Objectives: The aim of this study was to compare the performances of photon-counting detector computed tomography (PCD-CT) and energy-integrating detector computed tomography (EID-CT) for visualizing nodules and airways in human cadaveric lungs.
Materials and methods: Previously obtained 20 cadaveric lungs were scanned, and images were prospectively acquired by EID-CT and PCD-CT at a radiation dose with a noise level equivalent to the diagnostic reference level. PCD-CT was scanned with ultra-high-resolution mode. The EID-CT images were reconstructed with a 512 matrix, 0.6-mm thickness, and a 350-mm field of view (FOV). The PCD-CT images were reconstructed at 3 settings: PCD-512: same as EID-CT; PCD-1024-FOV350: 1024 matrix, 0.2-mm thickness, 350-mm FOV; and PCD-1024-FOV50: 1024 matrix, 0.2-mm thickness, 50-mm FOV. Two specimens per lung were examined after hematoxylin and eosin staining. The CT images were evaluated for nodules on a 5-point scale and for airways on a 4-point scale to compare the histology. The Wilcoxon signed rank test with Bonferroni correction was performed for statistical analyses.
Results: Sixty-seven nodules (1321 μm; interquartile range [IQR], 758-3105 μm) and 92 airways (851 μm; IQR, 514-1337 μm) were evaluated. For nodules and airways, scores decreased in order of PCD-1024-FOV50, PCD-1024-FOV350, PCD-512, and EID-CT. Significant differences were observed between series other than PCD-1024-FOV350 versus PCD-1024-FOV50 for nodules (PCD-1024-FOV350 vs PCD-1024-FOV50, P = 0.063; others P < 0.001) and between series other than EID-CT versus PCD-512 for airways (EID-CT vs PCD-512, P = 0.549; others P < 0.005). On PCD-1024-FOV50, the median size of barely detectable nodules was 604 μm (IQR, 469-756 μm) and that of barely detectable airways was 601 μm (IQR, 489-929 μm). On EID-CT, that of barely detectable nodules was 837 μm (IQR, 678-914 μm) and that of barely detectable airways was 1210 μm (IQR, 674-1435 μm).
Conclusions: PCD-CT visualized small nodules and airways better than EID-CT and improved with high spatial resolution and potentially can detect submillimeter nodules and airways.
{"title":"Photon-Counting Detector CT Radiological-Histological Correlation in Cadaveric Human Lung Nodules and Airways.","authors":"Akinori Hata, Masahiro Yanagawa, Keisuke Ninomiya, Noriko Kikuchi, Masako Kurashige, Chiaki Masuda, Tsubasa Yoshida, Daiki Nishigaki, Shuhei Doi, Kazuki Yamagata, Yuriko Yoshida, Ryo Ogawa, Yukiko Tokuda, Eiichi Morii, Noriyuki Tomiyama","doi":"10.1097/RLI.0000000000001117","DOIUrl":"10.1097/RLI.0000000000001117","url":null,"abstract":"<p><strong>Objectives: </strong>The aim of this study was to compare the performances of photon-counting detector computed tomography (PCD-CT) and energy-integrating detector computed tomography (EID-CT) for visualizing nodules and airways in human cadaveric lungs.</p><p><strong>Materials and methods: </strong>Previously obtained 20 cadaveric lungs were scanned, and images were prospectively acquired by EID-CT and PCD-CT at a radiation dose with a noise level equivalent to the diagnostic reference level. PCD-CT was scanned with ultra-high-resolution mode. The EID-CT images were reconstructed with a 512 matrix, 0.6-mm thickness, and a 350-mm field of view (FOV). The PCD-CT images were reconstructed at 3 settings: PCD-512: same as EID-CT; PCD-1024-FOV350: 1024 matrix, 0.2-mm thickness, 350-mm FOV; and PCD-1024-FOV50: 1024 matrix, 0.2-mm thickness, 50-mm FOV. Two specimens per lung were examined after hematoxylin and eosin staining. The CT images were evaluated for nodules on a 5-point scale and for airways on a 4-point scale to compare the histology. The Wilcoxon signed rank test with Bonferroni correction was performed for statistical analyses.</p><p><strong>Results: </strong>Sixty-seven nodules (1321 μm; interquartile range [IQR], 758-3105 μm) and 92 airways (851 μm; IQR, 514-1337 μm) were evaluated. For nodules and airways, scores decreased in order of PCD-1024-FOV50, PCD-1024-FOV350, PCD-512, and EID-CT. Significant differences were observed between series other than PCD-1024-FOV350 versus PCD-1024-FOV50 for nodules (PCD-1024-FOV350 vs PCD-1024-FOV50, P = 0.063; others P < 0.001) and between series other than EID-CT versus PCD-512 for airways (EID-CT vs PCD-512, P = 0.549; others P < 0.005). On PCD-1024-FOV50, the median size of barely detectable nodules was 604 μm (IQR, 469-756 μm) and that of barely detectable airways was 601 μm (IQR, 489-929 μm). On EID-CT, that of barely detectable nodules was 837 μm (IQR, 678-914 μm) and that of barely detectable airways was 1210 μm (IQR, 674-1435 μm).</p><p><strong>Conclusions: </strong>PCD-CT visualized small nodules and airways better than EID-CT and improved with high spatial resolution and potentially can detect submillimeter nodules and airways.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":"151-160"},"PeriodicalIF":7.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142004231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2024-08-20DOI: 10.1097/RLI.0000000000001115
Gustavo R Sarria, Jens Fleckenstein, Miriam Eckl, Florian Stieler, Arne Ruder, Martin Bendszus, Leonard C Schmeel, David Koch, Andreas Feisst, Marco Essig, Frederik Wenz, Frank A Giordano
Purpose: The aim of this study was to assess the effect of gadopiclenol versus gadobenate dimeglumine contrast-enhanced magnetic resonance imaging (MRI) on decision-making between whole-brain radiotherapy (WBRT) and stereotactic radiosurgery (SRS) for treatment of brain metastases (BMs).
Methods: Patients with BMs underwent 2 separate MRI examinations in a double-blind crossover phase IIb comparative study between the MRI contrast agents gadopiclenol and gadobenate dimeglumine, both administered at 0.1 mmol/kg. The imaging data of a single site using identical MRI scanners and protocols were included in this post hoc analysis. Patients with 1 or more BMs in any of both MRIs were subjected to target volume delineation for treatment planning. Two radiation oncologists contoured all visible lesions and decided upon SRS or WBRT, according to the number of metastases. For each patient, SRS or WBRT treatment plans were calculated for both MRIs, considering the gross target volume (GTV) as the contrast-enhancing aspects of the tumor. Mean GTVs and volume of healthy brain exposed to 12 Gy (V 12 ), as well as Dice similarity coefficient scores, were obtained. The Spearman rank (ρ) correlation was additionally calculated for assessing linear differences. Three different expert radiation oncologists blindly rated the contrast enhancement for contouring purposes.
Results: Thirteen adult patients were included. Gadopiclenol depicted additional BM as compared with gadobenate dimeglumine in 7 patients (54%). Of a total of 63 identified metastatic lesions in both MRI sets, 3 subgroups could be defined: A, 48 (24 pairs) detected equal GTVs visible in both modalities; B, 13 GTVs only visible in the gadopiclenol set (mean ± SD, 0.16 ± 0.37 cm 3 ); and C, 2 GTVs only visible in the gadobenate dimeglumine set (mean ± SD, 0.01 ± 0.01). Treatment indication was changed for 2 (15%) patients, 1 from no treatment to SRS and for 1 from SRS to WBRT. The mean GTVs and brain V 12 were comparable between both agents ( P = 0.694, P = 0.974). The mean Dice similarity coefficient was 0.70 ± 0.14 (ρ = 0.82). According to the readers, target volume definition was improved in 63.9% of cases (23 of 36 evaluations) with gadopiclenol and 22.2% with gadobenate dimeglumine (8 of 36), whereas equivalence was obtained in 13.9% (5 of 36).
Conclusions: Gadopiclenol-enhanced MRI improved BM detection and characterization, with a direct impact on radiotherapy treatment decision between WBRT and SRS. Additionally, a more exact target delineation and planning could be performed with gadopiclenol. A prospective evaluation in a larger cohort of patients is required to confirm these findings.
{"title":"Impact of the Novel MRI Contrast Agent Gadopiclenol on Radiotherapy Decision Making in Patients With Brain Metastases.","authors":"Gustavo R Sarria, Jens Fleckenstein, Miriam Eckl, Florian Stieler, Arne Ruder, Martin Bendszus, Leonard C Schmeel, David Koch, Andreas Feisst, Marco Essig, Frederik Wenz, Frank A Giordano","doi":"10.1097/RLI.0000000000001115","DOIUrl":"10.1097/RLI.0000000000001115","url":null,"abstract":"<p><strong>Purpose: </strong>The aim of this study was to assess the effect of gadopiclenol versus gadobenate dimeglumine contrast-enhanced magnetic resonance imaging (MRI) on decision-making between whole-brain radiotherapy (WBRT) and stereotactic radiosurgery (SRS) for treatment of brain metastases (BMs).</p><p><strong>Methods: </strong>Patients with BMs underwent 2 separate MRI examinations in a double-blind crossover phase IIb comparative study between the MRI contrast agents gadopiclenol and gadobenate dimeglumine, both administered at 0.1 mmol/kg. The imaging data of a single site using identical MRI scanners and protocols were included in this post hoc analysis. Patients with 1 or more BMs in any of both MRIs were subjected to target volume delineation for treatment planning. Two radiation oncologists contoured all visible lesions and decided upon SRS or WBRT, according to the number of metastases. For each patient, SRS or WBRT treatment plans were calculated for both MRIs, considering the gross target volume (GTV) as the contrast-enhancing aspects of the tumor. Mean GTVs and volume of healthy brain exposed to 12 Gy (V 12 ), as well as Dice similarity coefficient scores, were obtained. The Spearman rank (ρ) correlation was additionally calculated for assessing linear differences. Three different expert radiation oncologists blindly rated the contrast enhancement for contouring purposes.</p><p><strong>Results: </strong>Thirteen adult patients were included. Gadopiclenol depicted additional BM as compared with gadobenate dimeglumine in 7 patients (54%). Of a total of 63 identified metastatic lesions in both MRI sets, 3 subgroups could be defined: A, 48 (24 pairs) detected equal GTVs visible in both modalities; B, 13 GTVs only visible in the gadopiclenol set (mean ± SD, 0.16 ± 0.37 cm 3 ); and C, 2 GTVs only visible in the gadobenate dimeglumine set (mean ± SD, 0.01 ± 0.01). Treatment indication was changed for 2 (15%) patients, 1 from no treatment to SRS and for 1 from SRS to WBRT. The mean GTVs and brain V 12 were comparable between both agents ( P = 0.694, P = 0.974). The mean Dice similarity coefficient was 0.70 ± 0.14 (ρ = 0.82). According to the readers, target volume definition was improved in 63.9% of cases (23 of 36 evaluations) with gadopiclenol and 22.2% with gadobenate dimeglumine (8 of 36), whereas equivalence was obtained in 13.9% (5 of 36).</p><p><strong>Conclusions: </strong>Gadopiclenol-enhanced MRI improved BM detection and characterization, with a direct impact on radiotherapy treatment decision between WBRT and SRS. Additionally, a more exact target delineation and planning could be performed with gadopiclenol. A prospective evaluation in a larger cohort of patients is required to confirm these findings.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":"138-144"},"PeriodicalIF":7.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142004229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2024-08-12DOI: 10.1097/RLI.0000000000001113
Adrian A Marth, Georg Constantin Feuerriegel, Florian Wanivenhaus, Daniel Nanz, Reto Sutter
Objectives: 7 T magnetic resonance (MR) imaging can offer superior spatial resolution compared with lower field strengths. However, its use for imaging of the lumbosacral plexus has been constrained by technical challenges and therefore remained relatively unexplored. Therefore, this study investigated the feasibility of 7 T MR neurography by means of comparing the visibility of the spinal nerves and image quality to 3 T MR neurography.
Materials and methods: In this monocentric, institutional review board-approved, prospective study, 30 healthy subjects underwent acquisition time-matched 7 T MR neurography and 3 T MR neurography of the lumbar spine using a 3-dimensional dual-echo steady-state sequence. Visibility of the nerve root, dorsal root ganglia, and spinal nerve fascicles of L1-S1, along with image artifacts and overall image quality, were compared between the different field strengths by 2 radiologists using 4-point Likert scales (1 = poor, 4 = excellent). Comparisons between field strengths were made using the Wilcoxon signed rank test, and interobserver agreement was assessed.
Results: 7 T MR neurography enabled significantly improved visualization of the lumbar nerve roots, dorsal root ganglia, and spinal nerve fascicles ( P ≤ 0.002). Compared with 3 T MR neurography, no difference in overall image quality was observed ( P = 0.211), although 7 T MR imaging exhibited significantly increased image artifacts ( P < 0.001). Interobserver agreement (κ) for qualitative measures ranged from 0.71 to 0.88 for 7 T, and from 0.75 to 0.91 for 3 T.
Conclusions: 7 T MR neurography allowed for improved visualization of lumbar spinal nerves, whereas overall image quality was comparable to 3 T MR neurography. This supports the feasibility of 7 T MR neurography of the lumbosacral plexus, even though image artifacts at 7 T were significantly increased.
目的:与较低的磁场强度相比,7 T 磁共振成像具有更高的空间分辨率。然而,将其用于腰骶神经丛成像一直受到技术难题的限制,因此相对来说仍未得到探索。因此,本研究通过比较脊神经的可见度和图像质量与 3 T MR 神经造影,研究 7 T MR 神经造影的可行性:在这项经机构审查委员会批准的单中心前瞻性研究中,30 名健康受试者使用三维双回波稳态序列对腰椎进行了采集时间匹配的 7 T MR 神经影像学检查和 3 T MR 神经影像学检查。两名放射科医生使用 4 点李克特量表(1 = 差,4 = 优)比较了不同场强下 L1-S1 神经根、背根神经节和脊神经束的可见度、图像伪影和整体图像质量。采用 Wilcoxon 符号秩检验对不同场强进行比较,并评估观察者之间的一致性:结果:7 T 磁共振神经成像可显著提高腰神经根、背根神经节和脊神经束的可视性(P ≤ 0.002)。与 3 T MR 神经造影相比,虽然 7 T MR 成像显示的图像伪影明显增加(P < 0.001),但总体图像质量未见差异(P = 0.211)。定性测量的观察者间一致性(κ)为:7 T 0.71 至 0.88,3 T 0.75 至 0.91:结论:7 T MR 神经造影可改善腰椎神经的可视化,而整体图像质量与 3 T MR 神经造影相当。这支持了腰骶丛 7 T 磁共振神经成像的可行性,尽管 7 T 的图像伪影明显增加。
{"title":"7 T Lumbosacral Plexus Neurography: Feasibility and Comparison of Spinal Nerve Visualization With 3 T MRI.","authors":"Adrian A Marth, Georg Constantin Feuerriegel, Florian Wanivenhaus, Daniel Nanz, Reto Sutter","doi":"10.1097/RLI.0000000000001113","DOIUrl":"10.1097/RLI.0000000000001113","url":null,"abstract":"<p><strong>Objectives: </strong>7 T magnetic resonance (MR) imaging can offer superior spatial resolution compared with lower field strengths. However, its use for imaging of the lumbosacral plexus has been constrained by technical challenges and therefore remained relatively unexplored. Therefore, this study investigated the feasibility of 7 T MR neurography by means of comparing the visibility of the spinal nerves and image quality to 3 T MR neurography.</p><p><strong>Materials and methods: </strong>In this monocentric, institutional review board-approved, prospective study, 30 healthy subjects underwent acquisition time-matched 7 T MR neurography and 3 T MR neurography of the lumbar spine using a 3-dimensional dual-echo steady-state sequence. Visibility of the nerve root, dorsal root ganglia, and spinal nerve fascicles of L1-S1, along with image artifacts and overall image quality, were compared between the different field strengths by 2 radiologists using 4-point Likert scales (1 = poor, 4 = excellent). Comparisons between field strengths were made using the Wilcoxon signed rank test, and interobserver agreement was assessed.</p><p><strong>Results: </strong>7 T MR neurography enabled significantly improved visualization of the lumbar nerve roots, dorsal root ganglia, and spinal nerve fascicles ( P ≤ 0.002). Compared with 3 T MR neurography, no difference in overall image quality was observed ( P = 0.211), although 7 T MR imaging exhibited significantly increased image artifacts ( P < 0.001). Interobserver agreement (κ) for qualitative measures ranged from 0.71 to 0.88 for 7 T, and from 0.75 to 0.91 for 3 T.</p><p><strong>Conclusions: </strong>7 T MR neurography allowed for improved visualization of lumbar spinal nerves, whereas overall image quality was comparable to 3 T MR neurography. This supports the feasibility of 7 T MR neurography of the lumbosacral plexus, even though image artifacts at 7 T were significantly increased.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":"145-150"},"PeriodicalIF":7.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142107498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2024-07-25DOI: 10.1097/RLI.0000000000001104
J Peter Marquardt, P Erik Tonnesen, Nathaniel D Mercaldo, Alexander Graur, Brett Allaire, Mary L Bouxsein, Elizabeth J Samelson, Douglas P Kiel, Florian J Fintelmann
Background: Computed tomography (CT) captures the quantity, density, and distribution of subcutaneous and visceral (SAT and VAT) adipose tissue compartments. These metrics may change with age and sex.
Objective: The study aims to provide age-, sex-, and vertebral level-specific reference values for SAT on chest CT and for SAT and VAT on abdomen CT.
Materials and methods: This secondary analysis of an observational study describes SAT and VAT measurements in participants of the Framingham Heart Study without known cancer diagnosis who underwent at least 1 of 2 CT examinations between 2002 and 2011. We used a previously validated machine learning-assisted pipeline and rigorous quality assurance to segment SAT at the fifth, eighth, and tenth thoracic vertebra (T5, T8, T10) and SAT and VAT at the third lumbar vertebra (L3). For each metric, we measured cross-sectional area (cm 2 ) and mean attenuation (Hounsfield units [HU]) and calculated index (area/height 2 ) (cm 2 /m 2 ) and gauge (attenuation × index) (HU × cm 2 /m 2 ). We summarized body composition metrics by age and sex and modeled sex-, age-, and vertebral level-specific reference curves.
Results: We included 14,898 single-level measurements from up to 4 vertebral levels of 3797 scans of 3730 Framingham Heart Study participants (1889 [51%] male with a mean [standard deviation] age of 55.6 ± 10.6 years; range, 38-81 years). The mean VAT index increased with age from 65 (cm 2 /m 2 ) in males and 29 (cm 2 /m 2 ) in females in the <45-year-old age group to 99 (cm 2 /m 2 ) in males and 60 (cm 2 /m 2 ) in females in >75-year-old age group. The increase of SAT with age was less pronounced, resulting in the VAT/SAT ratio increasing with age. A free R package and online interactive visual web interface allow access to reference values.
Conclusions: This study establishes age-, sex-, and vertebral level-specific reference values for CT-assessed SAT at vertebral levels T5, T8, T10, and L3 and VAT at vertebral level L3.
背景:计算机断层扫描(CT)可捕捉皮下和内脏脂肪组织(SAT 和 VAT)的数量、密度和分布。这些指标可能会随着年龄和性别的变化而变化:研究旨在为胸部 CT 的 SAT 以及腹部 CT 的 SAT 和 VAT 提供特定年龄、性别和脊椎水平的参考值:这项观察性研究的二次分析描述了弗莱明汉心脏研究参与者的 SAT 和 VAT 测量结果,这些参与者在 2002 年至 2011 年间至少接受了 2 次 CT 检查中的 1 次,且未确诊癌症。我们使用先前验证过的机器学习辅助管道和严格的质量保证来分割第五、第八和第十胸椎(T5、T8 和 T10)的 SAT 以及第三腰椎(L3)的 SAT 和 VAT。对于每项指标,我们都测量了横截面积(cm2)和平均衰减(Hounsfield 单位 [HU]),并计算了指数(面积/身高2)(cm2/m2)和测量值(衰减×指数)(HU ×cm2/m2)。我们按年龄和性别总结了身体成分指标,并建立了性别、年龄和椎体水平特异性参考曲线模型:我们纳入了对 3730 名弗雷明汉心脏研究参与者(1889 名[51%]男性,平均[标准差]年龄为 55.6 ± 10.6 岁;范围为 38-81 岁)的 3797 次扫描中最多 4 个椎体水平的 14898 次单层次测量结果。随着年龄的增长,75 岁年龄组男性的平均 VAT 指数从 65(cm2/m2)增加到 29(cm2/m2)。而 SAT 随年龄的增长则不太明显,导致 VAT/SAT 比值随年龄增长而增加。通过免费的 R 软件包和在线交互式可视化网络界面,可以获得参考值:本研究为椎体 T5、T8、T10 和 L3 水平的 CT 评估 SAT 和椎体 L3 水平的 VAT 确定了年龄、性别和椎体水平特异性参考值。
{"title":"Subcutaneous and Visceral Adipose Tissue Reference Values From the Framingham Heart Study Thoracic and Abdominal CT.","authors":"J Peter Marquardt, P Erik Tonnesen, Nathaniel D Mercaldo, Alexander Graur, Brett Allaire, Mary L Bouxsein, Elizabeth J Samelson, Douglas P Kiel, Florian J Fintelmann","doi":"10.1097/RLI.0000000000001104","DOIUrl":"10.1097/RLI.0000000000001104","url":null,"abstract":"<p><strong>Background: </strong>Computed tomography (CT) captures the quantity, density, and distribution of subcutaneous and visceral (SAT and VAT) adipose tissue compartments. These metrics may change with age and sex.</p><p><strong>Objective: </strong>The study aims to provide age-, sex-, and vertebral level-specific reference values for SAT on chest CT and for SAT and VAT on abdomen CT.</p><p><strong>Materials and methods: </strong>This secondary analysis of an observational study describes SAT and VAT measurements in participants of the Framingham Heart Study without known cancer diagnosis who underwent at least 1 of 2 CT examinations between 2002 and 2011. We used a previously validated machine learning-assisted pipeline and rigorous quality assurance to segment SAT at the fifth, eighth, and tenth thoracic vertebra (T5, T8, T10) and SAT and VAT at the third lumbar vertebra (L3). For each metric, we measured cross-sectional area (cm 2 ) and mean attenuation (Hounsfield units [HU]) and calculated index (area/height 2 ) (cm 2 /m 2 ) and gauge (attenuation × index) (HU × cm 2 /m 2 ). We summarized body composition metrics by age and sex and modeled sex-, age-, and vertebral level-specific reference curves.</p><p><strong>Results: </strong>We included 14,898 single-level measurements from up to 4 vertebral levels of 3797 scans of 3730 Framingham Heart Study participants (1889 [51%] male with a mean [standard deviation] age of 55.6 ± 10.6 years; range, 38-81 years). The mean VAT index increased with age from 65 (cm 2 /m 2 ) in males and 29 (cm 2 /m 2 ) in females in the <45-year-old age group to 99 (cm 2 /m 2 ) in males and 60 (cm 2 /m 2 ) in females in >75-year-old age group. The increase of SAT with age was less pronounced, resulting in the VAT/SAT ratio increasing with age. A free R package and online interactive visual web interface allow access to reference values.</p><p><strong>Conclusions: </strong>This study establishes age-, sex-, and vertebral level-specific reference values for CT-assessed SAT at vertebral levels T5, T8, T10, and L3 and VAT at vertebral level L3.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":"95-104"},"PeriodicalIF":7.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141758714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-28DOI: 10.1097/RLI.0000000000001151
Tae Young Lee, Jeong Hee Yoon, Jin Young Park, So Hyun Park, HeeSoo Kim, Chul-Min Lee, Yunhee Choi, Jeong Min Lee
Objective: The aim of this study was to intraindividually compare the conspicuity of focal liver lesions (FLLs) between low- and ultra-low-dose computed tomography (CT) with deep learning reconstruction (DLR) and standard-dose CT with model-based iterative reconstruction (MBIR) from a single CT using dual-split scan in patients with suspected liver metastasis via a noninferiority design.
Materials and methods: This prospective study enrolled participants who met the eligibility criteria at 2 tertiary hospitals in South Korea from June 2022 to January 2023. The criteria included (a) being aged between 20 and 85 years and (b) having suspected or known liver metastases. Dual-source CT scans were conducted, with the standard radiation dose divided in a 2:1 ratio between tubes A and B (67% and 33%, respectively). The voltage settings of 100/120 kVp were selected based on the participant's body mass index (<30 vs ≥30 kg/m2). For image reconstruction, MBIR was utilized for standard-dose (100%) images, whereas DLR was employed for both low-dose (67%) and ultra-low-dose (33%) images. Three radiologists independently evaluated FLL conspicuity, the probability of metastasis, and subjective image quality using a 5-point Likert scale, in addition to quantitative signal-to-noise and contrast-to-noise ratios. The noninferiority margins were set at -0.5 for conspicuity and -0.1 for detection.
Results: One hundred thirty-three participants (male = 58, mean body mass index = 23.0 ± 3.4 kg/m2) were included in the analysis. The low- and ultra-low- dose had a lower radiation dose than the standard-dose (median CT dose index volume: 3.75, 1.87 vs 5.62 mGy, respectively, in the arterial phase; 3.89, 1.95 vs 5.84 in the portal venous phase, P < 0.001 for all). Median FLL conspicuity was lower in the low- and ultra-low-dose scans compared with the standard-dose (3.0 [interquartile range, IQR: 2.0, 4.0], 3.0 [IQR: 1.0, 4.0] vs 3.0 [IQR: 2.0, 4.0] in the arterial phase; 4.0 [IQR: 1.0, 5.0], 3.0 [IQR: 1.0, 4.0] vs 4.0 [IQR: 2.0, 5.0] in the portal venous phases), yet within the noninferiority margin (P < 0.001 for all). FLL detection was also lower but remained within the margin (lesion detection rate: 0.772 [95% confidence interval, CI: 0.727, 0.812], 0.754 [0.708, 0.795], respectively) compared with the standard-dose (0.810 [95% CI: 0.770, 0.844]). Sensitivity for liver metastasis differed between the standard- (80.6% [95% CI: 76.0, 84.5]), low-, and ultra-low-doses (75.7% [95% CI: 70.2, 80.5], 73.7 [95% CI: 68.3, 78.5], respectively, P < 0.001 for both), whereas specificity was similar (P > 0.05).
Conclusions: Low- and ultra-low-dose CT with DLR showed noninferior FLL conspicuity and detection compared with standard-dose CT with MBIR. Caution is needed due to a potential decrease in sensitivity for metastasis (clinicaltrials.gov/ NCT05324046).
{"title":"Intraindividual Comparison of Image Quality Between Low-Dose and Ultra-Low-Dose Abdominal CT With Deep Learning Reconstruction and Standard-Dose Abdominal CT Using Dual-Split Scan.","authors":"Tae Young Lee, Jeong Hee Yoon, Jin Young Park, So Hyun Park, HeeSoo Kim, Chul-Min Lee, Yunhee Choi, Jeong Min Lee","doi":"10.1097/RLI.0000000000001151","DOIUrl":"https://doi.org/10.1097/RLI.0000000000001151","url":null,"abstract":"<p><strong>Objective: </strong>The aim of this study was to intraindividually compare the conspicuity of focal liver lesions (FLLs) between low- and ultra-low-dose computed tomography (CT) with deep learning reconstruction (DLR) and standard-dose CT with model-based iterative reconstruction (MBIR) from a single CT using dual-split scan in patients with suspected liver metastasis via a noninferiority design.</p><p><strong>Materials and methods: </strong>This prospective study enrolled participants who met the eligibility criteria at 2 tertiary hospitals in South Korea from June 2022 to January 2023. The criteria included (a) being aged between 20 and 85 years and (b) having suspected or known liver metastases. Dual-source CT scans were conducted, with the standard radiation dose divided in a 2:1 ratio between tubes A and B (67% and 33%, respectively). The voltage settings of 100/120 kVp were selected based on the participant's body mass index (<30 vs ≥30 kg/m2). For image reconstruction, MBIR was utilized for standard-dose (100%) images, whereas DLR was employed for both low-dose (67%) and ultra-low-dose (33%) images. Three radiologists independently evaluated FLL conspicuity, the probability of metastasis, and subjective image quality using a 5-point Likert scale, in addition to quantitative signal-to-noise and contrast-to-noise ratios. The noninferiority margins were set at -0.5 for conspicuity and -0.1 for detection.</p><p><strong>Results: </strong>One hundred thirty-three participants (male = 58, mean body mass index = 23.0 ± 3.4 kg/m2) were included in the analysis. The low- and ultra-low- dose had a lower radiation dose than the standard-dose (median CT dose index volume: 3.75, 1.87 vs 5.62 mGy, respectively, in the arterial phase; 3.89, 1.95 vs 5.84 in the portal venous phase, P < 0.001 for all). Median FLL conspicuity was lower in the low- and ultra-low-dose scans compared with the standard-dose (3.0 [interquartile range, IQR: 2.0, 4.0], 3.0 [IQR: 1.0, 4.0] vs 3.0 [IQR: 2.0, 4.0] in the arterial phase; 4.0 [IQR: 1.0, 5.0], 3.0 [IQR: 1.0, 4.0] vs 4.0 [IQR: 2.0, 5.0] in the portal venous phases), yet within the noninferiority margin (P < 0.001 for all). FLL detection was also lower but remained within the margin (lesion detection rate: 0.772 [95% confidence interval, CI: 0.727, 0.812], 0.754 [0.708, 0.795], respectively) compared with the standard-dose (0.810 [95% CI: 0.770, 0.844]). Sensitivity for liver metastasis differed between the standard- (80.6% [95% CI: 76.0, 84.5]), low-, and ultra-low-doses (75.7% [95% CI: 70.2, 80.5], 73.7 [95% CI: 68.3, 78.5], respectively, P < 0.001 for both), whereas specificity was similar (P > 0.05).</p><p><strong>Conclusions: </strong>Low- and ultra-low-dose CT with DLR showed noninferior FLL conspicuity and detection compared with standard-dose CT with MBIR. Caution is needed due to a potential decrease in sensitivity for metastasis (clinicaltrials.gov/ NCT05324046).</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":""},"PeriodicalIF":7.0,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143058900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-24DOI: 10.1097/RLI.0000000000001154
Julius F Heidenreich, Sheena Y Chu, Jan-Peter Grunz, Jitka Starekova, Prashant Nagpal, Scott B Reeder, Thomas M Grist
Rationale and objectives: Pulmonary magnetic resonance angiography (MRA) is an imaging method with proven utility for the exclusion of pulmonary embolism and avoids the need for ionizing radiation and iodinated contrast agents. High-relaxivity gadolinium-based contrast agents (GBCAs), such as gadopiclenol, can be used to reduce the required gadolinium dose for pulmonary MRA. The aim of this study was to compare the contrast enhancement performance of gadopiclenol with an established gadobenate dimeglumine-enhanced pulmonary MRA protocol.
Materials and methods: In this retrospective single-center study, data from 152 patients who underwent pulmonary MRA at 1.5 T were analyzed. Imaging was performed with either 0.05 mmol/kg gadopiclenol (n = 75) or 0.1 mmol/kg gadobenate dimeglumine (n = 77), using dedicated multiphasic imaging protocols with precontrast, pulmonary arterial phase, immediate delayed phase, and a low flip-angle T1-weighted spoiled gradient echo acquisition. Subjective image quality evaluation was performed blinded by 2 radiologists on a 5-point Likert scale. For the estimation of interrater reliability, Cohen weighted κ was calculated. For semiquantitative assessment, signal intensities were measured in the pulmonary arteries, and relative signal enhancement was calculated. Data from groups were compared with Mann-Whitney U tests using Bonferroni corrections.
Results: Signal enhancement relative to precontrast in the first-pass pulmonary arterial phase was higher with 0.05 mmol/kg gadopiclenol compared with 0.1 mmol/kg gadobenate dimeglumine (20.0-fold ± 5.6-fold vs 17.8-fold ± 5.8-fold; P = 0.015). Readers observed no difference in subjective rating in terms of intravascular contrast, peripheral vessel depiction, and diagnostic confidence with substantial interrater reliability (Cohen κ = 0.73 [95% confidence interval: 0.57-0.89], 0.65 [0.55-0.75], and 0.74 [0.65-0.84], all P's < 0.001). No severe adverse events were recorded for any clinical MRA examination.
Conclusions: The high-relaxivity contrast agent gadopiclenol can facilitate a reduction in gadolinium dose by 50% without compromising contrast enhancement for pulmonary MRA. This approach may enhance the safety and sustainability of pulmonary MRA in the long term.
{"title":"Gadopiclenol Enables Reduced Gadolinium Dose While Maintaining Quality of Pulmonary Arterial Enhancement for Pulmonary MRA: An Opportunity for Improved Safety and Sustainability.","authors":"Julius F Heidenreich, Sheena Y Chu, Jan-Peter Grunz, Jitka Starekova, Prashant Nagpal, Scott B Reeder, Thomas M Grist","doi":"10.1097/RLI.0000000000001154","DOIUrl":"https://doi.org/10.1097/RLI.0000000000001154","url":null,"abstract":"<p><strong>Rationale and objectives: </strong>Pulmonary magnetic resonance angiography (MRA) is an imaging method with proven utility for the exclusion of pulmonary embolism and avoids the need for ionizing radiation and iodinated contrast agents. High-relaxivity gadolinium-based contrast agents (GBCAs), such as gadopiclenol, can be used to reduce the required gadolinium dose for pulmonary MRA. The aim of this study was to compare the contrast enhancement performance of gadopiclenol with an established gadobenate dimeglumine-enhanced pulmonary MRA protocol.</p><p><strong>Materials and methods: </strong>In this retrospective single-center study, data from 152 patients who underwent pulmonary MRA at 1.5 T were analyzed. Imaging was performed with either 0.05 mmol/kg gadopiclenol (n = 75) or 0.1 mmol/kg gadobenate dimeglumine (n = 77), using dedicated multiphasic imaging protocols with precontrast, pulmonary arterial phase, immediate delayed phase, and a low flip-angle T1-weighted spoiled gradient echo acquisition. Subjective image quality evaluation was performed blinded by 2 radiologists on a 5-point Likert scale. For the estimation of interrater reliability, Cohen weighted κ was calculated. For semiquantitative assessment, signal intensities were measured in the pulmonary arteries, and relative signal enhancement was calculated. Data from groups were compared with Mann-Whitney U tests using Bonferroni corrections.</p><p><strong>Results: </strong>Signal enhancement relative to precontrast in the first-pass pulmonary arterial phase was higher with 0.05 mmol/kg gadopiclenol compared with 0.1 mmol/kg gadobenate dimeglumine (20.0-fold ± 5.6-fold vs 17.8-fold ± 5.8-fold; P = 0.015). Readers observed no difference in subjective rating in terms of intravascular contrast, peripheral vessel depiction, and diagnostic confidence with substantial interrater reliability (Cohen κ = 0.73 [95% confidence interval: 0.57-0.89], 0.65 [0.55-0.75], and 0.74 [0.65-0.84], all P's < 0.001). No severe adverse events were recorded for any clinical MRA examination.</p><p><strong>Conclusions: </strong>The high-relaxivity contrast agent gadopiclenol can facilitate a reduction in gadolinium dose by 50% without compromising contrast enhancement for pulmonary MRA. This approach may enhance the safety and sustainability of pulmonary MRA in the long term.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":""},"PeriodicalIF":7.0,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143028719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-23DOI: 10.1097/RLI.0000000000001155
Cherry Kim, Chohee Kim, Bum Sik Tae, Do-Young Kwon, Young Hen Lee
Objectives: This study aimed to investigate the association between the use of linear and macrocyclic gadolinium-based contrast agents (GBCAs) and the subsequent development of Parkinson disease (PD).
Methods: In this retrospective cohort study, data were extracted from the Korean National Health Insurance Service database, comprising 1,038,439 individuals. From this population, 175,125 adults aged 40 to 60 years with no history of brain disease were identified. All patients including 3835 who were administered GBCA at least once were monitored until 2022 for the onset of PD. Propensity score (PS) matching was employed to compare the incidence of PD between those exposed to GBCAs (either linear or macrocyclic) and those not exposed (no-GBCA group).
Results: The final cohort consisted of 1175 subjects exposed to linear GBCAs, 2334 exposed to macrocyclic GBCAs, and 171,616 unexposed to any GBCA (no-GBCA group). After PS matching, PD incidence was significantly higher in the linear GBCA group compared with the no-GBCA group (0.9% vs 0.0%, P = 0.002) and was also significantly higher in the macrocyclic GBCA group than in the no-GBCA group (0.5% vs 0.04%, P = 0.003). No significant difference in PD incidence was observed between the linear and macrocyclic GBCA groups.
Conclusions: Exposure to GBCAs was linked to an increased risk of developing PD in this large population-based study. The risk of PD did not differ significantly between linear and macrocyclic GBCAs.
目的:本研究旨在探讨线性和大环钆造影剂(gbca)的使用与帕金森病(PD)的后续发展之间的关系。方法:在这项回顾性队列研究中,数据从韩国国民健康保险服务数据库中提取,包括1,038,439人。从这一人群中,确定了175,125名年龄在40至60岁之间没有脑部疾病史的成年人。包括3835名至少接受过一次GBCA治疗的患者在内的所有患者都被监测到2022年PD发病情况。采用倾向评分(PS)匹配来比较暴露于gbca(线性或大环)和未暴露于gbca组(无gbca组)的PD发生率。结果:最终队列包括1175名暴露于线性GBCA的受试者,2334名暴露于大环GBCA的受试者,以及171616名未暴露于任何GBCA的受试者(无GBCA组)。PS匹配后,线性GBCA组PD发病率显著高于无GBCA组(0.9% vs 0.0%, P = 0.002),大环GBCA组PD发病率也显著高于无GBCA组(0.5% vs 0.04%, P = 0.003)。线性和大环GBCA组之间PD发生率无显著差异。结论:在这项以人群为基础的大型研究中,暴露于gbca与患PD的风险增加有关。线性和大环gbca之间PD的风险没有显著差异。
{"title":"Assessing the Association Between Gadolinium-Based Contrast Agents and Parkinson Disease: Insights From the Korean National Health Insurance Service Database.","authors":"Cherry Kim, Chohee Kim, Bum Sik Tae, Do-Young Kwon, Young Hen Lee","doi":"10.1097/RLI.0000000000001155","DOIUrl":"https://doi.org/10.1097/RLI.0000000000001155","url":null,"abstract":"<p><strong>Objectives: </strong>This study aimed to investigate the association between the use of linear and macrocyclic gadolinium-based contrast agents (GBCAs) and the subsequent development of Parkinson disease (PD).</p><p><strong>Methods: </strong>In this retrospective cohort study, data were extracted from the Korean National Health Insurance Service database, comprising 1,038,439 individuals. From this population, 175,125 adults aged 40 to 60 years with no history of brain disease were identified. All patients including 3835 who were administered GBCA at least once were monitored until 2022 for the onset of PD. Propensity score (PS) matching was employed to compare the incidence of PD between those exposed to GBCAs (either linear or macrocyclic) and those not exposed (no-GBCA group).</p><p><strong>Results: </strong>The final cohort consisted of 1175 subjects exposed to linear GBCAs, 2334 exposed to macrocyclic GBCAs, and 171,616 unexposed to any GBCA (no-GBCA group). After PS matching, PD incidence was significantly higher in the linear GBCA group compared with the no-GBCA group (0.9% vs 0.0%, P = 0.002) and was also significantly higher in the macrocyclic GBCA group than in the no-GBCA group (0.5% vs 0.04%, P = 0.003). No significant difference in PD incidence was observed between the linear and macrocyclic GBCA groups.</p><p><strong>Conclusions: </strong>Exposure to GBCAs was linked to an increased risk of developing PD in this large population-based study. The risk of PD did not differ significantly between linear and macrocyclic GBCAs.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":""},"PeriodicalIF":7.0,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143005251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-22DOI: 10.1097/RLI.0000000000001153
Mueez Aizaz, Juul Bierens, Marion J J Gijbels, Tobien H C M L Schreuder, Narender P van Orshoven, Jan-Willem H C Daemen, Werner H Mess, Thomas Flohr, Robert J van Oostenbrugge, Alida A Postma, M Eline Kooi
Objectives: Carotid plaque vulnerability is a strong predictor of recurrent ipsilateral stroke, but differentiation of plaque components using conventional computed tomography (CT) is suboptimal. The aim of our study was to evaluate the ability of dual-energy CT (DECT) to characterize atherosclerotic carotid plaque components based on the effective atomic number and effective electron density using magnetic resonance imaging (MRI) and, where possible, histology as the reference standard.
Materials and methods: Patients with recent cerebral ischemia and a ≥2-mm carotid plaque underwent computed tomography angiography and MRI. A subgroup underwent carotid endarterectomy. Trained observers delineated plaque components on histology or MRI, independent of computed tomography angiography. DECT was coregistered with MRI and/or histology. Intraplaque hemorrhage (IPH), lipid-rich necrotic core (LRNC), fibrous tissue, and calcifications were delineated on DECT, and ρeff and Zeff values were determined in the derivation cohort (n = 55). Spatial separation of these components was evaluated in a ρeff-Zeff-cluster plot. Ranges that optimally differentiate plaque features were determined. For validation, plaque components were quantified in the validation cohort (n = 29) using these ρeff-Zeff ranges and literature-based Hounsfield unit (HU) ranges and correlated to MRI volumes.
Results: Eighty-four participants (68 ± 8 years; 55 male) were evaluated. In the derivation cohort, plaque components were well separated on the cluster plot, resulting in the following ranges: IPH:ρeff < 1.15, Zeff < 7.5, LRNC:ρeff < 1.15, Zeff:7.5-8.75, fibrous tissue:ρeff < 1.15, Zeff > 8.75, and calcifications: ρeff > 1.15, Zeff > 0. In the validation cohort, significant correlations were found between ρeff-Zeff-based and MRI plaque volumes for fibrous tissue (r = 0.69, P < 0.001), LRNC (r = 0.94, P < 0.001), IPH (r = 0.35, P = 0.03), and calcifications (r = 0.70, P < 0.001). Lower correlations were found between HU-based and MRI plaque volumes for fibrous tissue (r = 0.40, P = 0.02), LRNC (r = 0.86, P < 0.001), and calcifications (r = 0.47, P = 0.005), with no correlation for IPH (r = 0.02, P = 0.45).
Conclusions: We determined ρeff-Zeff ranges for plaque assessment. ρeff-Zeff-based volumes showed strong-to-very strong correlations with MRI for LRNC, fibrous tissue, and calcifications and a weak correlation for IPH. ρeff-Zeff-based volumes demonstrated superior agreement with MRI for all plaque components compared with HU-based volumes, highlighting the potential of DECT for the identification of patients with vulnerable plaques.
{"title":"Differentiation of Atherosclerotic Carotid Plaque Components With Dual-Energy Computed Tomography.","authors":"Mueez Aizaz, Juul Bierens, Marion J J Gijbels, Tobien H C M L Schreuder, Narender P van Orshoven, Jan-Willem H C Daemen, Werner H Mess, Thomas Flohr, Robert J van Oostenbrugge, Alida A Postma, M Eline Kooi","doi":"10.1097/RLI.0000000000001153","DOIUrl":"https://doi.org/10.1097/RLI.0000000000001153","url":null,"abstract":"<p><strong>Objectives: </strong>Carotid plaque vulnerability is a strong predictor of recurrent ipsilateral stroke, but differentiation of plaque components using conventional computed tomography (CT) is suboptimal. The aim of our study was to evaluate the ability of dual-energy CT (DECT) to characterize atherosclerotic carotid plaque components based on the effective atomic number and effective electron density using magnetic resonance imaging (MRI) and, where possible, histology as the reference standard.</p><p><strong>Materials and methods: </strong>Patients with recent cerebral ischemia and a ≥2-mm carotid plaque underwent computed tomography angiography and MRI. A subgroup underwent carotid endarterectomy. Trained observers delineated plaque components on histology or MRI, independent of computed tomography angiography. DECT was coregistered with MRI and/or histology. Intraplaque hemorrhage (IPH), lipid-rich necrotic core (LRNC), fibrous tissue, and calcifications were delineated on DECT, and ρeff and Zeff values were determined in the derivation cohort (n = 55). Spatial separation of these components was evaluated in a ρeff-Zeff-cluster plot. Ranges that optimally differentiate plaque features were determined. For validation, plaque components were quantified in the validation cohort (n = 29) using these ρeff-Zeff ranges and literature-based Hounsfield unit (HU) ranges and correlated to MRI volumes.</p><p><strong>Results: </strong>Eighty-four participants (68 ± 8 years; 55 male) were evaluated. In the derivation cohort, plaque components were well separated on the cluster plot, resulting in the following ranges: IPH:ρeff < 1.15, Zeff < 7.5, LRNC:ρeff < 1.15, Zeff:7.5-8.75, fibrous tissue:ρeff < 1.15, Zeff > 8.75, and calcifications: ρeff > 1.15, Zeff > 0. In the validation cohort, significant correlations were found between ρeff-Zeff-based and MRI plaque volumes for fibrous tissue (r = 0.69, P < 0.001), LRNC (r = 0.94, P < 0.001), IPH (r = 0.35, P = 0.03), and calcifications (r = 0.70, P < 0.001). Lower correlations were found between HU-based and MRI plaque volumes for fibrous tissue (r = 0.40, P = 0.02), LRNC (r = 0.86, P < 0.001), and calcifications (r = 0.47, P = 0.005), with no correlation for IPH (r = 0.02, P = 0.45).</p><p><strong>Conclusions: </strong>We determined ρeff-Zeff ranges for plaque assessment. ρeff-Zeff-based volumes showed strong-to-very strong correlations with MRI for LRNC, fibrous tissue, and calcifications and a weak correlation for IPH. ρeff-Zeff-based volumes demonstrated superior agreement with MRI for all plaque components compared with HU-based volumes, highlighting the potential of DECT for the identification of patients with vulnerable plaques.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":""},"PeriodicalIF":7.0,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143005256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-22DOI: 10.1097/RLI.0000000000001156
Laura S Leukert, Katya Hoffmannbeck Heitkötter, Andrea Kronfeld, Roman H Paul, Daniel Polak, Daniel Nicolas Splitthoff, Marc A Brockmann, Sebastian Altmann, Ahmed E Othman
Objectives: The aim of this study was to investigate the occurrence of motion artifacts and image quality of brain magnetic resonance imaging (MRI) T1-weighted imaging applying 3D motion correction via the Scout Accelerated Motion Estimation and Reduction (SAMER) framework compared with conventional T1-weighted imaging at 1.5 T.
Materials and methods: A preliminary study involving 14 healthy volunteers assessed the impact of the SAMER framework on induced motion during 3 T MRI scans. Participants performed 3 different motion patterns: (1) step up, (2) controlled breathing, and (3) free motion. The patient study included 82 patients who required clinically indicated MRI scans. 3D T1-weighted images (MPRAGE) were acquired at 1.5 T. The MRI data were reconstructed using either regular product reconstruction (non-Moco) or the 3D motion correction SAMER framework (SAMER Moco), resulting in 145 image sequences. For the preliminary and the patient study, 3 experienced radiologists evaluated the image data using a 5-point Likert scale, focusing on overall image quality, artifact presence, diagnostic confidence, delineation of pathology, and image sharpness. Interrater agreement was assessed using Gwet's AC2, and an exploratory analysis (non-Moco vs SAMER Moco) was performed.
Results: Compared with non-Moco, the preliminary study demonstrated significant improvements across all imaging parameters and motion patterns with SAMER Moco (P < 0.001). Odds ratios favoring SAMER Moco were >999.999 for freedom of artifact and overall image quality (P < 0.0001). Excellent or good ratings for freedom of artifact were 52.4% with SAMER Moco, compared with 21.4% for non-Moco. Similarly, 66.7% of SAMER Moco images were rated excellent or good for overall image quality versus 21.4% for non-Moco. Multireader interrater agreement was excellent across all parameters.The patient study confirmed that SAMER Moco provided significantly superior image quality across all evaluated imaging parameters, particularly in the presence of motion (P < 0.001). Diagnostic confidence was rated as excellent or good in 95.1% of SAMER Moco cases, compared with 78.1% for non-Moco cases. Similarly, overall image quality was rated as excellent or good in 89.8% of SAMER Moco cases versus 65.9% for non-Moco cases. The odds ratios for diagnostic confidence and for overall image quality were 6.698 and 6.030, respectively, both favoring SAMER Moco (P < 0.0001). Multireader interrater agreement was excellent across all parameters.
Conclusions: The application of SAMER in T1-weighted imaging datasets is feasible in clinical routine and significantly increases image quality and diagnostic confidence in 1.5 T brain MRI by effectively reducing motion artifacts.
{"title":"Clinical Evaluation of 3D Motion-Correction Via Scout Accelerated Motion Estimation and Reduction Framework Versus Conventional T1-Weighted MRI at 1.5 T in Brain Imaging.","authors":"Laura S Leukert, Katya Hoffmannbeck Heitkötter, Andrea Kronfeld, Roman H Paul, Daniel Polak, Daniel Nicolas Splitthoff, Marc A Brockmann, Sebastian Altmann, Ahmed E Othman","doi":"10.1097/RLI.0000000000001156","DOIUrl":"https://doi.org/10.1097/RLI.0000000000001156","url":null,"abstract":"<p><strong>Objectives: </strong>The aim of this study was to investigate the occurrence of motion artifacts and image quality of brain magnetic resonance imaging (MRI) T1-weighted imaging applying 3D motion correction via the Scout Accelerated Motion Estimation and Reduction (SAMER) framework compared with conventional T1-weighted imaging at 1.5 T.</p><p><strong>Materials and methods: </strong>A preliminary study involving 14 healthy volunteers assessed the impact of the SAMER framework on induced motion during 3 T MRI scans. Participants performed 3 different motion patterns: (1) step up, (2) controlled breathing, and (3) free motion. The patient study included 82 patients who required clinically indicated MRI scans. 3D T1-weighted images (MPRAGE) were acquired at 1.5 T. The MRI data were reconstructed using either regular product reconstruction (non-Moco) or the 3D motion correction SAMER framework (SAMER Moco), resulting in 145 image sequences. For the preliminary and the patient study, 3 experienced radiologists evaluated the image data using a 5-point Likert scale, focusing on overall image quality, artifact presence, diagnostic confidence, delineation of pathology, and image sharpness. Interrater agreement was assessed using Gwet's AC2, and an exploratory analysis (non-Moco vs SAMER Moco) was performed.</p><p><strong>Results: </strong>Compared with non-Moco, the preliminary study demonstrated significant improvements across all imaging parameters and motion patterns with SAMER Moco (P < 0.001). Odds ratios favoring SAMER Moco were >999.999 for freedom of artifact and overall image quality (P < 0.0001). Excellent or good ratings for freedom of artifact were 52.4% with SAMER Moco, compared with 21.4% for non-Moco. Similarly, 66.7% of SAMER Moco images were rated excellent or good for overall image quality versus 21.4% for non-Moco. Multireader interrater agreement was excellent across all parameters.The patient study confirmed that SAMER Moco provided significantly superior image quality across all evaluated imaging parameters, particularly in the presence of motion (P < 0.001). Diagnostic confidence was rated as excellent or good in 95.1% of SAMER Moco cases, compared with 78.1% for non-Moco cases. Similarly, overall image quality was rated as excellent or good in 89.8% of SAMER Moco cases versus 65.9% for non-Moco cases. The odds ratios for diagnostic confidence and for overall image quality were 6.698 and 6.030, respectively, both favoring SAMER Moco (P < 0.0001). Multireader interrater agreement was excellent across all parameters.</p><p><strong>Conclusions: </strong>The application of SAMER in T1-weighted imaging datasets is feasible in clinical routine and significantly increases image quality and diagnostic confidence in 1.5 T brain MRI by effectively reducing motion artifacts.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":""},"PeriodicalIF":7.0,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143023467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-20DOI: 10.1097/RLI.0000000000001148
Kang Wang, Matthew J Middione, Andreas M Loening, Ali B Syed, Ariel J Hannum, Xinzeng Wang, Arnaud Guidon, Patricia Lan, Daniel B Ennis, Ryan L Brunsing
<p><strong>Objectives: </strong>Pancreatic diffusion-weighted imaging (DWI) has numerous clinical applications, but conventional single-shot methods suffer from off resonance-induced artifacts like distortion and blurring while cardiovascular motion-induced phase inconsistency leads to quantitative errors and signal loss, limiting its utility. Multishot DWI (msDWI) offers reduced image distortion and blurring relative to single-shot methods but increases sensitivity to motion artifacts. Motion-compensated diffusion-encoding gradients (MCGs) reduce motion artifacts and could improve motion robustness of msDWI but come with the cost of extended echo time, further reducing signal. Thus, a method that combines msDWI with MCGs while minimizing the echo time penalty and maximizing signal would improve pancreatic DWI. In this work, we combine MCGs generated via convex-optimized diffusion encoding (CODE), which reduces the echo time penalty of motion compensation, with deep learning (DL)-based denoising to address residual signal loss. We hypothesize this method will qualitatively and quantitatively improve msDWI of the pancreas.</p><p><strong>Materials and methods: </strong>This prospective institutional review board-approved study included 22 patients who underwent abdominal MR examinations from August 22, 2022 and May 17, 2023 on 3.0 T scanners. Following informed consent, 2-shot spin-echo echo-planar DWI (b = 0, 800 s/mm2) without (M0) and with (M1) CODE-generated first-order gradient moment nulling was added to their clinical examinations. DL-based denoising was applied to the M1 images (M1 + DL) off-line. ADC maps were reconstructed for all 3 methods. Blinded pair-wise comparisons of b = 800 s/mm2 images were done by 3 subspecialist radiologists. Five metrics were compared: pancreatic boundary delineation, motion artifacts, signal homogeneity, perceived noise, and diagnostic preference. Regions of interest of the pancreatic head, body, and tail were drawn, and mean ADC values were computed. Repeated analysis of variance and post hoc pairwise t test with Bonferroni correction were used for comparing mean ADC values. Bland-Altman analysis compared mean ADC values. Reader preferences were tabulated and compared using Wilcoxon signed rank test with Bonferroni correction and Fleiss κ.</p><p><strong>Results: </strong>M1 was significantly preferred over M0 for perceived motion artifacts and signal homogeneity (P < 0.001). M0 was significantly preferred over M1 for perceived noise (P < 0.001), but DL-based denoising (M1 + DL) reversed this trend and was significantly favored over M0 (P < 0.001). ADC measurements from M0 varied between different regions of the pancreas (P = 0.001), whereas motion correction with M1 and M1 + DL resulted in homogeneous ADC values (P = 0.24), with values similar to those reported for ssDWI with motion correction. ADC values from M0 were significantly higher than M1 in the head (bias 16.6%; P < 0.0001), body (bias 11.0%; P < 0.
{"title":"Motion-Compensated Multishot Pancreatic Diffusion-Weighted Imaging With Deep Learning-Based Denoising.","authors":"Kang Wang, Matthew J Middione, Andreas M Loening, Ali B Syed, Ariel J Hannum, Xinzeng Wang, Arnaud Guidon, Patricia Lan, Daniel B Ennis, Ryan L Brunsing","doi":"10.1097/RLI.0000000000001148","DOIUrl":"https://doi.org/10.1097/RLI.0000000000001148","url":null,"abstract":"<p><strong>Objectives: </strong>Pancreatic diffusion-weighted imaging (DWI) has numerous clinical applications, but conventional single-shot methods suffer from off resonance-induced artifacts like distortion and blurring while cardiovascular motion-induced phase inconsistency leads to quantitative errors and signal loss, limiting its utility. Multishot DWI (msDWI) offers reduced image distortion and blurring relative to single-shot methods but increases sensitivity to motion artifacts. Motion-compensated diffusion-encoding gradients (MCGs) reduce motion artifacts and could improve motion robustness of msDWI but come with the cost of extended echo time, further reducing signal. Thus, a method that combines msDWI with MCGs while minimizing the echo time penalty and maximizing signal would improve pancreatic DWI. In this work, we combine MCGs generated via convex-optimized diffusion encoding (CODE), which reduces the echo time penalty of motion compensation, with deep learning (DL)-based denoising to address residual signal loss. We hypothesize this method will qualitatively and quantitatively improve msDWI of the pancreas.</p><p><strong>Materials and methods: </strong>This prospective institutional review board-approved study included 22 patients who underwent abdominal MR examinations from August 22, 2022 and May 17, 2023 on 3.0 T scanners. Following informed consent, 2-shot spin-echo echo-planar DWI (b = 0, 800 s/mm2) without (M0) and with (M1) CODE-generated first-order gradient moment nulling was added to their clinical examinations. DL-based denoising was applied to the M1 images (M1 + DL) off-line. ADC maps were reconstructed for all 3 methods. Blinded pair-wise comparisons of b = 800 s/mm2 images were done by 3 subspecialist radiologists. Five metrics were compared: pancreatic boundary delineation, motion artifacts, signal homogeneity, perceived noise, and diagnostic preference. Regions of interest of the pancreatic head, body, and tail were drawn, and mean ADC values were computed. Repeated analysis of variance and post hoc pairwise t test with Bonferroni correction were used for comparing mean ADC values. Bland-Altman analysis compared mean ADC values. Reader preferences were tabulated and compared using Wilcoxon signed rank test with Bonferroni correction and Fleiss κ.</p><p><strong>Results: </strong>M1 was significantly preferred over M0 for perceived motion artifacts and signal homogeneity (P < 0.001). M0 was significantly preferred over M1 for perceived noise (P < 0.001), but DL-based denoising (M1 + DL) reversed this trend and was significantly favored over M0 (P < 0.001). ADC measurements from M0 varied between different regions of the pancreas (P = 0.001), whereas motion correction with M1 and M1 + DL resulted in homogeneous ADC values (P = 0.24), with values similar to those reported for ssDWI with motion correction. ADC values from M0 were significantly higher than M1 in the head (bias 16.6%; P < 0.0001), body (bias 11.0%; P < 0.","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":""},"PeriodicalIF":7.0,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143005273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}