Objectives: To investigate the effect of evening whey protein supplementation, rich in tryptophan, on sleep in elite male Australian Rules Football players.
Design: Double-blinded, counterbalanced, randomized, cross-over study.
Methods: Sleep was assessed using wrist activity monitors and sleep diaries in 15 elite male Australian Football League players on two training and nontraining days following evening consumption of an isocaloric whey protein supplement or placebo in preseason. A 5-day preintervention period was implemented to determine habitual dietary intake and baseline sleep measures. These habitual data were used to inform the daily dietary intake and timing of ingestion of the evening whey protein supplement or placebo on the intervention days. The whey protein supplement or placebo was consumed 3 hr prior to habitual bedtime.
Results: Separate one-way repeated-measures analyses of covariance revealed no differences between the whey protein supplement and the placebo on sleep duration, sleep onset latency, sleep efficiency, or wake after sleep onset on either training or nontraining days.
Conclusions: Evening whey protein supplementation, rich in tryptophan, does not improve acute sleep duration or quality in elite male Australian Football League players. However, elite athletes may be able to ingest a high protein/energy intake close to bedtime without impairing sleep, which is important for athlete recovery. Future research should investigate the effect of evening protein intake, high in tryptophan, on sleep duration and quality, including sleep staging during periods of restricted sleep and in poor-sleeping athletes.
In the article Rogers M.A., Drew, M.K., Appaneal R., Lovell, G., Lundy, B., Hughes, D., Vlahovich, N., Waddington, G., & Burke, L.M. (2021). The utility of the Low Energy Availability in Females Questionnaire to detect markers consistent with low energy availability-related conditions in a mixed-sport cohort. International Journal of Sport Nutrition and Exercise Metabolism, 31(5), 427–437, https://doi.org/10.1123/ijsnem.2020-0233, there were two errors introduced in the tables during production. In Tables 2 and 3, “absence of amenorrhea” should be “absence of eumenorrhea.” The online version of this article has been corrected. The publisher regrets the errors.
Coingestion of ketone salts, caffeine and the amino acids, taurine, and leucine improves endurance exercise performance. However, there is no study comparing this coingestion to the same nutrients without caffeine. We assessed whether ketone salts-caffeine-taurine-leucine (KCT) supplementation was superior to caffeine-free ketone salts-taurine-leucine supplementation (KT), or to an isoenergetic carbohydrate placebo (CHO-PLAC). Thirteen recreationally active men (mean ± SD: 177.5 ± 6.1 cm, 75.9 ± 4.6 kg, 23 ± 3 years, 12.0 ± 5.1% body fat) completed a best effort 20-km cycling time-trial, followed 15 min later by a Wingate power cycle test, after supplementing with either KCT (approximately 7 g of beta-hydroxybutyrate, approximately 120 mg of caffeine, 2.1 g of leucine, and 2.7 g of taurine), KT (i.e., same supplement without caffeine), or isoenergetic CHO-PLAC (11 g of dextrose). Blood ketones were elevated (p < .001) after ingestion of both KCT (0.65 ± 0.12 mmol/L) and KT (0.72 ± 0.31 mmol/L) relative to CHO-PLAC (0.06 ± 0.05 mmol/L). Moreover, KCT improved (p < .003) 20-km cycling time-trial performance (37.80 ± 2.28 min), compared with CHO-PLAC (39.40 ± 3.33 min) but not versus KT (38.75 ± 2.87 min; p < .09). 20-km cycling time-trial average power output was greater with KCT (power output = 180.5 ± 28.7 W) versus both KT (170.9 ± 31.7 W; p = .049) and CHO-PLAC (164.8 ± 34.7 W; p = .001). Wingate peak power output was also greater for both KCT (1,134 ± 137 W; p = .031) and KT (1,132 ± 128 W; p = .039) versus CHO-PLAC (1,068 ± 127 W). These data suggest that the observed improved exercise performance effects of this multi-ingredient supplement containing beta-hydroxybutyrate salts, taurine, and leucine are attributed partially to the addition of caffeine.
There is some controversy regarding the interactions between creatine (CRE) and caffeine (CAF) supplements. The aim of this systematic review was to study whether such ergogenic interaction occurs and to analyze the protocol to optimize their synchronous use. The PubMed, Web of Science, MEDLINE, CINAHL, and SPORTDiscus databases were searched until November 2021 following the PRISMA guidelines. Ten studies were included. Three studies observed that CRE loading before an acute dose of CAF before exercise did not interfere in the beneficial effect of CAF, whereas one study reported that only an acute supplementation (SUP) of CAF was beneficial but not the acute SUP of both. When chronic SUP with CRE + CAF was used, two studies reported that CAF interfered in the beneficial effect of CRE, whereas three studies did not report interaction between concurrent SUP, and one study reported synergy. Possible mechanisms of interaction are opposite effects on relaxation time and gastrointestinal distress derived from concurrent SUP. CRE loading does not seem to interfere in the acute effect of CAF. However, chronic SUP of CAF during CRE loading could interfere in the beneficial effect of CRE.
The purpose was to investigate the effects of CYP1A2 -163C > A polymorphism on the effects of acute caffeine (CAF) supplementation on anaerobic power in trained males. Sixteen trained males (age: 21.6 ± 7.1 years; height: 179.7 ± 5.6 cm; body mass: 72.15 ± 6.8 kg) participated in a randomized, double-blind, placebo (PLA) controlled crossover design. Participants supplemented with CAF (6 mg/kg of body mass) and an isovolumetric PLA (maltodextrin) in random order and separated by 7 days, before an all-out 30-s anaerobic cycling test to determine peak, average, and minimum power output, and fatigue index. Genomic deoxyribonucleic acid was extracted to identify each participants CYP1A2 genotype. Six participants expressed AA homozygote and 10 expressed C alleles. There was a treatment by genotype interaction for peak power output (p = .041, η2 = .265, observed power = 0.552) with only those expressing AA genotype showing improvement following CAF supplementation compared with PLA (CAF: 693 ± 108 watts vs. PLA: 655 ± 97 watts; p = .039), while no difference between treatments was noted in those expressing C alleles (CAF: 614 ± 92 watts vs. PLA: 659 ± 144 watts; p = .135). There were no other interaction or main effects for average or minimum power output, or fatigue index (p > .05). In conclusion, the ingestion of 6 mg/kg of CAF improved peak power output only in participants with the AA genotype compared with PLA; however, expression of the CYP1A2 did not influence average or minimum power output or fatigue index.
Supplementing postexercise carbohydrate (CHO) intake with protein has been suggested to enhance recovery from endurance exercise. The aim of this study was to investigate whether adding protein to the recovery drink can improve 24-hr recovery when CHO intake is suboptimal. In a double-blind crossover design, 12 trained men performed three 2-day trials consisting of constant-load exercise to reduce glycogen on Day 1, followed by ingestion of a CHO drink (1.2 g·kg-1·2 hr-1) either without or with added whey protein concentrate (CHO + PRO) or whey protein hydrolysate (CHO + PROH) (0.3 g·kg-1·2 hr-1). Arterialized blood glucose and insulin responses were analyzed for 2 hr postingestion. Time-trial performance was measured the next day after another bout of glycogen-reducing exercise. The 30-min time-trial performance did not differ between the three trials (M ± SD, 401 ± 75, 411 ± 80, 404 ± 58 kJ in CHO, CHO + PRO, and CHO + PROH, respectively, p = .83). No significant differences were found in glucose disposal (area under the curve [AUC]) between the postexercise conditions (364 ± 107, 341 ± 76, and 330 ± 147, mmol·L-1·2 hr-1, respectively). Insulin AUC was lower in CHO (18.1 ± 7.7 nmol·L-1·2 hr-1) compared with CHO + PRO and CHO + PROH (24.6 ± 12.4 vs. 24.5 ± 10.6, p = .036 and .015). No difference in insulin AUC was found between CHO + PRO and CHO + PROH. Despite a higher acute insulin response, adding protein to a CHO-based recovery drink after a prolonged, high-intensity exercise bout did not change next-day exercise capacity when overall 24-hr macronutrient and caloric intake was controlled.
The present study investigated individualized sodium bicarbonate (NaHCO3-) supplementation in elite orienteers and its effects on alkalosis and performance in a simulated sprint orienteering competition. Twenty-one Danish male and female elite orienteers (age = 25.2 ± 3.6 years, height = 176.4 ± 10.9 cm, body mass = 66.6 ± 7.9 kg) were tested twice in order to identify individual time to peak blood bicarbonate (HCO3- peak) following supplementation of 0.3 g/kg body mass NaHCO3 with and without warm-up. The athletes also performed two 3.5 km time-trial runs (TT-runs) following individualized timing of NaHCO3 supplementation (SBS) or placebo (PLA) on separate days in a randomized, double-blind, cross-over design. The occurrence of individual peak HCO3- and pH ranged from 60 to 180 min. Mean HCO3- and pH in SBS were significantly higher compared with PLA 10 min before and following the TT-run (p < .01). SBS improved overall performance in the 3.5 km TT-run by 6 s compared with PLA (775.5 ± 16.2 s vs. 781.4 ± 16.1 s, respectively; p < .05). SBS improved performance in the last half of the TT-run compared with PLA (p < .01). In conclusion, supplementation with NaHCO3 followed by warm-up resulted in individualized alkalosis peaks ranging from 60 to 180 min. Individualized timing of SBS in elite orienteers induced significant alkalosis before and after a 3.5 km TT and improved overall performance time by 6 s, which occurred in the last half of the time trial. The present data show that the anaerobic buffer system is important for performance in these types of endurance events lasting 12-15 min.