International Microbiology","volume":" ","pages":"1151-1168"},"PeriodicalIF":2.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139086768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Microbiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1