Pub Date : 2025-01-14DOI: 10.1097/RLI.0000000000001152
Dilyana B Mangarova, Jan O Kaufmann, Julia Brangsch, Avan Kader, Jana Möckel, Jennifer L Heyl, Christine Verlemann, Lisa C Adams, Antje Ludwig, Carolin Reimann, Wolfram C Poller, Peter Niehaus, Uwe Karst, Matthias Taupitz, Bernd Hamm, Michael G Weller, Marcus R Makowski
Introduction: Atherosclerosis is the underlying cause of multiple cardiovascular pathologies. The present-day clinical imaging modalities do not offer sufficient information on plaque composition or rupture risk. A disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4) is a strongly upregulated proteoglycan-cleaving enzyme that is specific to cardiovascular diseases, inter alia, atherosclerosis.
Materials and methods: Male apolipoprotein E-deficient mice received a high-fat diet for 2 (n = 11) or 4 months (n = 11). Additionally, a group (n = 11) receiving pravastatin by drinking water for 4 months alongside the high-fat diet was examined. The control group (n = 10) consisted of C57BL/6J mice on standard chow. Molecular magnetic resonance imaging was performed prior to and after administration of the gadolinium (Gd)-based ADAMTS4-specific probe, followed by ex vivo analyses of the aortic arch, brachiocephalic arteries, and carotid arteries. A P value <0.05 was considered to indicate a statistically significant difference.
Results: With advancing atherosclerosis, a significant increase in the contrast-to-noise ratio was measured after intravenous application of the probe (mean precontrast = 2.25; mean postcontrast = 11.47, P < 0.001 in the 4-month group). The pravastatin group presented decreased ADAMTS4 expression. A strong correlation between ADAMTS4 content measured via immunofluorescence staining and an increase in the contrast-to-noise ratio was detected ( R2 = 0.69). Microdissection analysis revealed that ADAMTS4 gene expression in the plaque area was significantly greater than that in the arterial wall of a control mouse ( P < 0.001). Laser ablation-inductively coupled plasma-mass spectrometry confirmed strong colocalization of areas positive for ADAMTS4 and Gd.
Conclusions: Magnetic resonance imaging using an ADAMTS4-specific agent is a promising method for characterizing atherosclerotic plaques and could improve plaque assessment in the diagnosis and treatment of atherosclerosis.
{"title":"ADAMTS4-Specific MR Peptide Probe for the Assessment of Atherosclerotic Plaque Burden in a Mouse Model.","authors":"Dilyana B Mangarova, Jan O Kaufmann, Julia Brangsch, Avan Kader, Jana Möckel, Jennifer L Heyl, Christine Verlemann, Lisa C Adams, Antje Ludwig, Carolin Reimann, Wolfram C Poller, Peter Niehaus, Uwe Karst, Matthias Taupitz, Bernd Hamm, Michael G Weller, Marcus R Makowski","doi":"10.1097/RLI.0000000000001152","DOIUrl":"10.1097/RLI.0000000000001152","url":null,"abstract":"<p><strong>Introduction: </strong>Atherosclerosis is the underlying cause of multiple cardiovascular pathologies. The present-day clinical imaging modalities do not offer sufficient information on plaque composition or rupture risk. A disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4) is a strongly upregulated proteoglycan-cleaving enzyme that is specific to cardiovascular diseases, inter alia, atherosclerosis.</p><p><strong>Materials and methods: </strong>Male apolipoprotein E-deficient mice received a high-fat diet for 2 (n = 11) or 4 months (n = 11). Additionally, a group (n = 11) receiving pravastatin by drinking water for 4 months alongside the high-fat diet was examined. The control group (n = 10) consisted of C57BL/6J mice on standard chow. Molecular magnetic resonance imaging was performed prior to and after administration of the gadolinium (Gd)-based ADAMTS4-specific probe, followed by ex vivo analyses of the aortic arch, brachiocephalic arteries, and carotid arteries. A P value <0.05 was considered to indicate a statistically significant difference.</p><p><strong>Results: </strong>With advancing atherosclerosis, a significant increase in the contrast-to-noise ratio was measured after intravenous application of the probe (mean precontrast = 2.25; mean postcontrast = 11.47, P < 0.001 in the 4-month group). The pravastatin group presented decreased ADAMTS4 expression. A strong correlation between ADAMTS4 content measured via immunofluorescence staining and an increase in the contrast-to-noise ratio was detected ( R2 = 0.69). Microdissection analysis revealed that ADAMTS4 gene expression in the plaque area was significantly greater than that in the arterial wall of a control mouse ( P < 0.001). Laser ablation-inductively coupled plasma-mass spectrometry confirmed strong colocalization of areas positive for ADAMTS4 and Gd.</p><p><strong>Conclusions: </strong>Magnetic resonance imaging using an ADAMTS4-specific agent is a promising method for characterizing atherosclerotic plaques and could improve plaque assessment in the diagnosis and treatment of atherosclerosis.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":""},"PeriodicalIF":7.0,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142978593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-14DOI: 10.1097/RLI.0000000000001150
Narine Mesropyan, Christoph Katemann, Annerieke Heuvelink-Marck, Can Yüksel, Alexander Isaak, Asadeh Lakghomi, Leon Bischoff, Tatjana Dell, Dmitrij Kravchenko, Daniel Kuetting, Claus C Pieper, Julian A Luetkens
Objectives: Impaired image quality and long scan times frequently occur in respiratory-triggered sequences in liver magnetic resonance imaging (MRI). We evaluated the impact of an in-bore active breathing guidance (BG) application on image quality and scan time of respiratory-triggered T2-weighted (T2) and diffusion-weighted imaging (DWI) by comparing sequences with standard triggering (T2S and DWIS) and with BG (T2BG and DWIBG).
Materials and methods: In this prospective study, random patients with clinical indications for liver MRI underwent 3 T MRI with standard and BG acquisitions. The audiovisual BG application received the respiratory signal from the scanner, and animated breathing instructions were displayed using a mirror and screen behind the MRI bore. Prior to the DWIBG and T2BG acquisition, patients received a short video instruction about MRI with BG. Suitable parameters for desired breathing pattern for T2BG and DWIBG were set individually for each patient based on the patient's physical respiratory ability (ie, 4 seconds breathing followed by 4.5 seconds breath holding). Artifacts, sharpness, lesion conspicuity, and overall image quality were assessed using a Likert scale from 1 (nondiagnostic) to 5 (excellent). Scan time, apparent contrast-to-noise ratio, and apparent signal-to-noise ratio (aSNR) for all sequences were analyzed. Paired t test and Wilcoxon test were used for statistical analysis.
Results: Thirty-two patients (mean age: 55 ± 13 years, 13 female) were included. T2BG showed less artifacts (4.5 ± 0.7 vs 4.1 ± 0.8, P < 0.001) and better sharpness, lesion conspicuity, and overall image quality (eg, overall image quality 4.6 ± 0.7 vs 4.4 ± 0.7, P = 0.004) compared with T2S. DWIBG demonstrated improved image quality in all categories compared with DWIS (eg, overall image quality 4.5 ± 0.5 vs 4.3 ± 0.5, P = 0.005) and less artifacts (4.1 ± 0.5 vs 3.8 ± 0.7, P = 0.007). Scan times of T2BG (286 ± 23 vs 345 ± 68 seconds, P < 0.001) and DWIBG (160 ± 4 vs 252 ± 70 seconds, P < 0.001) were reduced by 17% and 37%, respectively. aSNR and apparent contrast-to-noise ratio (eg, aSNR: 23.45 ± 11.31 [T2BG] vs 25.84 ± 10.76 [T2S]; P = 0.079) were similar for both sequences for both approaches.
Conclusions: Active BG for respiratory-triggered liver T2w and DWI sequences led to significant reduction of breathing artifacts, improved image quality, and shorter scan time compared with standard acquisitions.
目的:在肝脏磁共振成像(MRI)中,呼吸触发序列经常出现图像质量受损和扫描时间长。我们通过比较标准触发(T2S和DWIS)和BG (T2BG和DWIBG)序列,评估了内腔主动呼吸引导(BG)应用对呼吸触发T2加权(T2)和弥散加权成像(DWI)图像质量和扫描时间的影响。材料和方法:在这项前瞻性研究中,随机选取有肝脏MRI临床指征的患者进行3t MRI,并获得标准和BG。视听BG应用程序接收来自扫描仪的呼吸信号,并通过MRI孔后面的镜子和屏幕显示动画呼吸指示。在获得DWIBG和T2BG之前,患者接受了关于BG MRI的简短视频指导。根据患者的身体呼吸能力(即呼吸4秒,屏气4.5秒),分别为T2BG和DWIBG患者设定理想呼吸模式的合适参数。伪影、清晰度、病变显著性和整体图像质量采用李克特评分从1(非诊断性)到5(优秀)进行评估。对所有序列的扫描时间、视噪比和视信噪比进行了分析。采用配对t检验和Wilcoxon检验进行统计分析。结果:纳入32例患者,平均年龄55±13岁,其中女性13例。T2BG与T2S相比,伪影更少(4.5±0.7 vs 4.1±0.8,P < 0.001),图像清晰度、病灶显著性和整体图像质量(4.6±0.7 vs 4.4±0.7,P = 0.004)更好。与DWIS相比,DWIBG在所有类别中都表现出更高的图像质量(例如,总体图像质量为4.5±0.5 vs 4.3±0.5,P = 0.005),伪影更少(4.1±0.5 vs 3.8±0.7,P = 0.007)。T2BG(286±23 vs 345±68秒,P < 0.001)和DWIBG(160±4 vs 252±70秒,P < 0.001)扫描时间分别减少17%和37%。aSNR和视噪比(如aSNR: 23.45±11.31 [T2BG] vs 25.84±10.76 [T2S]);P = 0.079),两种方法的序列相似。结论:与标准采集相比,呼吸触发肝脏T2w和DWI序列的活性BG显著减少了呼吸伪影,提高了图像质量,缩短了扫描时间。
{"title":"Audiovisual Breathing Guidance for Improved Image Quality and Scan Efficiency of T2- and Diffusion-Weighted Liver MRI.","authors":"Narine Mesropyan, Christoph Katemann, Annerieke Heuvelink-Marck, Can Yüksel, Alexander Isaak, Asadeh Lakghomi, Leon Bischoff, Tatjana Dell, Dmitrij Kravchenko, Daniel Kuetting, Claus C Pieper, Julian A Luetkens","doi":"10.1097/RLI.0000000000001150","DOIUrl":"https://doi.org/10.1097/RLI.0000000000001150","url":null,"abstract":"<p><strong>Objectives: </strong>Impaired image quality and long scan times frequently occur in respiratory-triggered sequences in liver magnetic resonance imaging (MRI). We evaluated the impact of an in-bore active breathing guidance (BG) application on image quality and scan time of respiratory-triggered T2-weighted (T2) and diffusion-weighted imaging (DWI) by comparing sequences with standard triggering (T2S and DWIS) and with BG (T2BG and DWIBG).</p><p><strong>Materials and methods: </strong>In this prospective study, random patients with clinical indications for liver MRI underwent 3 T MRI with standard and BG acquisitions. The audiovisual BG application received the respiratory signal from the scanner, and animated breathing instructions were displayed using a mirror and screen behind the MRI bore. Prior to the DWIBG and T2BG acquisition, patients received a short video instruction about MRI with BG. Suitable parameters for desired breathing pattern for T2BG and DWIBG were set individually for each patient based on the patient's physical respiratory ability (ie, 4 seconds breathing followed by 4.5 seconds breath holding). Artifacts, sharpness, lesion conspicuity, and overall image quality were assessed using a Likert scale from 1 (nondiagnostic) to 5 (excellent). Scan time, apparent contrast-to-noise ratio, and apparent signal-to-noise ratio (aSNR) for all sequences were analyzed. Paired t test and Wilcoxon test were used for statistical analysis.</p><p><strong>Results: </strong>Thirty-two patients (mean age: 55 ± 13 years, 13 female) were included. T2BG showed less artifacts (4.5 ± 0.7 vs 4.1 ± 0.8, P < 0.001) and better sharpness, lesion conspicuity, and overall image quality (eg, overall image quality 4.6 ± 0.7 vs 4.4 ± 0.7, P = 0.004) compared with T2S. DWIBG demonstrated improved image quality in all categories compared with DWIS (eg, overall image quality 4.5 ± 0.5 vs 4.3 ± 0.5, P = 0.005) and less artifacts (4.1 ± 0.5 vs 3.8 ± 0.7, P = 0.007). Scan times of T2BG (286 ± 23 vs 345 ± 68 seconds, P < 0.001) and DWIBG (160 ± 4 vs 252 ± 70 seconds, P < 0.001) were reduced by 17% and 37%, respectively. aSNR and apparent contrast-to-noise ratio (eg, aSNR: 23.45 ± 11.31 [T2BG] vs 25.84 ± 10.76 [T2S]; P = 0.079) were similar for both sequences for both approaches.</p><p><strong>Conclusions: </strong>Active BG for respiratory-triggered liver T2w and DWI sequences led to significant reduction of breathing artifacts, improved image quality, and shorter scan time compared with standard acquisitions.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":""},"PeriodicalIF":7.0,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142977747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-03DOI: 10.1097/RLI.0000000000001149
Yannik Christian Layer, Sebastian Faby, Viktor Haase, Bernhard Schmidt, Narine Mesropyan, Patrick A Kupczyk, Alexander Isaak, Tatjana Dell, Julian A Luetkens, Daniel Kuetting
Objectives: The aim of this study was to assess the impact of an iterative metal artifact reduction (iMAR) algorithm combined with virtual monoenergetic images (VMIs) for artifact reduction in photon-counting detector computed tomography (PCDCT) during interventions.
Materials and methods: Using an abdominal phantom, we conducted evaluations on the efficacy of iMAR and VMIs for mitigating image artifacts during interventions on a PCDCT. Four different puncture devices were employed under 2 scan modes (QuantumSn at 100 kV, Quantumplus at 140 kV) to simulate various clinical scenarios. Image reconstructions were initially performed without iMAR and subsequently with iMAR settings. The latter was tested with 7 different metal presets for each case. Furthermore, iMAR-reconstructed images were paired with VMIs at energy levels of 70 keV, 110 keV, 150 keV, and 190 keV. Qualitative assessments were conducted to evaluate image quality, artifact expression, and the emergence of new artifacts using a Likert scale. Image quality was rated on a scale of 1 (nondiagnostic) to 5 (excellent), whereas artifact severity was rated from 0 (none) to 5 (massive). Preferences for specific iMAR presets were documented. Quantitative analysis involved calculating Hounsfield unit (HU) differences between artifact-rich and artifact-free tissues.
Results: Overall, 96 different scanning series were evaluated. The optimal combination for artifact reduction was found to be iMAR neurocoils with VMIs at 150 keV and 190 keV, showcasing the most substantial reduction in artifacts with a median rating of 1 (standard: 4). VMIs at higher keV levels, such as 190 keV, resulted in reduced image quality, as indicated by a median rating of 3 (compared with 70 keV with a median of 5). Newly emerged artifact expression related to reconstructions varied among intervention devices, with iMAR thoracic coils exhibiting the least extent of artifacts (median: 2) and iMAR neurocoils displaying the most pronounced artifacts (median: 4). Qualitative analysis favored the combination of iMAR neurocoils with VMIs at 70 keV, showcasing the best results. Conversely, quantitative analysis revealed that the combination of iMAR neurocoils with VMIs at 190 keV yielded the best results, with an average artifact expression of 20.06 HU (standard: 167.98 HU; P < 0.0001).
Conclusions: The study underscores a substantial reduction in artifacts associated with intervention devices during PCDCT scans through the synergistic application of VMI and iMAR techniques. Specifically, the combination of VMIs at 70 keV with iMAR neurocoils was preferred, leading to enhanced diagnostic assessability of surrounding tissues and target lesions. The study demonstrates the potential of iMAR and VMIs for PCDCT-guided interventions. These advancements could improve accuracy, safety, efficiency, and patient outcomes in clinical practice.
{"title":"Artifact Reduction in Interventional Devices Using Virtual Monoenergetic Images and Iterative Metal Artifact Reduction on Photon-Counting Detector CT.","authors":"Yannik Christian Layer, Sebastian Faby, Viktor Haase, Bernhard Schmidt, Narine Mesropyan, Patrick A Kupczyk, Alexander Isaak, Tatjana Dell, Julian A Luetkens, Daniel Kuetting","doi":"10.1097/RLI.0000000000001149","DOIUrl":"https://doi.org/10.1097/RLI.0000000000001149","url":null,"abstract":"<p><strong>Objectives: </strong>The aim of this study was to assess the impact of an iterative metal artifact reduction (iMAR) algorithm combined with virtual monoenergetic images (VMIs) for artifact reduction in photon-counting detector computed tomography (PCDCT) during interventions.</p><p><strong>Materials and methods: </strong>Using an abdominal phantom, we conducted evaluations on the efficacy of iMAR and VMIs for mitigating image artifacts during interventions on a PCDCT. Four different puncture devices were employed under 2 scan modes (QuantumSn at 100 kV, Quantumplus at 140 kV) to simulate various clinical scenarios. Image reconstructions were initially performed without iMAR and subsequently with iMAR settings. The latter was tested with 7 different metal presets for each case. Furthermore, iMAR-reconstructed images were paired with VMIs at energy levels of 70 keV, 110 keV, 150 keV, and 190 keV. Qualitative assessments were conducted to evaluate image quality, artifact expression, and the emergence of new artifacts using a Likert scale. Image quality was rated on a scale of 1 (nondiagnostic) to 5 (excellent), whereas artifact severity was rated from 0 (none) to 5 (massive). Preferences for specific iMAR presets were documented. Quantitative analysis involved calculating Hounsfield unit (HU) differences between artifact-rich and artifact-free tissues.</p><p><strong>Results: </strong>Overall, 96 different scanning series were evaluated. The optimal combination for artifact reduction was found to be iMAR neurocoils with VMIs at 150 keV and 190 keV, showcasing the most substantial reduction in artifacts with a median rating of 1 (standard: 4). VMIs at higher keV levels, such as 190 keV, resulted in reduced image quality, as indicated by a median rating of 3 (compared with 70 keV with a median of 5). Newly emerged artifact expression related to reconstructions varied among intervention devices, with iMAR thoracic coils exhibiting the least extent of artifacts (median: 2) and iMAR neurocoils displaying the most pronounced artifacts (median: 4). Qualitative analysis favored the combination of iMAR neurocoils with VMIs at 70 keV, showcasing the best results. Conversely, quantitative analysis revealed that the combination of iMAR neurocoils with VMIs at 190 keV yielded the best results, with an average artifact expression of 20.06 HU (standard: 167.98 HU; P < 0.0001).</p><p><strong>Conclusions: </strong>The study underscores a substantial reduction in artifacts associated with intervention devices during PCDCT scans through the synergistic application of VMI and iMAR techniques. Specifically, the combination of VMIs at 70 keV with iMAR neurocoils was preferred, leading to enhanced diagnostic assessability of surrounding tissues and target lesions. The study demonstrates the potential of iMAR and VMIs for PCDCT-guided interventions. These advancements could improve accuracy, safety, efficiency, and patient outcomes in clinical practice.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":""},"PeriodicalIF":7.0,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142921310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-07-08DOI: 10.1097/RLI.0000000000001100
Min Woo Lee, Seungchul Han, Kyowon Gu, Hyunchul Rhim
Abstract: Local ablation therapy, encompassing radiofrequency ablation (RFA), microwave ablation, and cryoablation, has emerged as a crucial strategy for managing small hepatocellular carcinomas (HCCs), complementing liver resection and transplantation. This review delves into the clinical significance of tumor size, location, and biology in guiding treatment decisions for HCCs undergoing local ablation therapy, with a focus on tumors smaller than 3 cm. Tumor size significantly influences treatment outcomes, with larger tumors associated with poorer local tumor control due to challenges in creating sufficient ablative margins and the likelihood of microvascular invasion and peritumoral satellite nodules. Advanced ablation techniques such as centripetal or no-touch RFA using multiple electrodes, cryoablation using multiple cryoprobes, and microwave ablation offer diverse options for HCC treatment. Notably, no-touch RFA demonstrates superior local tumor control compared with conventional RFA by achieving sufficient ablative margins, making it particularly promising for hepatic dome lesions or tumors with aggressive biology. Laparoscopic RFA proves beneficial for treating anterior subphrenic HCCs, whereas artificial pleural effusion-assisted RFA is effective for controlling posterior subphrenic HCCs. However, surgical resection generally offers better survival outcomes for periportal HCCs compared with RFA. Cryoablation exhibits a lower incidence of vascular or biliary complications than RFA for HCCs adjacent to perivascular or periductal regions. Additionally, aggressive tumor biology, such as microvascular invasion, can be predicted using magnetic resonance imaging findings and serum tumor markers. Aggressive HCC subtypes frequently exhibit Liver Imaging Reporting and Data System M features on magnetic resonance imaging, aiding in prognosis. A comprehensive understanding of tumor size, location, and biology is imperative for optimizing the benefits of local ablation therapy in managing HCCs.
{"title":"Local Ablation Therapy for Hepatocellular Carcinoma: Clinical Significance of Tumor Size, Location, and Biology.","authors":"Min Woo Lee, Seungchul Han, Kyowon Gu, Hyunchul Rhim","doi":"10.1097/RLI.0000000000001100","DOIUrl":"10.1097/RLI.0000000000001100","url":null,"abstract":"<p><strong>Abstract: </strong>Local ablation therapy, encompassing radiofrequency ablation (RFA), microwave ablation, and cryoablation, has emerged as a crucial strategy for managing small hepatocellular carcinomas (HCCs), complementing liver resection and transplantation. This review delves into the clinical significance of tumor size, location, and biology in guiding treatment decisions for HCCs undergoing local ablation therapy, with a focus on tumors smaller than 3 cm. Tumor size significantly influences treatment outcomes, with larger tumors associated with poorer local tumor control due to challenges in creating sufficient ablative margins and the likelihood of microvascular invasion and peritumoral satellite nodules. Advanced ablation techniques such as centripetal or no-touch RFA using multiple electrodes, cryoablation using multiple cryoprobes, and microwave ablation offer diverse options for HCC treatment. Notably, no-touch RFA demonstrates superior local tumor control compared with conventional RFA by achieving sufficient ablative margins, making it particularly promising for hepatic dome lesions or tumors with aggressive biology. Laparoscopic RFA proves beneficial for treating anterior subphrenic HCCs, whereas artificial pleural effusion-assisted RFA is effective for controlling posterior subphrenic HCCs. However, surgical resection generally offers better survival outcomes for periportal HCCs compared with RFA. Cryoablation exhibits a lower incidence of vascular or biliary complications than RFA for HCCs adjacent to perivascular or periductal regions. Additionally, aggressive tumor biology, such as microvascular invasion, can be predicted using magnetic resonance imaging findings and serum tumor markers. Aggressive HCC subtypes frequently exhibit Liver Imaging Reporting and Data System M features on magnetic resonance imaging, aiding in prognosis. A comprehensive understanding of tumor size, location, and biology is imperative for optimizing the benefits of local ablation therapy in managing HCCs.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":"53-59"},"PeriodicalIF":7.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141544828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-08-08DOI: 10.1097/RLI.0000000000001099
Hyungwoo Ahn
Abstract: Bladder cancer (BC) is a significant global health concern, with over 500,000 new cases and 200,000 deaths annually, emphasizing the need for accurate staging and effective management. Traditional diagnostic techniques, such as cystoscopy and transurethral resection, are fundamental but have limitations in accurately assessing the depth of invasion. These limitations include the possibility of understaging and procedural variability, which can significantly impact treatment decisions. This review focuses on the role of multiparametric magnetic resonance imaging (mpMRI) in the diagnosis and staging of BC, particularly emphasizing the Vesical Imaging-Reporting and Data System (VI-RADS) framework. By enhancing interpretive consistency and diagnostic accuracy, mpMRI and VI-RADS offer detailed visualization of tumor characteristics and depth of invasion, while reducing the need for more invasive traditional methods. These advancements not only improve staging accuracy but also enhance treatment planning, underscoring the importance of advanced imaging in evolving BC management and positively influencing patient outcomes.
摘要:膀胱癌(BC)是全球关注的重大健康问题,每年有 50 多万新发病例,20 多万人死亡,因此需要准确的分期和有效的治疗。膀胱镜检查和经尿道切除术等传统诊断技术是基础,但在准确评估侵犯深度方面存在局限性。这些局限性包括分期不足的可能性和手术的可变性,这些都会对治疗决策产生重大影响。本综述重点探讨多参数磁共振成像(mpMRI)在 BC 诊断和分期中的作用,尤其强调膀胱成像报告和数据系统(VI-RADS)框架。通过提高解释一致性和诊断准确性,mpMRI 和 VI-RADS 可详细显示肿瘤特征和浸润深度,同时减少对更具侵入性的传统方法的需求。这些进步不仅提高了分期的准确性,还加强了治疗规划,凸显了先进成像技术在发展 BC 管理和积极影响患者预后方面的重要性。
{"title":"Current Status of Magnetic Resonance Imaging Use in Bladder Cancer.","authors":"Hyungwoo Ahn","doi":"10.1097/RLI.0000000000001099","DOIUrl":"10.1097/RLI.0000000000001099","url":null,"abstract":"<p><strong>Abstract: </strong>Bladder cancer (BC) is a significant global health concern, with over 500,000 new cases and 200,000 deaths annually, emphasizing the need for accurate staging and effective management. Traditional diagnostic techniques, such as cystoscopy and transurethral resection, are fundamental but have limitations in accurately assessing the depth of invasion. These limitations include the possibility of understaging and procedural variability, which can significantly impact treatment decisions. This review focuses on the role of multiparametric magnetic resonance imaging (mpMRI) in the diagnosis and staging of BC, particularly emphasizing the Vesical Imaging-Reporting and Data System (VI-RADS) framework. By enhancing interpretive consistency and diagnostic accuracy, mpMRI and VI-RADS offer detailed visualization of tumor characteristics and depth of invasion, while reducing the need for more invasive traditional methods. These advancements not only improve staging accuracy but also enhance treatment planning, underscoring the importance of advanced imaging in evolving BC management and positively influencing patient outcomes.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":"72-83"},"PeriodicalIF":7.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141901734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-07-25DOI: 10.1097/RLI.0000000000001101
Haesung Yoon, Jisoo Kim, Hyun Ji Lim, Mi-Jung Lee
Abstract: In children and adults, quantitative imaging examinations determine the effectiveness of treatment for liver disease. However, pediatric liver disease differs in presentation from liver disease in adults. Children also needed to be followed for a longer period from onset and have less control of their bodies, showing more movement than adults during imaging examinations, which leads to a greater need for sedation. Thus, it is essential to appropriately tailor and accurately perform noninvasive imaging tests in these younger patients. This article is an overview of updated imaging techniques used to assess liver disease quantitatively in children. The common initial imaging study for diffuse liver disease in pediatric patients is ultrasound. In addition to preexisting echo analysis, newly developed attenuation imaging techniques have been introduced to evaluate fatty liver. Ultrasound elastography is also now actively used to evaluate liver conditions, and the broad age spectrum of the pediatric population requires caution to be taken even in the selection of probes. Magnetic resonance imaging (MRI) is another important imaging tool used to evaluate liver disease despite requiring sedation or anesthesia in young children because it allows quantitative analysis with sequences such as fat analysis and MR elastography. In addition to ultrasound and MRI, we review quantitative imaging methods specifically for fatty liver, Wilson disease, biliary atresia, hepatic fibrosis, Fontan-associated liver disease, autoimmune hepatitis, sinusoidal obstruction syndrome, and the transplanted liver. Lastly, concerns such as growth and motion that need to be addressed specifically for children are summarized.
{"title":"Quantitative Liver Imaging in Children.","authors":"Haesung Yoon, Jisoo Kim, Hyun Ji Lim, Mi-Jung Lee","doi":"10.1097/RLI.0000000000001101","DOIUrl":"10.1097/RLI.0000000000001101","url":null,"abstract":"<p><strong>Abstract: </strong>In children and adults, quantitative imaging examinations determine the effectiveness of treatment for liver disease. However, pediatric liver disease differs in presentation from liver disease in adults. Children also needed to be followed for a longer period from onset and have less control of their bodies, showing more movement than adults during imaging examinations, which leads to a greater need for sedation. Thus, it is essential to appropriately tailor and accurately perform noninvasive imaging tests in these younger patients. This article is an overview of updated imaging techniques used to assess liver disease quantitatively in children. The common initial imaging study for diffuse liver disease in pediatric patients is ultrasound. In addition to preexisting echo analysis, newly developed attenuation imaging techniques have been introduced to evaluate fatty liver. Ultrasound elastography is also now actively used to evaluate liver conditions, and the broad age spectrum of the pediatric population requires caution to be taken even in the selection of probes. Magnetic resonance imaging (MRI) is another important imaging tool used to evaluate liver disease despite requiring sedation or anesthesia in young children because it allows quantitative analysis with sequences such as fat analysis and MR elastography. In addition to ultrasound and MRI, we review quantitative imaging methods specifically for fatty liver, Wilson disease, biliary atresia, hepatic fibrosis, Fontan-associated liver disease, autoimmune hepatitis, sinusoidal obstruction syndrome, and the transplanted liver. Lastly, concerns such as growth and motion that need to be addressed specifically for children are summarized.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":"60-71"},"PeriodicalIF":7.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141758713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-08-20DOI: 10.1097/RLI.0000000000001114
Yangsean Choi, Ji Su Ko, Ji Eun Park, Geunu Jeong, Minkook Seo, Yohan Jun, Shohei Fujita, Berkin Bilgic
Abstract: Recent technological advancements have revolutionized routine brain magnetic resonance imaging (MRI) sequences, offering enhanced diagnostic capabilities in intracranial disease evaluation. This review explores 2 pivotal breakthrough areas: deep learning reconstruction (DLR) and quantitative MRI techniques beyond conventional structural imaging. DLR using deep neural networks facilitates accelerated imaging with improved signal-to-noise ratio and spatial resolution, enhancing image quality with short scan times. DLR focuses on supervised learning applied to clinical implementation and applications. Quantitative MRI techniques, exemplified by 2D multidynamic multiecho, 3D quantification using interleaved Look-Locker acquisition sequences with T2 preparation pulses, and magnetic resonance fingerprinting, enable precise calculation of brain-tissue parameters and further advance diagnostic accuracy and efficiency. Potential DLR instabilities and quantification and bias limitations will be discussed. This review underscores the synergistic potential of DLR and quantitative MRI, offering prospects for improved brain imaging beyond conventional methods.
{"title":"Beyond the Conventional Structural MRI: Clinical Application of Deep Learning Image Reconstruction and Synthetic MRI of the Brain.","authors":"Yangsean Choi, Ji Su Ko, Ji Eun Park, Geunu Jeong, Minkook Seo, Yohan Jun, Shohei Fujita, Berkin Bilgic","doi":"10.1097/RLI.0000000000001114","DOIUrl":"10.1097/RLI.0000000000001114","url":null,"abstract":"<p><strong>Abstract: </strong>Recent technological advancements have revolutionized routine brain magnetic resonance imaging (MRI) sequences, offering enhanced diagnostic capabilities in intracranial disease evaluation. This review explores 2 pivotal breakthrough areas: deep learning reconstruction (DLR) and quantitative MRI techniques beyond conventional structural imaging. DLR using deep neural networks facilitates accelerated imaging with improved signal-to-noise ratio and spatial resolution, enhancing image quality with short scan times. DLR focuses on supervised learning applied to clinical implementation and applications. Quantitative MRI techniques, exemplified by 2D multidynamic multiecho, 3D quantification using interleaved Look-Locker acquisition sequences with T2 preparation pulses, and magnetic resonance fingerprinting, enable precise calculation of brain-tissue parameters and further advance diagnostic accuracy and efficiency. Potential DLR instabilities and quantification and bias limitations will be discussed. This review underscores the synergistic potential of DLR and quantitative MRI, offering prospects for improved brain imaging beyond conventional methods.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":"27-42"},"PeriodicalIF":7.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142004228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-07-17DOI: 10.1097/RLI.0000000000001096
Geewon Lee, Seung Hwan Moon, Jong Hoon Kim, Dong Young Jeong, Jihwan Choi, Joon Young Choi, Ho Yun Lee
Abstract: Immunotherapy is likely the most remarkable advancement in lung cancer treatment during the past decade. Although immunotherapy provides substantial benefits, their therapeutic responses differ from those of conventional chemotherapy and targeted therapy, and some patients present unique immunotherapy response patterns that cannot be judged under the current measurement standards. Therefore, the response monitoring of immunotherapy can be challenging, such as the differentiation between real response and pseudo-response. This review outlines the various tumor response patterns to immunotherapy and discusses methods for quantifying computed tomography (CT) and 18 F-fluorodeoxyglucose positron emission tomography (PET) in the field of lung cancer. Emerging technologies in magnetic resonance imaging (MRI) and non-FDG PET tracers are also explored. With immunotherapy responses, the role for imaging is essential in both anatomical radiological responses (CT/MRI) and molecular changes (PET imaging). Multiple aspects must be considered when assessing treatment responses using CT and PET. Finally, we introduce multimodal approaches that integrate imaging and nonimaging data, and we discuss future directions for the assessment and prediction of lung cancer responses to immunotherapy.
摘要:免疫疗法可能是近十年来肺癌治疗领域最显著的进步。尽管免疫疗法带来了巨大的益处,但其治疗反应与传统化疗和靶向治疗不同,一些患者呈现出独特的免疫疗法反应模式,无法根据现有的测量标准进行判断。因此,免疫疗法的反应监测可能具有挑战性,例如如何区分真实反应和假性反应。本综述概述了各种肿瘤对免疫疗法的反应模式,并讨论了肺癌领域中计算机断层扫描(CT)和 18F - 氟脱氧葡萄糖正电子发射断层扫描(PET)的量化方法。此外,还探讨了磁共振成像(MRI)和非 FDG PET 示踪剂的新兴技术。对于免疫疗法的反应,成像在解剖放射反应(CT/MRI)和分子变化(PET 成像)方面的作用至关重要。使用 CT 和 PET 评估治疗反应时必须考虑多个方面。最后,我们介绍了整合成像和非成像数据的多模态方法,并讨论了评估和预测肺癌对免疫疗法反应的未来方向。
{"title":"Multimodal Imaging Approach for Tumor Treatment Response Evaluation in the Era of Immunotherapy.","authors":"Geewon Lee, Seung Hwan Moon, Jong Hoon Kim, Dong Young Jeong, Jihwan Choi, Joon Young Choi, Ho Yun Lee","doi":"10.1097/RLI.0000000000001096","DOIUrl":"10.1097/RLI.0000000000001096","url":null,"abstract":"<p><strong>Abstract: </strong>Immunotherapy is likely the most remarkable advancement in lung cancer treatment during the past decade. Although immunotherapy provides substantial benefits, their therapeutic responses differ from those of conventional chemotherapy and targeted therapy, and some patients present unique immunotherapy response patterns that cannot be judged under the current measurement standards. Therefore, the response monitoring of immunotherapy can be challenging, such as the differentiation between real response and pseudo-response. This review outlines the various tumor response patterns to immunotherapy and discusses methods for quantifying computed tomography (CT) and 18 F-fluorodeoxyglucose positron emission tomography (PET) in the field of lung cancer. Emerging technologies in magnetic resonance imaging (MRI) and non-FDG PET tracers are also explored. With immunotherapy responses, the role for imaging is essential in both anatomical radiological responses (CT/MRI) and molecular changes (PET imaging). Multiple aspects must be considered when assessing treatment responses using CT and PET. Finally, we introduce multimodal approaches that integrate imaging and nonimaging data, and we discuss future directions for the assessment and prediction of lung cancer responses to immunotherapy.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":"11-26"},"PeriodicalIF":7.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141633473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-07-16DOI: 10.1097/RLI.0000000000001103
Jooae Choe, Hye Jeon Hwang, Sang Min Lee, Jihye Yoon, Namkug Kim, Joon Beom Seo
Abstract: Interstitial lung disease (ILD) encompasses a variety of lung disorders with varying degrees of inflammation or fibrosis, requiring a combination of clinical, imaging, and pathologic data for evaluation. Imaging is essential for the noninvasive diagnosis of the disease, as well as for assessing disease severity, monitoring its progression, and evaluating treatment response. However, traditional visual assessments of ILD with computed tomography (CT) suffer from reader variability. Automated quantitative CT offers a more objective approach by using computer-based analysis to consistently evaluate and measure ILD. Advancements in technology have significantly improved the accuracy and reliability of these measurements. Recently, interstitial lung abnormalities (ILAs), which represent potential preclinical ILD incidentally found on CT scans and are characterized by abnormalities in over 5% of any lung zone, have gained attention and clinical importance. The challenge lies in the accurate and consistent identification of ILA, given that its definition relies on a subjective threshold, making quantitative tools crucial for precise ILA evaluation. This review highlights the state of CT quantification of ILD and ILA, addressing clinical and research disparities while emphasizing how machine learning or deep learning in quantitative imaging can improve diagnosis and management by providing more accurate assessments, and finally, suggests the future directions of quantitative CT in this area.
摘要:间质性肺病(ILD)包括各种不同程度的炎症或纤维化的肺部疾病,需要结合临床、影像学和病理学数据进行评估。影像学检查对于疾病的无创诊断、评估疾病严重程度、监测疾病进展和评估治疗反应至关重要。然而,传统的计算机断层扫描(CT)对 ILD 的目测评估存在读数差异。自动定量 CT 利用基于计算机的分析来一致地评估和测量 ILD,从而提供了一种更客观的方法。技术的进步大大提高了这些测量的准确性和可靠性。最近,肺间质异常(ILAs)引起了人们的关注和临床重视,ILAs 代表 CT 扫描中偶然发现的潜在临床前 ILD,其特征是任何肺区都有 5% 以上的异常。由于 ILA 的定义依赖于主观阈值,因此准确一致地识别 ILA 是一项挑战,这使得定量工具成为精确评估 ILA 的关键。本综述重点介绍了 ILD 和 ILA CT 定量的现状,探讨了临床和研究方面的差异,同时强调了定量成像中的机器学习或深度学习如何通过提供更准确的评估来改善诊断和管理,最后还提出了该领域定量 CT 的未来发展方向。
{"title":"CT Quantification of Interstitial Lung Abnormality and Interstitial Lung Disease: From Technical Challenges to Future Directions.","authors":"Jooae Choe, Hye Jeon Hwang, Sang Min Lee, Jihye Yoon, Namkug Kim, Joon Beom Seo","doi":"10.1097/RLI.0000000000001103","DOIUrl":"10.1097/RLI.0000000000001103","url":null,"abstract":"<p><strong>Abstract: </strong>Interstitial lung disease (ILD) encompasses a variety of lung disorders with varying degrees of inflammation or fibrosis, requiring a combination of clinical, imaging, and pathologic data for evaluation. Imaging is essential for the noninvasive diagnosis of the disease, as well as for assessing disease severity, monitoring its progression, and evaluating treatment response. However, traditional visual assessments of ILD with computed tomography (CT) suffer from reader variability. Automated quantitative CT offers a more objective approach by using computer-based analysis to consistently evaluate and measure ILD. Advancements in technology have significantly improved the accuracy and reliability of these measurements. Recently, interstitial lung abnormalities (ILAs), which represent potential preclinical ILD incidentally found on CT scans and are characterized by abnormalities in over 5% of any lung zone, have gained attention and clinical importance. The challenge lies in the accurate and consistent identification of ILA, given that its definition relies on a subjective threshold, making quantitative tools crucial for precise ILA evaluation. This review highlights the state of CT quantification of ILD and ILA, addressing clinical and research disparities while emphasizing how machine learning or deep learning in quantitative imaging can improve diagnosis and management by providing more accurate assessments, and finally, suggests the future directions of quantitative CT in this area.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":"43-52"},"PeriodicalIF":7.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141619976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-07-11DOI: 10.1097/RLI.0000000000001106
Kyulee Jeon, Woo Yeon Park, Charles E Kahn, Paul Nagy, Seng Chan You, Soon Ho Yoon
Abstract: Artificial intelligence (AI) has made significant advances in radiology. Nonetheless, challenges in AI development, validation, and reproducibility persist, primarily due to the lack of high-quality, large-scale, standardized data across the world. Addressing these challenges requires comprehensive standardization of medical imaging data and seamless integration with structured medical data.Developed by the Observational Health Data Sciences and Informatics community, the OMOP Common Data Model enables large-scale international collaborations with structured medical data. It ensures syntactic and semantic interoperability, while supporting the privacy-protected distribution of research across borders. The recently proposed Medical Imaging Common Data Model is designed to encompass all DICOM-formatted medical imaging data and integrate imaging-derived features with clinical data, ensuring their provenance.The harmonization of medical imaging data and its seamless integration with structured clinical data at a global scale will pave the way for advanced AI research in radiology. This standardization will enable federated learning, ensuring privacy-preserving collaboration across institutions and promoting equitable AI through the inclusion of diverse patient populations. Moreover, it will facilitate the development of foundation models trained on large-scale, multimodal datasets, serving as powerful starting points for specialized AI applications. Objective and transparent algorithm validation on a standardized data infrastructure will enhance reproducibility and interoperability of AI systems, driving innovation and reliability in clinical applications.
{"title":"Advancing Medical Imaging Research Through Standardization: The Path to Rapid Development, Rigorous Validation, and Robust Reproducibility.","authors":"Kyulee Jeon, Woo Yeon Park, Charles E Kahn, Paul Nagy, Seng Chan You, Soon Ho Yoon","doi":"10.1097/RLI.0000000000001106","DOIUrl":"10.1097/RLI.0000000000001106","url":null,"abstract":"<p><strong>Abstract: </strong>Artificial intelligence (AI) has made significant advances in radiology. Nonetheless, challenges in AI development, validation, and reproducibility persist, primarily due to the lack of high-quality, large-scale, standardized data across the world. Addressing these challenges requires comprehensive standardization of medical imaging data and seamless integration with structured medical data.Developed by the Observational Health Data Sciences and Informatics community, the OMOP Common Data Model enables large-scale international collaborations with structured medical data. It ensures syntactic and semantic interoperability, while supporting the privacy-protected distribution of research across borders. The recently proposed Medical Imaging Common Data Model is designed to encompass all DICOM-formatted medical imaging data and integrate imaging-derived features with clinical data, ensuring their provenance.The harmonization of medical imaging data and its seamless integration with structured clinical data at a global scale will pave the way for advanced AI research in radiology. This standardization will enable federated learning, ensuring privacy-preserving collaboration across institutions and promoting equitable AI through the inclusion of diverse patient populations. Moreover, it will facilitate the development of foundation models trained on large-scale, multimodal datasets, serving as powerful starting points for specialized AI applications. Objective and transparent algorithm validation on a standardized data infrastructure will enhance reproducibility and interoperability of AI systems, driving innovation and reliability in clinical applications.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":"1-10"},"PeriodicalIF":7.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141579690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}