Pub Date : 1900-01-01DOI: 10.3997/2214-4609.202112729
J. Shan, G. Wu, H. Liu, S. Yang
{"title":"Second-Order Perturbation Approximation of HTI Medium based on Azimuthal Observation","authors":"J. Shan, G. Wu, H. Liu, S. Yang","doi":"10.3997/2214-4609.202112729","DOIUrl":"https://doi.org/10.3997/2214-4609.202112729","url":null,"abstract":"","PeriodicalId":143998,"journal":{"name":"82nd EAGE Annual Conference & Exhibition","volume":"114 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116587831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1900-01-01DOI: 10.3997/2214-4609.202112766
H. Sun, K. Yang, H. Wang, T. Shu
{"title":"Near-surface multi-parameter estimation for VTI media by first-arrival stereotomography","authors":"H. Sun, K. Yang, H. Wang, T. Shu","doi":"10.3997/2214-4609.202112766","DOIUrl":"https://doi.org/10.3997/2214-4609.202112766","url":null,"abstract":"","PeriodicalId":143998,"journal":{"name":"82nd EAGE Annual Conference & Exhibition","volume":"54 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128324185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1900-01-01DOI: 10.3997/2214-4609.202112779
G. Provenzano, L. Métivier, R. Brossier
Introduction Joint full waveform inversion (JFWI, Zhou et al., 2015) builds a P-wave velocity (Vp) macromodel exploiting simultaneously the information carried by diving waves and reflections (e.g. in RWI, Brossier et al., 2015), thus obtaining deep Vp-updates while enforcing the constraint on the shallow subsurface. Here we devise an acoustic JFWI+Impedance-WI (IpWI) strategy on the Chevron-2014 benchmark limited-offset reflection elastic dataset. JFWI is performed using a graph-space optimal transport objective function (GSOT, Métivier et al., 2019) and takes advantage from along-structure smoothing based on the impedance reflective image. We compare GSOT and L2 objective functions, and show the benefits of structure-oriented smoothing (Trinh et al., 2017). Finally, the JFWI solution is used as starting model of a multi-scale Vp-FWI, attaining an excellent match with the virtual log, a satisfactory focusing of the common image gathers (CIGs), and an improved stationarity of the source wavelet estimation.
联合全波形反演(JFWI, Zhou et al., 2015)建立了纵波速度(Vp)宏观模型,同时利用潜水波和反射(如RWI, Brossier et al., 2015)所携带的信息,从而在对浅层地下进行约束的同时获得深层Vp更新。在这里,我们设计了一种基于Chevron-2014基准有限偏移反射弹性数据集的声学JFWI+阻抗wi (IpWI)策略。JFWI使用图空间最优传输目标函数(GSOT, m等人,2019)执行,并利用基于阻抗反射图像的沿结构平滑。我们比较了GSOT和L2目标函数,并展示了面向结构的平滑的好处(Trinh et al., 2017)。最后,将JFWI解决方案作为多尺度Vp-FWI的起始模型,获得了与虚拟日志的良好匹配,公共图像集(CIGs)的令人满意的聚焦,并且提高了源小波估计的平稳性。
{"title":"Joint reflection and diving FWI using graph-space optimal transport and structure-guided smoothing on benchmark data","authors":"G. Provenzano, L. Métivier, R. Brossier","doi":"10.3997/2214-4609.202112779","DOIUrl":"https://doi.org/10.3997/2214-4609.202112779","url":null,"abstract":"Introduction Joint full waveform inversion (JFWI, Zhou et al., 2015) builds a P-wave velocity (Vp) macromodel exploiting simultaneously the information carried by diving waves and reflections (e.g. in RWI, Brossier et al., 2015), thus obtaining deep Vp-updates while enforcing the constraint on the shallow subsurface. Here we devise an acoustic JFWI+Impedance-WI (IpWI) strategy on the Chevron-2014 benchmark limited-offset reflection elastic dataset. JFWI is performed using a graph-space optimal transport objective function (GSOT, Métivier et al., 2019) and takes advantage from along-structure smoothing based on the impedance reflective image. We compare GSOT and L2 objective functions, and show the benefits of structure-oriented smoothing (Trinh et al., 2017). Finally, the JFWI solution is used as starting model of a multi-scale Vp-FWI, attaining an excellent match with the virtual log, a satisfactory focusing of the common image gathers (CIGs), and an improved stationarity of the source wavelet estimation.","PeriodicalId":143998,"journal":{"name":"82nd EAGE Annual Conference & Exhibition","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125483668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1900-01-01DOI: 10.3997/2214-4609.202112710
J. Cheng, J. Chen, W. Wu, M. Guo, X. Wu, N. Dai
It is well known that the earth strata are far from perfectly elastic but demonstrate the properties of viscoelasticity, in which seismic waves suffer wavelet shape distortion and energy loss during propagation. Seismic attenuation is commonly characterized by the quality factor Q. The linear model of wave attenuation with frequency independent Q is widely used in exploration seismology (Kjartansson, 1979). Based on this theory, different frequency components of seismic waves propagate in anelastic materials with a frequency-dependent phase velocity, while in elastic media all frequency components travel with the same phase velocity. In anelastic media the energy loss is approximately proportional to the frequency. In general, higher frequency components in seismic waves tend to travel faster than low frequency components, and their amplitudes decay more quickly. Seismic imaging without proper accounting of dispersion and amplitude loss produces images with distorted phases, dimmed amplitudes and reduced resolutions, especially for deeper horizons under low quality factor (low Q) strata, making it more difficult to do AVO interpretation analysis and to tie seismic horizons to well data.
{"title":"Reverse time migration with frequency-dependent Q compensation accelerated with GPU computing","authors":"J. Cheng, J. Chen, W. Wu, M. Guo, X. Wu, N. Dai","doi":"10.3997/2214-4609.202112710","DOIUrl":"https://doi.org/10.3997/2214-4609.202112710","url":null,"abstract":"It is well known that the earth strata are far from perfectly elastic but demonstrate the properties of viscoelasticity, in which seismic waves suffer wavelet shape distortion and energy loss during propagation. Seismic attenuation is commonly characterized by the quality factor Q. The linear model of wave attenuation with frequency independent Q is widely used in exploration seismology (Kjartansson, 1979). Based on this theory, different frequency components of seismic waves propagate in anelastic materials with a frequency-dependent phase velocity, while in elastic media all frequency components travel with the same phase velocity. In anelastic media the energy loss is approximately proportional to the frequency. In general, higher frequency components in seismic waves tend to travel faster than low frequency components, and their amplitudes decay more quickly. Seismic imaging without proper accounting of dispersion and amplitude loss produces images with distorted phases, dimmed amplitudes and reduced resolutions, especially for deeper horizons under low quality factor (low Q) strata, making it more difficult to do AVO interpretation analysis and to tie seismic horizons to well data.","PeriodicalId":143998,"journal":{"name":"82nd EAGE Annual Conference & Exhibition","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116578138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1900-01-01DOI: 10.3997/2214-4609.202112727
D. Colombo, E. Sandoval-Curiel, E. Turkoglu, A. Kontakis, D. Rovetta
{"title":"Ultra-resolution near surface FWI within a transmission surface-consistent scheme","authors":"D. Colombo, E. Sandoval-Curiel, E. Turkoglu, A. Kontakis, D. Rovetta","doi":"10.3997/2214-4609.202112727","DOIUrl":"https://doi.org/10.3997/2214-4609.202112727","url":null,"abstract":"","PeriodicalId":143998,"journal":{"name":"82nd EAGE Annual Conference & Exhibition","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117015386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1900-01-01DOI: 10.3997/2214-4609.202112725
W. Mulder
Multi-parameter inversion of linear systems appears in many problems. The focus here is on isotropic elastic iterative reverse-time migration for three position-dependent subsurface model parameters, which amounts to data fitting of processed seismic data with synthetics from the Born approximation of the elastic wave equation. In that case, the matrix of the linear system is the hessian. As it is impractical to form, a matrix-free formulation is needed, which is readily derived for the gradient descent method. For single-parameter inversion, the conjugate-gradient (CG) method is generally more efficient than simple descent. However, the multiple-parameter CG method has a significantly higher cost than the descent method. Here, first a matrix-free data-domain reformulation is derived. Then, its performance is compared to the simple descent method to see of its faster convergence justifies the higher cost. A comparison on a marine 2-D toy problem with a salt body and sea-bottom receivers shows that the multiple-parameter descent method wins in terms of efficiency if the number of iterations is limited and that the single-parameter CG method is even faster.
{"title":"A matrix-free reformulation of the multi-parameter descent and conjugate-gradient method for isotropic elastic iterative reverse-time migration","authors":"W. Mulder","doi":"10.3997/2214-4609.202112725","DOIUrl":"https://doi.org/10.3997/2214-4609.202112725","url":null,"abstract":"Multi-parameter inversion of linear systems appears in many problems. The focus here is on isotropic elastic iterative reverse-time migration for three position-dependent subsurface model parameters, which amounts to data fitting of processed seismic data with synthetics from the Born approximation of the elastic wave equation. In that case, the matrix of the linear system is the hessian. As it is impractical to form, a matrix-free formulation is needed, which is readily derived for the gradient descent method. For single-parameter inversion, the conjugate-gradient (CG) method is generally more efficient than simple descent. However, the multiple-parameter CG method has a significantly higher cost than the descent method. Here, first a matrix-free data-domain reformulation is derived. Then, its performance is compared to the simple descent method to see of its faster convergence justifies the higher cost. A comparison on a marine 2-D toy problem with a salt body and sea-bottom receivers shows that the multiple-parameter descent method wins in terms of efficiency if the number of iterations is limited and that the single-parameter CG method is even faster.","PeriodicalId":143998,"journal":{"name":"82nd EAGE Annual Conference & Exhibition","volume":"206 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132352723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1900-01-01DOI: 10.3997/2214-4609.202112758
S. Mohammadkhani, D. Olsen, H. Holmslykke, H. Lorentzen, R. Weibel, N. Andrianov, N. Schovsbo
{"title":"Testing CO2 compatibility of a glauconitic reservoir: Case study from depleted Nini Field, Danish North Sea","authors":"S. Mohammadkhani, D. Olsen, H. Holmslykke, H. Lorentzen, R. Weibel, N. Andrianov, N. Schovsbo","doi":"10.3997/2214-4609.202112758","DOIUrl":"https://doi.org/10.3997/2214-4609.202112758","url":null,"abstract":"","PeriodicalId":143998,"journal":{"name":"82nd EAGE Annual Conference & Exhibition","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132858821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1900-01-01DOI: 10.3997/2214-4609.202112713
R. Masumura, H. Mikada, J. Takekawa, S. Xu
{"title":"The estimation of permeability using grain size distribution and pore space analysis","authors":"R. Masumura, H. Mikada, J. Takekawa, S. Xu","doi":"10.3997/2214-4609.202112713","DOIUrl":"https://doi.org/10.3997/2214-4609.202112713","url":null,"abstract":"","PeriodicalId":143998,"journal":{"name":"82nd EAGE Annual Conference & Exhibition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132029332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1900-01-01DOI: 10.3997/2214-4609.202112743
R. Leite, F. Azuddin, N. Mohsin, M. Z. Kashim, S. Shah, Z. Bakar, A.H. Goodman, M. Rashidi, S. Ali, P. Tiwari
{"title":"Rock Physics attributes as potential rock-fluid discriminants for carbonate reservoirs in Central Luconia","authors":"R. Leite, F. Azuddin, N. Mohsin, M. Z. Kashim, S. Shah, Z. Bakar, A.H. Goodman, M. Rashidi, S. Ali, P. Tiwari","doi":"10.3997/2214-4609.202112743","DOIUrl":"https://doi.org/10.3997/2214-4609.202112743","url":null,"abstract":"","PeriodicalId":143998,"journal":{"name":"82nd EAGE Annual Conference & Exhibition","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125633641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}