Pub Date : 2025-01-23DOI: 10.1097/RLI.0000000000001155
Cherry Kim, Chohee Kim, Bum Sik Tae, Do-Young Kwon, Young Hen Lee
Objectives: This study aimed to investigate the association between the use of linear and macrocyclic gadolinium-based contrast agents (GBCAs) and the subsequent development of Parkinson disease (PD).
Methods: In this retrospective cohort study, data were extracted from the Korean National Health Insurance Service database, comprising 1,038,439 individuals. From this population, 175,125 adults aged 40 to 60 years with no history of brain disease were identified. All patients including 3835 who were administered GBCA at least once were monitored until 2022 for the onset of PD. Propensity score (PS) matching was employed to compare the incidence of PD between those exposed to GBCAs (either linear or macrocyclic) and those not exposed (no-GBCA group).
Results: The final cohort consisted of 1175 subjects exposed to linear GBCAs, 2334 exposed to macrocyclic GBCAs, and 171,616 unexposed to any GBCA (no-GBCA group). After PS matching, PD incidence was significantly higher in the linear GBCA group compared with the no-GBCA group (0.9% vs 0.0%, P = 0.002) and was also significantly higher in the macrocyclic GBCA group than in the no-GBCA group (0.5% vs 0.04%, P = 0.003). No significant difference in PD incidence was observed between the linear and macrocyclic GBCA groups.
Conclusions: Exposure to GBCAs was linked to an increased risk of developing PD in this large population-based study. The risk of PD did not differ significantly between linear and macrocyclic GBCAs.
目的:本研究旨在探讨线性和大环钆造影剂(gbca)的使用与帕金森病(PD)的后续发展之间的关系。方法:在这项回顾性队列研究中,数据从韩国国民健康保险服务数据库中提取,包括1,038,439人。从这一人群中,确定了175,125名年龄在40至60岁之间没有脑部疾病史的成年人。包括3835名至少接受过一次GBCA治疗的患者在内的所有患者都被监测到2022年PD发病情况。采用倾向评分(PS)匹配来比较暴露于gbca(线性或大环)和未暴露于gbca组(无gbca组)的PD发生率。结果:最终队列包括1175名暴露于线性GBCA的受试者,2334名暴露于大环GBCA的受试者,以及171616名未暴露于任何GBCA的受试者(无GBCA组)。PS匹配后,线性GBCA组PD发病率显著高于无GBCA组(0.9% vs 0.0%, P = 0.002),大环GBCA组PD发病率也显著高于无GBCA组(0.5% vs 0.04%, P = 0.003)。线性和大环GBCA组之间PD发生率无显著差异。结论:在这项以人群为基础的大型研究中,暴露于gbca与患PD的风险增加有关。线性和大环gbca之间PD的风险没有显著差异。
{"title":"Assessing the Association Between Gadolinium-Based Contrast Agents and Parkinson Disease: Insights From the Korean National Health Insurance Service Database.","authors":"Cherry Kim, Chohee Kim, Bum Sik Tae, Do-Young Kwon, Young Hen Lee","doi":"10.1097/RLI.0000000000001155","DOIUrl":"https://doi.org/10.1097/RLI.0000000000001155","url":null,"abstract":"<p><strong>Objectives: </strong>This study aimed to investigate the association between the use of linear and macrocyclic gadolinium-based contrast agents (GBCAs) and the subsequent development of Parkinson disease (PD).</p><p><strong>Methods: </strong>In this retrospective cohort study, data were extracted from the Korean National Health Insurance Service database, comprising 1,038,439 individuals. From this population, 175,125 adults aged 40 to 60 years with no history of brain disease were identified. All patients including 3835 who were administered GBCA at least once were monitored until 2022 for the onset of PD. Propensity score (PS) matching was employed to compare the incidence of PD between those exposed to GBCAs (either linear or macrocyclic) and those not exposed (no-GBCA group).</p><p><strong>Results: </strong>The final cohort consisted of 1175 subjects exposed to linear GBCAs, 2334 exposed to macrocyclic GBCAs, and 171,616 unexposed to any GBCA (no-GBCA group). After PS matching, PD incidence was significantly higher in the linear GBCA group compared with the no-GBCA group (0.9% vs 0.0%, P = 0.002) and was also significantly higher in the macrocyclic GBCA group than in the no-GBCA group (0.5% vs 0.04%, P = 0.003). No significant difference in PD incidence was observed between the linear and macrocyclic GBCA groups.</p><p><strong>Conclusions: </strong>Exposure to GBCAs was linked to an increased risk of developing PD in this large population-based study. The risk of PD did not differ significantly between linear and macrocyclic GBCAs.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":""},"PeriodicalIF":7.0,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143005251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-22DOI: 10.1097/RLI.0000000000001153
Mueez Aizaz, Juul Bierens, Marion J J Gijbels, Tobien H C M L Schreuder, Narender P van Orshoven, Jan-Willem H C Daemen, Werner H Mess, Thomas Flohr, Robert J van Oostenbrugge, Alida A Postma, M Eline Kooi
Objectives: Carotid plaque vulnerability is a strong predictor of recurrent ipsilateral stroke, but differentiation of plaque components using conventional computed tomography (CT) is suboptimal. The aim of our study was to evaluate the ability of dual-energy CT (DECT) to characterize atherosclerotic carotid plaque components based on the effective atomic number and effective electron density using magnetic resonance imaging (MRI) and, where possible, histology as the reference standard.
Materials and methods: Patients with recent cerebral ischemia and a ≥2-mm carotid plaque underwent computed tomography angiography and MRI. A subgroup underwent carotid endarterectomy. Trained observers delineated plaque components on histology or MRI, independent of computed tomography angiography. DECT was coregistered with MRI and/or histology. Intraplaque hemorrhage (IPH), lipid-rich necrotic core (LRNC), fibrous tissue, and calcifications were delineated on DECT, and ρeff and Zeff values were determined in the derivation cohort (n = 55). Spatial separation of these components was evaluated in a ρeff-Zeff-cluster plot. Ranges that optimally differentiate plaque features were determined. For validation, plaque components were quantified in the validation cohort (n = 29) using these ρeff-Zeff ranges and literature-based Hounsfield unit (HU) ranges and correlated to MRI volumes.
Results: Eighty-four participants (68 ± 8 years; 55 male) were evaluated. In the derivation cohort, plaque components were well separated on the cluster plot, resulting in the following ranges: IPH:ρeff < 1.15, Zeff < 7.5, LRNC:ρeff < 1.15, Zeff:7.5-8.75, fibrous tissue:ρeff < 1.15, Zeff > 8.75, and calcifications: ρeff > 1.15, Zeff > 0. In the validation cohort, significant correlations were found between ρeff-Zeff-based and MRI plaque volumes for fibrous tissue (r = 0.69, P < 0.001), LRNC (r = 0.94, P < 0.001), IPH (r = 0.35, P = 0.03), and calcifications (r = 0.70, P < 0.001). Lower correlations were found between HU-based and MRI plaque volumes for fibrous tissue (r = 0.40, P = 0.02), LRNC (r = 0.86, P < 0.001), and calcifications (r = 0.47, P = 0.005), with no correlation for IPH (r = 0.02, P = 0.45).
Conclusions: We determined ρeff-Zeff ranges for plaque assessment. ρeff-Zeff-based volumes showed strong-to-very strong correlations with MRI for LRNC, fibrous tissue, and calcifications and a weak correlation for IPH. ρeff-Zeff-based volumes demonstrated superior agreement with MRI for all plaque components compared with HU-based volumes, highlighting the potential of DECT for the identification of patients with vulnerable plaques.
{"title":"Differentiation of Atherosclerotic Carotid Plaque Components With Dual-Energy Computed Tomography.","authors":"Mueez Aizaz, Juul Bierens, Marion J J Gijbels, Tobien H C M L Schreuder, Narender P van Orshoven, Jan-Willem H C Daemen, Werner H Mess, Thomas Flohr, Robert J van Oostenbrugge, Alida A Postma, M Eline Kooi","doi":"10.1097/RLI.0000000000001153","DOIUrl":"https://doi.org/10.1097/RLI.0000000000001153","url":null,"abstract":"<p><strong>Objectives: </strong>Carotid plaque vulnerability is a strong predictor of recurrent ipsilateral stroke, but differentiation of plaque components using conventional computed tomography (CT) is suboptimal. The aim of our study was to evaluate the ability of dual-energy CT (DECT) to characterize atherosclerotic carotid plaque components based on the effective atomic number and effective electron density using magnetic resonance imaging (MRI) and, where possible, histology as the reference standard.</p><p><strong>Materials and methods: </strong>Patients with recent cerebral ischemia and a ≥2-mm carotid plaque underwent computed tomography angiography and MRI. A subgroup underwent carotid endarterectomy. Trained observers delineated plaque components on histology or MRI, independent of computed tomography angiography. DECT was coregistered with MRI and/or histology. Intraplaque hemorrhage (IPH), lipid-rich necrotic core (LRNC), fibrous tissue, and calcifications were delineated on DECT, and ρeff and Zeff values were determined in the derivation cohort (n = 55). Spatial separation of these components was evaluated in a ρeff-Zeff-cluster plot. Ranges that optimally differentiate plaque features were determined. For validation, plaque components were quantified in the validation cohort (n = 29) using these ρeff-Zeff ranges and literature-based Hounsfield unit (HU) ranges and correlated to MRI volumes.</p><p><strong>Results: </strong>Eighty-four participants (68 ± 8 years; 55 male) were evaluated. In the derivation cohort, plaque components were well separated on the cluster plot, resulting in the following ranges: IPH:ρeff < 1.15, Zeff < 7.5, LRNC:ρeff < 1.15, Zeff:7.5-8.75, fibrous tissue:ρeff < 1.15, Zeff > 8.75, and calcifications: ρeff > 1.15, Zeff > 0. In the validation cohort, significant correlations were found between ρeff-Zeff-based and MRI plaque volumes for fibrous tissue (r = 0.69, P < 0.001), LRNC (r = 0.94, P < 0.001), IPH (r = 0.35, P = 0.03), and calcifications (r = 0.70, P < 0.001). Lower correlations were found between HU-based and MRI plaque volumes for fibrous tissue (r = 0.40, P = 0.02), LRNC (r = 0.86, P < 0.001), and calcifications (r = 0.47, P = 0.005), with no correlation for IPH (r = 0.02, P = 0.45).</p><p><strong>Conclusions: </strong>We determined ρeff-Zeff ranges for plaque assessment. ρeff-Zeff-based volumes showed strong-to-very strong correlations with MRI for LRNC, fibrous tissue, and calcifications and a weak correlation for IPH. ρeff-Zeff-based volumes demonstrated superior agreement with MRI for all plaque components compared with HU-based volumes, highlighting the potential of DECT for the identification of patients with vulnerable plaques.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":""},"PeriodicalIF":7.0,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143005256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-22DOI: 10.1097/RLI.0000000000001156
Laura S Leukert, Katya Hoffmannbeck Heitkötter, Andrea Kronfeld, Roman H Paul, Daniel Polak, Daniel Nicolas Splitthoff, Marc A Brockmann, Sebastian Altmann, Ahmed E Othman
Objectives: The aim of this study was to investigate the occurrence of motion artifacts and image quality of brain magnetic resonance imaging (MRI) T1-weighted imaging applying 3D motion correction via the Scout Accelerated Motion Estimation and Reduction (SAMER) framework compared with conventional T1-weighted imaging at 1.5 T.
Materials and methods: A preliminary study involving 14 healthy volunteers assessed the impact of the SAMER framework on induced motion during 3 T MRI scans. Participants performed 3 different motion patterns: (1) step up, (2) controlled breathing, and (3) free motion. The patient study included 82 patients who required clinically indicated MRI scans. 3D T1-weighted images (MPRAGE) were acquired at 1.5 T. The MRI data were reconstructed using either regular product reconstruction (non-Moco) or the 3D motion correction SAMER framework (SAMER Moco), resulting in 145 image sequences. For the preliminary and the patient study, 3 experienced radiologists evaluated the image data using a 5-point Likert scale, focusing on overall image quality, artifact presence, diagnostic confidence, delineation of pathology, and image sharpness. Interrater agreement was assessed using Gwet's AC2, and an exploratory analysis (non-Moco vs SAMER Moco) was performed.
Results: Compared with non-Moco, the preliminary study demonstrated significant improvements across all imaging parameters and motion patterns with SAMER Moco (P < 0.001). Odds ratios favoring SAMER Moco were >999.999 for freedom of artifact and overall image quality (P < 0.0001). Excellent or good ratings for freedom of artifact were 52.4% with SAMER Moco, compared with 21.4% for non-Moco. Similarly, 66.7% of SAMER Moco images were rated excellent or good for overall image quality versus 21.4% for non-Moco. Multireader interrater agreement was excellent across all parameters.The patient study confirmed that SAMER Moco provided significantly superior image quality across all evaluated imaging parameters, particularly in the presence of motion (P < 0.001). Diagnostic confidence was rated as excellent or good in 95.1% of SAMER Moco cases, compared with 78.1% for non-Moco cases. Similarly, overall image quality was rated as excellent or good in 89.8% of SAMER Moco cases versus 65.9% for non-Moco cases. The odds ratios for diagnostic confidence and for overall image quality were 6.698 and 6.030, respectively, both favoring SAMER Moco (P < 0.0001). Multireader interrater agreement was excellent across all parameters.
Conclusions: The application of SAMER in T1-weighted imaging datasets is feasible in clinical routine and significantly increases image quality and diagnostic confidence in 1.5 T brain MRI by effectively reducing motion artifacts.
{"title":"Clinical Evaluation of 3D Motion-Correction Via Scout Accelerated Motion Estimation and Reduction Framework Versus Conventional T1-Weighted MRI at 1.5 T in Brain Imaging.","authors":"Laura S Leukert, Katya Hoffmannbeck Heitkötter, Andrea Kronfeld, Roman H Paul, Daniel Polak, Daniel Nicolas Splitthoff, Marc A Brockmann, Sebastian Altmann, Ahmed E Othman","doi":"10.1097/RLI.0000000000001156","DOIUrl":"https://doi.org/10.1097/RLI.0000000000001156","url":null,"abstract":"<p><strong>Objectives: </strong>The aim of this study was to investigate the occurrence of motion artifacts and image quality of brain magnetic resonance imaging (MRI) T1-weighted imaging applying 3D motion correction via the Scout Accelerated Motion Estimation and Reduction (SAMER) framework compared with conventional T1-weighted imaging at 1.5 T.</p><p><strong>Materials and methods: </strong>A preliminary study involving 14 healthy volunteers assessed the impact of the SAMER framework on induced motion during 3 T MRI scans. Participants performed 3 different motion patterns: (1) step up, (2) controlled breathing, and (3) free motion. The patient study included 82 patients who required clinically indicated MRI scans. 3D T1-weighted images (MPRAGE) were acquired at 1.5 T. The MRI data were reconstructed using either regular product reconstruction (non-Moco) or the 3D motion correction SAMER framework (SAMER Moco), resulting in 145 image sequences. For the preliminary and the patient study, 3 experienced radiologists evaluated the image data using a 5-point Likert scale, focusing on overall image quality, artifact presence, diagnostic confidence, delineation of pathology, and image sharpness. Interrater agreement was assessed using Gwet's AC2, and an exploratory analysis (non-Moco vs SAMER Moco) was performed.</p><p><strong>Results: </strong>Compared with non-Moco, the preliminary study demonstrated significant improvements across all imaging parameters and motion patterns with SAMER Moco (P < 0.001). Odds ratios favoring SAMER Moco were >999.999 for freedom of artifact and overall image quality (P < 0.0001). Excellent or good ratings for freedom of artifact were 52.4% with SAMER Moco, compared with 21.4% for non-Moco. Similarly, 66.7% of SAMER Moco images were rated excellent or good for overall image quality versus 21.4% for non-Moco. Multireader interrater agreement was excellent across all parameters.The patient study confirmed that SAMER Moco provided significantly superior image quality across all evaluated imaging parameters, particularly in the presence of motion (P < 0.001). Diagnostic confidence was rated as excellent or good in 95.1% of SAMER Moco cases, compared with 78.1% for non-Moco cases. Similarly, overall image quality was rated as excellent or good in 89.8% of SAMER Moco cases versus 65.9% for non-Moco cases. The odds ratios for diagnostic confidence and for overall image quality were 6.698 and 6.030, respectively, both favoring SAMER Moco (P < 0.0001). Multireader interrater agreement was excellent across all parameters.</p><p><strong>Conclusions: </strong>The application of SAMER in T1-weighted imaging datasets is feasible in clinical routine and significantly increases image quality and diagnostic confidence in 1.5 T brain MRI by effectively reducing motion artifacts.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":""},"PeriodicalIF":7.0,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143023467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-20DOI: 10.1097/RLI.0000000000001148
Kang Wang, Matthew J Middione, Andreas M Loening, Ali B Syed, Ariel J Hannum, Xinzeng Wang, Arnaud Guidon, Patricia Lan, Daniel B Ennis, Ryan L Brunsing
<p><strong>Objectives: </strong>Pancreatic diffusion-weighted imaging (DWI) has numerous clinical applications, but conventional single-shot methods suffer from off resonance-induced artifacts like distortion and blurring while cardiovascular motion-induced phase inconsistency leads to quantitative errors and signal loss, limiting its utility. Multishot DWI (msDWI) offers reduced image distortion and blurring relative to single-shot methods but increases sensitivity to motion artifacts. Motion-compensated diffusion-encoding gradients (MCGs) reduce motion artifacts and could improve motion robustness of msDWI but come with the cost of extended echo time, further reducing signal. Thus, a method that combines msDWI with MCGs while minimizing the echo time penalty and maximizing signal would improve pancreatic DWI. In this work, we combine MCGs generated via convex-optimized diffusion encoding (CODE), which reduces the echo time penalty of motion compensation, with deep learning (DL)-based denoising to address residual signal loss. We hypothesize this method will qualitatively and quantitatively improve msDWI of the pancreas.</p><p><strong>Materials and methods: </strong>This prospective institutional review board-approved study included 22 patients who underwent abdominal MR examinations from August 22, 2022 and May 17, 2023 on 3.0 T scanners. Following informed consent, 2-shot spin-echo echo-planar DWI (b = 0, 800 s/mm2) without (M0) and with (M1) CODE-generated first-order gradient moment nulling was added to their clinical examinations. DL-based denoising was applied to the M1 images (M1 + DL) off-line. ADC maps were reconstructed for all 3 methods. Blinded pair-wise comparisons of b = 800 s/mm2 images were done by 3 subspecialist radiologists. Five metrics were compared: pancreatic boundary delineation, motion artifacts, signal homogeneity, perceived noise, and diagnostic preference. Regions of interest of the pancreatic head, body, and tail were drawn, and mean ADC values were computed. Repeated analysis of variance and post hoc pairwise t test with Bonferroni correction were used for comparing mean ADC values. Bland-Altman analysis compared mean ADC values. Reader preferences were tabulated and compared using Wilcoxon signed rank test with Bonferroni correction and Fleiss κ.</p><p><strong>Results: </strong>M1 was significantly preferred over M0 for perceived motion artifacts and signal homogeneity (P < 0.001). M0 was significantly preferred over M1 for perceived noise (P < 0.001), but DL-based denoising (M1 + DL) reversed this trend and was significantly favored over M0 (P < 0.001). ADC measurements from M0 varied between different regions of the pancreas (P = 0.001), whereas motion correction with M1 and M1 + DL resulted in homogeneous ADC values (P = 0.24), with values similar to those reported for ssDWI with motion correction. ADC values from M0 were significantly higher than M1 in the head (bias 16.6%; P < 0.0001), body (bias 11.0%; P < 0.
{"title":"Motion-Compensated Multishot Pancreatic Diffusion-Weighted Imaging With Deep Learning-Based Denoising.","authors":"Kang Wang, Matthew J Middione, Andreas M Loening, Ali B Syed, Ariel J Hannum, Xinzeng Wang, Arnaud Guidon, Patricia Lan, Daniel B Ennis, Ryan L Brunsing","doi":"10.1097/RLI.0000000000001148","DOIUrl":"https://doi.org/10.1097/RLI.0000000000001148","url":null,"abstract":"<p><strong>Objectives: </strong>Pancreatic diffusion-weighted imaging (DWI) has numerous clinical applications, but conventional single-shot methods suffer from off resonance-induced artifacts like distortion and blurring while cardiovascular motion-induced phase inconsistency leads to quantitative errors and signal loss, limiting its utility. Multishot DWI (msDWI) offers reduced image distortion and blurring relative to single-shot methods but increases sensitivity to motion artifacts. Motion-compensated diffusion-encoding gradients (MCGs) reduce motion artifacts and could improve motion robustness of msDWI but come with the cost of extended echo time, further reducing signal. Thus, a method that combines msDWI with MCGs while minimizing the echo time penalty and maximizing signal would improve pancreatic DWI. In this work, we combine MCGs generated via convex-optimized diffusion encoding (CODE), which reduces the echo time penalty of motion compensation, with deep learning (DL)-based denoising to address residual signal loss. We hypothesize this method will qualitatively and quantitatively improve msDWI of the pancreas.</p><p><strong>Materials and methods: </strong>This prospective institutional review board-approved study included 22 patients who underwent abdominal MR examinations from August 22, 2022 and May 17, 2023 on 3.0 T scanners. Following informed consent, 2-shot spin-echo echo-planar DWI (b = 0, 800 s/mm2) without (M0) and with (M1) CODE-generated first-order gradient moment nulling was added to their clinical examinations. DL-based denoising was applied to the M1 images (M1 + DL) off-line. ADC maps were reconstructed for all 3 methods. Blinded pair-wise comparisons of b = 800 s/mm2 images were done by 3 subspecialist radiologists. Five metrics were compared: pancreatic boundary delineation, motion artifacts, signal homogeneity, perceived noise, and diagnostic preference. Regions of interest of the pancreatic head, body, and tail were drawn, and mean ADC values were computed. Repeated analysis of variance and post hoc pairwise t test with Bonferroni correction were used for comparing mean ADC values. Bland-Altman analysis compared mean ADC values. Reader preferences were tabulated and compared using Wilcoxon signed rank test with Bonferroni correction and Fleiss κ.</p><p><strong>Results: </strong>M1 was significantly preferred over M0 for perceived motion artifacts and signal homogeneity (P < 0.001). M0 was significantly preferred over M1 for perceived noise (P < 0.001), but DL-based denoising (M1 + DL) reversed this trend and was significantly favored over M0 (P < 0.001). ADC measurements from M0 varied between different regions of the pancreas (P = 0.001), whereas motion correction with M1 and M1 + DL resulted in homogeneous ADC values (P = 0.24), with values similar to those reported for ssDWI with motion correction. ADC values from M0 were significantly higher than M1 in the head (bias 16.6%; P < 0.0001), body (bias 11.0%; P < 0.","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":""},"PeriodicalIF":7.0,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143005273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-14DOI: 10.1097/RLI.0000000000001152
Dilyana B Mangarova, Jan O Kaufmann, Julia Brangsch, Avan Kader, Jana Möckel, Jennifer L Heyl, Christine Verlemann, Lisa C Adams, Antje Ludwig, Carolin Reimann, Wolfram C Poller, Peter Niehaus, Uwe Karst, Matthias Taupitz, Bernd Hamm, Michael G Weller, Marcus R Makowski
Introduction: Atherosclerosis is the underlying cause of multiple cardiovascular pathologies. The present-day clinical imaging modalities do not offer sufficient information on plaque composition or rupture risk. A disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4) is a strongly upregulated proteoglycan-cleaving enzyme that is specific to cardiovascular diseases, inter alia, atherosclerosis.
Materials and methods: Male apolipoprotein E-deficient mice received a high-fat diet for 2 (n = 11) or 4 months (n = 11). Additionally, a group (n = 11) receiving pravastatin by drinking water for 4 months alongside the high-fat diet was examined. The control group (n = 10) consisted of C57BL/6J mice on standard chow. Molecular magnetic resonance imaging was performed prior to and after administration of the gadolinium (Gd)-based ADAMTS4-specific probe, followed by ex vivo analyses of the aortic arch, brachiocephalic arteries, and carotid arteries. A P value <0.05 was considered to indicate a statistically significant difference.
Results: With advancing atherosclerosis, a significant increase in the contrast-to-noise ratio was measured after intravenous application of the probe (mean precontrast = 2.25; mean postcontrast = 11.47, P < 0.001 in the 4-month group). The pravastatin group presented decreased ADAMTS4 expression. A strong correlation between ADAMTS4 content measured via immunofluorescence staining and an increase in the contrast-to-noise ratio was detected (R2 = 0.69). Microdissection analysis revealed that ADAMTS4 gene expression in the plaque area was significantly greater than that in the arterial wall of a control mouse (P < 0.001). Laser ablation-inductively coupled plasma-mass spectrometry confirmed strong colocalization of areas positive for ADAMTS4 and Gd.
Conclusions: Magnetic resonance imaging using an ADAMTS4-specific agent is a promising method for characterizing atherosclerotic plaques and could improve plaque assessment in the diagnosis and treatment of atherosclerosis.
{"title":"ADAMTS4-Specific MR Peptide Probe for the Assessment of Atherosclerotic Plaque Burden in a Mouse Model.","authors":"Dilyana B Mangarova, Jan O Kaufmann, Julia Brangsch, Avan Kader, Jana Möckel, Jennifer L Heyl, Christine Verlemann, Lisa C Adams, Antje Ludwig, Carolin Reimann, Wolfram C Poller, Peter Niehaus, Uwe Karst, Matthias Taupitz, Bernd Hamm, Michael G Weller, Marcus R Makowski","doi":"10.1097/RLI.0000000000001152","DOIUrl":"https://doi.org/10.1097/RLI.0000000000001152","url":null,"abstract":"<p><strong>Introduction: </strong>Atherosclerosis is the underlying cause of multiple cardiovascular pathologies. The present-day clinical imaging modalities do not offer sufficient information on plaque composition or rupture risk. A disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4) is a strongly upregulated proteoglycan-cleaving enzyme that is specific to cardiovascular diseases, inter alia, atherosclerosis.</p><p><strong>Materials and methods: </strong>Male apolipoprotein E-deficient mice received a high-fat diet for 2 (n = 11) or 4 months (n = 11). Additionally, a group (n = 11) receiving pravastatin by drinking water for 4 months alongside the high-fat diet was examined. The control group (n = 10) consisted of C57BL/6J mice on standard chow. Molecular magnetic resonance imaging was performed prior to and after administration of the gadolinium (Gd)-based ADAMTS4-specific probe, followed by ex vivo analyses of the aortic arch, brachiocephalic arteries, and carotid arteries. A P value <0.05 was considered to indicate a statistically significant difference.</p><p><strong>Results: </strong>With advancing atherosclerosis, a significant increase in the contrast-to-noise ratio was measured after intravenous application of the probe (mean precontrast = 2.25; mean postcontrast = 11.47, P < 0.001 in the 4-month group). The pravastatin group presented decreased ADAMTS4 expression. A strong correlation between ADAMTS4 content measured via immunofluorescence staining and an increase in the contrast-to-noise ratio was detected (R2 = 0.69). Microdissection analysis revealed that ADAMTS4 gene expression in the plaque area was significantly greater than that in the arterial wall of a control mouse (P < 0.001). Laser ablation-inductively coupled plasma-mass spectrometry confirmed strong colocalization of areas positive for ADAMTS4 and Gd.</p><p><strong>Conclusions: </strong>Magnetic resonance imaging using an ADAMTS4-specific agent is a promising method for characterizing atherosclerotic plaques and could improve plaque assessment in the diagnosis and treatment of atherosclerosis.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":""},"PeriodicalIF":7.0,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142978593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-14DOI: 10.1097/RLI.0000000000001150
Narine Mesropyan, Christoph Katemann, Annerieke Heuvelink-Marck, Can Yüksel, Alexander Isaak, Asadeh Lakghomi, Leon Bischoff, Tatjana Dell, Dmitrij Kravchenko, Daniel Kuetting, Claus C Pieper, Julian A Luetkens
Objectives: Impaired image quality and long scan times frequently occur in respiratory-triggered sequences in liver magnetic resonance imaging (MRI). We evaluated the impact of an in-bore active breathing guidance (BG) application on image quality and scan time of respiratory-triggered T2-weighted (T2) and diffusion-weighted imaging (DWI) by comparing sequences with standard triggering (T2S and DWIS) and with BG (T2BG and DWIBG).
Materials and methods: In this prospective study, random patients with clinical indications for liver MRI underwent 3 T MRI with standard and BG acquisitions. The audiovisual BG application received the respiratory signal from the scanner, and animated breathing instructions were displayed using a mirror and screen behind the MRI bore. Prior to the DWIBG and T2BG acquisition, patients received a short video instruction about MRI with BG. Suitable parameters for desired breathing pattern for T2BG and DWIBG were set individually for each patient based on the patient's physical respiratory ability (ie, 4 seconds breathing followed by 4.5 seconds breath holding). Artifacts, sharpness, lesion conspicuity, and overall image quality were assessed using a Likert scale from 1 (nondiagnostic) to 5 (excellent). Scan time, apparent contrast-to-noise ratio, and apparent signal-to-noise ratio (aSNR) for all sequences were analyzed. Paired t test and Wilcoxon test were used for statistical analysis.
Results: Thirty-two patients (mean age: 55 ± 13 years, 13 female) were included. T2BG showed less artifacts (4.5 ± 0.7 vs 4.1 ± 0.8, P < 0.001) and better sharpness, lesion conspicuity, and overall image quality (eg, overall image quality 4.6 ± 0.7 vs 4.4 ± 0.7, P = 0.004) compared with T2S. DWIBG demonstrated improved image quality in all categories compared with DWIS (eg, overall image quality 4.5 ± 0.5 vs 4.3 ± 0.5, P = 0.005) and less artifacts (4.1 ± 0.5 vs 3.8 ± 0.7, P = 0.007). Scan times of T2BG (286 ± 23 vs 345 ± 68 seconds, P < 0.001) and DWIBG (160 ± 4 vs 252 ± 70 seconds, P < 0.001) were reduced by 17% and 37%, respectively. aSNR and apparent contrast-to-noise ratio (eg, aSNR: 23.45 ± 11.31 [T2BG] vs 25.84 ± 10.76 [T2S]; P = 0.079) were similar for both sequences for both approaches.
Conclusions: Active BG for respiratory-triggered liver T2w and DWI sequences led to significant reduction of breathing artifacts, improved image quality, and shorter scan time compared with standard acquisitions.
目的:在肝脏磁共振成像(MRI)中,呼吸触发序列经常出现图像质量受损和扫描时间长。我们通过比较标准触发(T2S和DWIS)和BG (T2BG和DWIBG)序列,评估了内腔主动呼吸引导(BG)应用对呼吸触发T2加权(T2)和弥散加权成像(DWI)图像质量和扫描时间的影响。材料和方法:在这项前瞻性研究中,随机选取有肝脏MRI临床指征的患者进行3t MRI,并获得标准和BG。视听BG应用程序接收来自扫描仪的呼吸信号,并通过MRI孔后面的镜子和屏幕显示动画呼吸指示。在获得DWIBG和T2BG之前,患者接受了关于BG MRI的简短视频指导。根据患者的身体呼吸能力(即呼吸4秒,屏气4.5秒),分别为T2BG和DWIBG患者设定理想呼吸模式的合适参数。伪影、清晰度、病变显著性和整体图像质量采用李克特评分从1(非诊断性)到5(优秀)进行评估。对所有序列的扫描时间、视噪比和视信噪比进行了分析。采用配对t检验和Wilcoxon检验进行统计分析。结果:纳入32例患者,平均年龄55±13岁,其中女性13例。T2BG与T2S相比,伪影更少(4.5±0.7 vs 4.1±0.8,P < 0.001),图像清晰度、病灶显著性和整体图像质量(4.6±0.7 vs 4.4±0.7,P = 0.004)更好。与DWIS相比,DWIBG在所有类别中都表现出更高的图像质量(例如,总体图像质量为4.5±0.5 vs 4.3±0.5,P = 0.005),伪影更少(4.1±0.5 vs 3.8±0.7,P = 0.007)。T2BG(286±23 vs 345±68秒,P < 0.001)和DWIBG(160±4 vs 252±70秒,P < 0.001)扫描时间分别减少17%和37%。aSNR和视噪比(如aSNR: 23.45±11.31 [T2BG] vs 25.84±10.76 [T2S]);P = 0.079),两种方法的序列相似。结论:与标准采集相比,呼吸触发肝脏T2w和DWI序列的活性BG显著减少了呼吸伪影,提高了图像质量,缩短了扫描时间。
{"title":"Audiovisual Breathing Guidance for Improved Image Quality and Scan Efficiency of T2- and Diffusion-Weighted Liver MRI.","authors":"Narine Mesropyan, Christoph Katemann, Annerieke Heuvelink-Marck, Can Yüksel, Alexander Isaak, Asadeh Lakghomi, Leon Bischoff, Tatjana Dell, Dmitrij Kravchenko, Daniel Kuetting, Claus C Pieper, Julian A Luetkens","doi":"10.1097/RLI.0000000000001150","DOIUrl":"https://doi.org/10.1097/RLI.0000000000001150","url":null,"abstract":"<p><strong>Objectives: </strong>Impaired image quality and long scan times frequently occur in respiratory-triggered sequences in liver magnetic resonance imaging (MRI). We evaluated the impact of an in-bore active breathing guidance (BG) application on image quality and scan time of respiratory-triggered T2-weighted (T2) and diffusion-weighted imaging (DWI) by comparing sequences with standard triggering (T2S and DWIS) and with BG (T2BG and DWIBG).</p><p><strong>Materials and methods: </strong>In this prospective study, random patients with clinical indications for liver MRI underwent 3 T MRI with standard and BG acquisitions. The audiovisual BG application received the respiratory signal from the scanner, and animated breathing instructions were displayed using a mirror and screen behind the MRI bore. Prior to the DWIBG and T2BG acquisition, patients received a short video instruction about MRI with BG. Suitable parameters for desired breathing pattern for T2BG and DWIBG were set individually for each patient based on the patient's physical respiratory ability (ie, 4 seconds breathing followed by 4.5 seconds breath holding). Artifacts, sharpness, lesion conspicuity, and overall image quality were assessed using a Likert scale from 1 (nondiagnostic) to 5 (excellent). Scan time, apparent contrast-to-noise ratio, and apparent signal-to-noise ratio (aSNR) for all sequences were analyzed. Paired t test and Wilcoxon test were used for statistical analysis.</p><p><strong>Results: </strong>Thirty-two patients (mean age: 55 ± 13 years, 13 female) were included. T2BG showed less artifacts (4.5 ± 0.7 vs 4.1 ± 0.8, P < 0.001) and better sharpness, lesion conspicuity, and overall image quality (eg, overall image quality 4.6 ± 0.7 vs 4.4 ± 0.7, P = 0.004) compared with T2S. DWIBG demonstrated improved image quality in all categories compared with DWIS (eg, overall image quality 4.5 ± 0.5 vs 4.3 ± 0.5, P = 0.005) and less artifacts (4.1 ± 0.5 vs 3.8 ± 0.7, P = 0.007). Scan times of T2BG (286 ± 23 vs 345 ± 68 seconds, P < 0.001) and DWIBG (160 ± 4 vs 252 ± 70 seconds, P < 0.001) were reduced by 17% and 37%, respectively. aSNR and apparent contrast-to-noise ratio (eg, aSNR: 23.45 ± 11.31 [T2BG] vs 25.84 ± 10.76 [T2S]; P = 0.079) were similar for both sequences for both approaches.</p><p><strong>Conclusions: </strong>Active BG for respiratory-triggered liver T2w and DWI sequences led to significant reduction of breathing artifacts, improved image quality, and shorter scan time compared with standard acquisitions.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":""},"PeriodicalIF":7.0,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142977747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-03DOI: 10.1097/RLI.0000000000001149
Yannik Christian Layer, Sebastian Faby, Viktor Haase, Bernhard Schmidt, Narine Mesropyan, Patrick A Kupczyk, Alexander Isaak, Tatjana Dell, Julian A Luetkens, Daniel Kuetting
Objectives: The aim of this study was to assess the impact of an iterative metal artifact reduction (iMAR) algorithm combined with virtual monoenergetic images (VMIs) for artifact reduction in photon-counting detector computed tomography (PCDCT) during interventions.
Materials and methods: Using an abdominal phantom, we conducted evaluations on the efficacy of iMAR and VMIs for mitigating image artifacts during interventions on a PCDCT. Four different puncture devices were employed under 2 scan modes (QuantumSn at 100 kV, Quantumplus at 140 kV) to simulate various clinical scenarios. Image reconstructions were initially performed without iMAR and subsequently with iMAR settings. The latter was tested with 7 different metal presets for each case. Furthermore, iMAR-reconstructed images were paired with VMIs at energy levels of 70 keV, 110 keV, 150 keV, and 190 keV. Qualitative assessments were conducted to evaluate image quality, artifact expression, and the emergence of new artifacts using a Likert scale. Image quality was rated on a scale of 1 (nondiagnostic) to 5 (excellent), whereas artifact severity was rated from 0 (none) to 5 (massive). Preferences for specific iMAR presets were documented. Quantitative analysis involved calculating Hounsfield unit (HU) differences between artifact-rich and artifact-free tissues.
Results: Overall, 96 different scanning series were evaluated. The optimal combination for artifact reduction was found to be iMAR neurocoils with VMIs at 150 keV and 190 keV, showcasing the most substantial reduction in artifacts with a median rating of 1 (standard: 4). VMIs at higher keV levels, such as 190 keV, resulted in reduced image quality, as indicated by a median rating of 3 (compared with 70 keV with a median of 5). Newly emerged artifact expression related to reconstructions varied among intervention devices, with iMAR thoracic coils exhibiting the least extent of artifacts (median: 2) and iMAR neurocoils displaying the most pronounced artifacts (median: 4). Qualitative analysis favored the combination of iMAR neurocoils with VMIs at 70 keV, showcasing the best results. Conversely, quantitative analysis revealed that the combination of iMAR neurocoils with VMIs at 190 keV yielded the best results, with an average artifact expression of 20.06 HU (standard: 167.98 HU; P < 0.0001).
Conclusions: The study underscores a substantial reduction in artifacts associated with intervention devices during PCDCT scans through the synergistic application of VMI and iMAR techniques. Specifically, the combination of VMIs at 70 keV with iMAR neurocoils was preferred, leading to enhanced diagnostic assessability of surrounding tissues and target lesions. The study demonstrates the potential of iMAR and VMIs for PCDCT-guided interventions. These advancements could improve accuracy, safety, efficiency, and patient outcomes in clinical practice.
{"title":"Artifact Reduction in Interventional Devices Using Virtual Monoenergetic Images and Iterative Metal Artifact Reduction on Photon-Counting Detector CT.","authors":"Yannik Christian Layer, Sebastian Faby, Viktor Haase, Bernhard Schmidt, Narine Mesropyan, Patrick A Kupczyk, Alexander Isaak, Tatjana Dell, Julian A Luetkens, Daniel Kuetting","doi":"10.1097/RLI.0000000000001149","DOIUrl":"https://doi.org/10.1097/RLI.0000000000001149","url":null,"abstract":"<p><strong>Objectives: </strong>The aim of this study was to assess the impact of an iterative metal artifact reduction (iMAR) algorithm combined with virtual monoenergetic images (VMIs) for artifact reduction in photon-counting detector computed tomography (PCDCT) during interventions.</p><p><strong>Materials and methods: </strong>Using an abdominal phantom, we conducted evaluations on the efficacy of iMAR and VMIs for mitigating image artifacts during interventions on a PCDCT. Four different puncture devices were employed under 2 scan modes (QuantumSn at 100 kV, Quantumplus at 140 kV) to simulate various clinical scenarios. Image reconstructions were initially performed without iMAR and subsequently with iMAR settings. The latter was tested with 7 different metal presets for each case. Furthermore, iMAR-reconstructed images were paired with VMIs at energy levels of 70 keV, 110 keV, 150 keV, and 190 keV. Qualitative assessments were conducted to evaluate image quality, artifact expression, and the emergence of new artifacts using a Likert scale. Image quality was rated on a scale of 1 (nondiagnostic) to 5 (excellent), whereas artifact severity was rated from 0 (none) to 5 (massive). Preferences for specific iMAR presets were documented. Quantitative analysis involved calculating Hounsfield unit (HU) differences between artifact-rich and artifact-free tissues.</p><p><strong>Results: </strong>Overall, 96 different scanning series were evaluated. The optimal combination for artifact reduction was found to be iMAR neurocoils with VMIs at 150 keV and 190 keV, showcasing the most substantial reduction in artifacts with a median rating of 1 (standard: 4). VMIs at higher keV levels, such as 190 keV, resulted in reduced image quality, as indicated by a median rating of 3 (compared with 70 keV with a median of 5). Newly emerged artifact expression related to reconstructions varied among intervention devices, with iMAR thoracic coils exhibiting the least extent of artifacts (median: 2) and iMAR neurocoils displaying the most pronounced artifacts (median: 4). Qualitative analysis favored the combination of iMAR neurocoils with VMIs at 70 keV, showcasing the best results. Conversely, quantitative analysis revealed that the combination of iMAR neurocoils with VMIs at 190 keV yielded the best results, with an average artifact expression of 20.06 HU (standard: 167.98 HU; P < 0.0001).</p><p><strong>Conclusions: </strong>The study underscores a substantial reduction in artifacts associated with intervention devices during PCDCT scans through the synergistic application of VMI and iMAR techniques. Specifically, the combination of VMIs at 70 keV with iMAR neurocoils was preferred, leading to enhanced diagnostic assessability of surrounding tissues and target lesions. The study demonstrates the potential of iMAR and VMIs for PCDCT-guided interventions. These advancements could improve accuracy, safety, efficiency, and patient outcomes in clinical practice.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":""},"PeriodicalIF":7.0,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142921310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-02DOI: 10.1097/RLI.0000000000001123
Matthias Dietzel, Giulia Vatteroni, Pascal A T Baltzer
Objective: This systematic review and meta-analysis investigated the added value of DWI compared with the structured assessment of BI-RADS criteria using the Kaiser score.
Materials and methods: Articles published in English until May 2024 were included. Two independent reviewers extracted data on the characteristics of studies evaluating the added value of DWI to distinguish benign from malignant breast lesions compared with structured assessment of the BI-RADS criteria. Using bivariate random-effects models, the sensitivity and specificity were calculated. I2 statistics, Deek's funnel plot asymmetry test for publication bias, and meta-regression were applied for the data analysis.
Results: Five studies comprising 1005 malignant and 846 benign lesions were eligible for data synthesis. The pooled sensitivity and specificity estimates of structured BI-RADS assessment were 95.7% (95% confidence interval [CI], 92.6%-97.5%) and 68.7% (95% CI, 60.9%-75.6%), respectively. Adding DWI to the structured BI-RADS assessment achieved a pooled sensitivity of 94.4% (95% CI, 90.5%-96.7%) and a pooled specificity of 74.9% (95% CI, 68.8%-80.2%). Adding DWI to the structured BI-RADS assessment significantly changed neither the sensitivity ( P = 0.52) nor the specificity ( P = 0.20).
Conclusions: This systematic review and meta-analysis revealed only a limited, statistically nonsignificant added value of DWI compared with the structured assessment of BI-RADS criteria using the Kaiser score.
{"title":"What Is the Added Value of DWI Compared With Structured Assessment of BI-RADS Criteria by the Kaiser Score? A Systematic Review and Meta-analysis.","authors":"Matthias Dietzel, Giulia Vatteroni, Pascal A T Baltzer","doi":"10.1097/RLI.0000000000001123","DOIUrl":"10.1097/RLI.0000000000001123","url":null,"abstract":"<p><strong>Objective: </strong>This systematic review and meta-analysis investigated the added value of DWI compared with the structured assessment of BI-RADS criteria using the Kaiser score.</p><p><strong>Materials and methods: </strong>Articles published in English until May 2024 were included. Two independent reviewers extracted data on the characteristics of studies evaluating the added value of DWI to distinguish benign from malignant breast lesions compared with structured assessment of the BI-RADS criteria. Using bivariate random-effects models, the sensitivity and specificity were calculated. I2 statistics, Deek's funnel plot asymmetry test for publication bias, and meta-regression were applied for the data analysis.</p><p><strong>Results: </strong>Five studies comprising 1005 malignant and 846 benign lesions were eligible for data synthesis. The pooled sensitivity and specificity estimates of structured BI-RADS assessment were 95.7% (95% confidence interval [CI], 92.6%-97.5%) and 68.7% (95% CI, 60.9%-75.6%), respectively. Adding DWI to the structured BI-RADS assessment achieved a pooled sensitivity of 94.4% (95% CI, 90.5%-96.7%) and a pooled specificity of 74.9% (95% CI, 68.8%-80.2%). Adding DWI to the structured BI-RADS assessment significantly changed neither the sensitivity ( P = 0.52) nor the specificity ( P = 0.20).</p><p><strong>Conclusions: </strong>This systematic review and meta-analysis revealed only a limited, statistically nonsignificant added value of DWI compared with the structured assessment of BI-RADS criteria using the Kaiser score.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":""},"PeriodicalIF":7.0,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142894300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-07-08DOI: 10.1097/RLI.0000000000001100
Min Woo Lee, Seungchul Han, Kyowon Gu, Hyunchul Rhim
Abstract: Local ablation therapy, encompassing radiofrequency ablation (RFA), microwave ablation, and cryoablation, has emerged as a crucial strategy for managing small hepatocellular carcinomas (HCCs), complementing liver resection and transplantation. This review delves into the clinical significance of tumor size, location, and biology in guiding treatment decisions for HCCs undergoing local ablation therapy, with a focus on tumors smaller than 3 cm. Tumor size significantly influences treatment outcomes, with larger tumors associated with poorer local tumor control due to challenges in creating sufficient ablative margins and the likelihood of microvascular invasion and peritumoral satellite nodules. Advanced ablation techniques such as centripetal or no-touch RFA using multiple electrodes, cryoablation using multiple cryoprobes, and microwave ablation offer diverse options for HCC treatment. Notably, no-touch RFA demonstrates superior local tumor control compared with conventional RFA by achieving sufficient ablative margins, making it particularly promising for hepatic dome lesions or tumors with aggressive biology. Laparoscopic RFA proves beneficial for treating anterior subphrenic HCCs, whereas artificial pleural effusion-assisted RFA is effective for controlling posterior subphrenic HCCs. However, surgical resection generally offers better survival outcomes for periportal HCCs compared with RFA. Cryoablation exhibits a lower incidence of vascular or biliary complications than RFA for HCCs adjacent to perivascular or periductal regions. Additionally, aggressive tumor biology, such as microvascular invasion, can be predicted using magnetic resonance imaging findings and serum tumor markers. Aggressive HCC subtypes frequently exhibit Liver Imaging Reporting and Data System M features on magnetic resonance imaging, aiding in prognosis. A comprehensive understanding of tumor size, location, and biology is imperative for optimizing the benefits of local ablation therapy in managing HCCs.
{"title":"Local Ablation Therapy for Hepatocellular Carcinoma: Clinical Significance of Tumor Size, Location, and Biology.","authors":"Min Woo Lee, Seungchul Han, Kyowon Gu, Hyunchul Rhim","doi":"10.1097/RLI.0000000000001100","DOIUrl":"10.1097/RLI.0000000000001100","url":null,"abstract":"<p><strong>Abstract: </strong>Local ablation therapy, encompassing radiofrequency ablation (RFA), microwave ablation, and cryoablation, has emerged as a crucial strategy for managing small hepatocellular carcinomas (HCCs), complementing liver resection and transplantation. This review delves into the clinical significance of tumor size, location, and biology in guiding treatment decisions for HCCs undergoing local ablation therapy, with a focus on tumors smaller than 3 cm. Tumor size significantly influences treatment outcomes, with larger tumors associated with poorer local tumor control due to challenges in creating sufficient ablative margins and the likelihood of microvascular invasion and peritumoral satellite nodules. Advanced ablation techniques such as centripetal or no-touch RFA using multiple electrodes, cryoablation using multiple cryoprobes, and microwave ablation offer diverse options for HCC treatment. Notably, no-touch RFA demonstrates superior local tumor control compared with conventional RFA by achieving sufficient ablative margins, making it particularly promising for hepatic dome lesions or tumors with aggressive biology. Laparoscopic RFA proves beneficial for treating anterior subphrenic HCCs, whereas artificial pleural effusion-assisted RFA is effective for controlling posterior subphrenic HCCs. However, surgical resection generally offers better survival outcomes for periportal HCCs compared with RFA. Cryoablation exhibits a lower incidence of vascular or biliary complications than RFA for HCCs adjacent to perivascular or periductal regions. Additionally, aggressive tumor biology, such as microvascular invasion, can be predicted using magnetic resonance imaging findings and serum tumor markers. Aggressive HCC subtypes frequently exhibit Liver Imaging Reporting and Data System M features on magnetic resonance imaging, aiding in prognosis. A comprehensive understanding of tumor size, location, and biology is imperative for optimizing the benefits of local ablation therapy in managing HCCs.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":"53-59"},"PeriodicalIF":7.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141544828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-08-08DOI: 10.1097/RLI.0000000000001099
Hyungwoo Ahn
Abstract: Bladder cancer (BC) is a significant global health concern, with over 500,000 new cases and 200,000 deaths annually, emphasizing the need for accurate staging and effective management. Traditional diagnostic techniques, such as cystoscopy and transurethral resection, are fundamental but have limitations in accurately assessing the depth of invasion. These limitations include the possibility of understaging and procedural variability, which can significantly impact treatment decisions. This review focuses on the role of multiparametric magnetic resonance imaging (mpMRI) in the diagnosis and staging of BC, particularly emphasizing the Vesical Imaging-Reporting and Data System (VI-RADS) framework. By enhancing interpretive consistency and diagnostic accuracy, mpMRI and VI-RADS offer detailed visualization of tumor characteristics and depth of invasion, while reducing the need for more invasive traditional methods. These advancements not only improve staging accuracy but also enhance treatment planning, underscoring the importance of advanced imaging in evolving BC management and positively influencing patient outcomes.
摘要:膀胱癌(BC)是全球关注的重大健康问题,每年有 50 多万新发病例,20 多万人死亡,因此需要准确的分期和有效的治疗。膀胱镜检查和经尿道切除术等传统诊断技术是基础,但在准确评估侵犯深度方面存在局限性。这些局限性包括分期不足的可能性和手术的可变性,这些都会对治疗决策产生重大影响。本综述重点探讨多参数磁共振成像(mpMRI)在 BC 诊断和分期中的作用,尤其强调膀胱成像报告和数据系统(VI-RADS)框架。通过提高解释一致性和诊断准确性,mpMRI 和 VI-RADS 可详细显示肿瘤特征和浸润深度,同时减少对更具侵入性的传统方法的需求。这些进步不仅提高了分期的准确性,还加强了治疗规划,凸显了先进成像技术在发展 BC 管理和积极影响患者预后方面的重要性。
{"title":"Current Status of Magnetic Resonance Imaging Use in Bladder Cancer.","authors":"Hyungwoo Ahn","doi":"10.1097/RLI.0000000000001099","DOIUrl":"10.1097/RLI.0000000000001099","url":null,"abstract":"<p><strong>Abstract: </strong>Bladder cancer (BC) is a significant global health concern, with over 500,000 new cases and 200,000 deaths annually, emphasizing the need for accurate staging and effective management. Traditional diagnostic techniques, such as cystoscopy and transurethral resection, are fundamental but have limitations in accurately assessing the depth of invasion. These limitations include the possibility of understaging and procedural variability, which can significantly impact treatment decisions. This review focuses on the role of multiparametric magnetic resonance imaging (mpMRI) in the diagnosis and staging of BC, particularly emphasizing the Vesical Imaging-Reporting and Data System (VI-RADS) framework. By enhancing interpretive consistency and diagnostic accuracy, mpMRI and VI-RADS offer detailed visualization of tumor characteristics and depth of invasion, while reducing the need for more invasive traditional methods. These advancements not only improve staging accuracy but also enhance treatment planning, underscoring the importance of advanced imaging in evolving BC management and positively influencing patient outcomes.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":"72-83"},"PeriodicalIF":7.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141901734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}