首页 > 最新文献

J. Comput. Sci.最新文献

英文 中文
Physics Informed Machine Learning for Chemistry Tabulation 物理通知化学制表机器学习
Pub Date : 2022-11-06 DOI: 10.48550/arXiv.2211.03022
A. Salunkhe, Dwyer Deighan, P. DesJardin, V. Chandola
Modeling of turbulent combustion system requires modeling the underlying chemistry and the turbulent flow. Solving both systems simultaneously is computationally prohibitive. Instead, given the difference in scales at which the two sub-systems evolve, the two sub-systems are typically (re)solved separately. Popular approaches such as the Flamelet Generated Manifolds (FGM) use a two-step strategy where the governing reaction kinetics are pre-computed and mapped to a low-dimensional manifold, characterized by a few reaction progress variables (model reduction) and the manifold is then ``looked-up'' during the runtime to estimate the high-dimensional system state by the flow system. While existing works have focused on these two steps independently, in this work we show that joint learning of the progress variables and the look--up model, can yield more accurate results. We build on the base formulation and implementation ChemTab to include the dynamically generated Themochemical State Variables (Lower Dimensional Dynamic Source Terms). We discuss the challenges in the implementation of this deep neural network architecture and experimentally demonstrate it's superior performance.
紊流燃烧系统的建模需要对底层化学和紊流进行建模。同时解决这两个系统在计算上是令人望而却步的。相反,考虑到两个子系统进化的尺度差异,这两个子系统通常是分开(重新)解决的。Flamelet Generated manifold (FGM)等流行方法采用两步策略,其中预先计算控制反应动力学并将其映射到低维流形,其特征是几个反应过程变量(模型缩减),然后在运行期间“查找”流形,以通过流动系统估计高维系统状态。虽然现有的工作都是独立地关注这两个步骤,但在这项工作中,我们表明联合学习进度变量和查找模型可以产生更准确的结果。我们基于ChemTab的基本公式和实现来包含动态生成的热化学状态变量(低维动态源项)。我们讨论了实现这种深度神经网络架构所面临的挑战,并通过实验证明了其优越的性能。
{"title":"Physics Informed Machine Learning for Chemistry Tabulation","authors":"A. Salunkhe, Dwyer Deighan, P. DesJardin, V. Chandola","doi":"10.48550/arXiv.2211.03022","DOIUrl":"https://doi.org/10.48550/arXiv.2211.03022","url":null,"abstract":"Modeling of turbulent combustion system requires modeling the underlying chemistry and the turbulent flow. Solving both systems simultaneously is computationally prohibitive. Instead, given the difference in scales at which the two sub-systems evolve, the two sub-systems are typically (re)solved separately. Popular approaches such as the Flamelet Generated Manifolds (FGM) use a two-step strategy where the governing reaction kinetics are pre-computed and mapped to a low-dimensional manifold, characterized by a few reaction progress variables (model reduction) and the manifold is then ``looked-up'' during the runtime to estimate the high-dimensional system state by the flow system. While existing works have focused on these two steps independently, in this work we show that joint learning of the progress variables and the look--up model, can yield more accurate results. We build on the base formulation and implementation ChemTab to include the dynamically generated Themochemical State Variables (Lower Dimensional Dynamic Source Terms). We discuss the challenges in the implementation of this deep neural network architecture and experimentally demonstrate it's superior performance.","PeriodicalId":14601,"journal":{"name":"J. Comput. Sci.","volume":"35 1","pages":"102001"},"PeriodicalIF":0.0,"publicationDate":"2022-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73563104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Impact Learning: A Learning Method from Features Impact and Competition 影响学习:一种基于特征、影响和竞争的学习方法
Pub Date : 2022-11-04 DOI: 10.48550/arXiv.2211.02263
Nusrat Jahan Prottasha, Saydul Akbar Murad, Abu Jafar Md Muzahid, Masud Rana, M. Kowsher, Apurba Adhikary, S. Biswas, A. Bairagi
Machine learning is the study of computer algorithms that can automatically improve based on data and experience. Machine learning algorithms build a model from sample data, called training data, to make predictions or judgments without being explicitly programmed to do so. A variety of wellknown machine learning algorithms have been developed for use in the field of computer science to analyze data. This paper introduced a new machine learning algorithm called impact learning. Impact learning is a supervised learning algorithm that can be consolidated in both classification and regression problems. It can furthermore manifest its superiority in analyzing competitive data. This algorithm is remarkable for learning from the competitive situation and the competition comes from the effects of autonomous features. It is prepared by the impacts of the highlights from the intrinsic rate of natural increase (RNI). We, moreover, manifest the prevalence of the impact learning over the conventional machine learning algorithm.
机器学习是对计算机算法的研究,它可以根据数据和经验自动改进。机器学习算法从样本数据(称为训练数据)中建立模型,在没有明确编程的情况下做出预测或判断。各种著名的机器学习算法已经被开发出来用于计算机科学领域来分析数据。本文介绍了一种新的机器学习算法,称为影响学习。影响学习是一种监督学习算法,可以在分类和回归问题中得到巩固。进一步体现了其在分析竞争数据方面的优势。该算法具有从竞争环境中学习的特点,而竞争来源于自主特征的影响。它是由内在自然增长率(RNI)的影响所制备的。此外,我们还证明了影响学习在传统机器学习算法中的普及。
{"title":"Impact Learning: A Learning Method from Features Impact and Competition","authors":"Nusrat Jahan Prottasha, Saydul Akbar Murad, Abu Jafar Md Muzahid, Masud Rana, M. Kowsher, Apurba Adhikary, S. Biswas, A. Bairagi","doi":"10.48550/arXiv.2211.02263","DOIUrl":"https://doi.org/10.48550/arXiv.2211.02263","url":null,"abstract":"Machine learning is the study of computer algorithms that can automatically improve based on data and experience. Machine learning algorithms build a model from sample data, called training data, to make predictions or judgments without being explicitly programmed to do so. A variety of wellknown machine learning algorithms have been developed for use in the field of computer science to analyze data. This paper introduced a new machine learning algorithm called impact learning. Impact learning is a supervised learning algorithm that can be consolidated in both classification and regression problems. It can furthermore manifest its superiority in analyzing competitive data. This algorithm is remarkable for learning from the competitive situation and the competition comes from the effects of autonomous features. It is prepared by the impacts of the highlights from the intrinsic rate of natural increase (RNI). We, moreover, manifest the prevalence of the impact learning over the conventional machine learning algorithm.","PeriodicalId":14601,"journal":{"name":"J. Comput. Sci.","volume":"48 1","pages":"102011"},"PeriodicalIF":0.0,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86066518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Stable and efficient time second-order difference schemes for fractional Klein-Gordon-Zakharov system 分数阶Klein-Gordon-Zakharov系统稳定有效的时间二阶差分格式
Pub Date : 2022-11-01 DOI: 10.1016/j.jocs.2022.101901
Jianqiang Xie, Quanxiang Wang, Zhiyue Zhang
{"title":"Stable and efficient time second-order difference schemes for fractional Klein-Gordon-Zakharov system","authors":"Jianqiang Xie, Quanxiang Wang, Zhiyue Zhang","doi":"10.1016/j.jocs.2022.101901","DOIUrl":"https://doi.org/10.1016/j.jocs.2022.101901","url":null,"abstract":"","PeriodicalId":14601,"journal":{"name":"J. Comput. Sci.","volume":"190 1","pages":"101901"},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77697587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TransFlowNet: A physics-constrained Transformer framework for spatio-temporal super-resolution of flow simulations TransFlowNet:用于流体模拟时空超分辨率的物理约束Transformer框架
Pub Date : 2022-11-01 DOI: 10.1016/j.jocs.2022.101906
Xinjie Wang, Siyuan Zhu, Yundong Guo, Peng Han, Yucheng Wang, Zhiqiang Wei, Xiaogang Jin
{"title":"TransFlowNet: A physics-constrained Transformer framework for spatio-temporal super-resolution of flow simulations","authors":"Xinjie Wang, Siyuan Zhu, Yundong Guo, Peng Han, Yucheng Wang, Zhiqiang Wei, Xiaogang Jin","doi":"10.1016/j.jocs.2022.101906","DOIUrl":"https://doi.org/10.1016/j.jocs.2022.101906","url":null,"abstract":"","PeriodicalId":14601,"journal":{"name":"J. Comput. Sci.","volume":"1 1","pages":"101906"},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90800013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
A parallel algorithm for maximal cliques enumeration to improve hypergraph construction 一种改进超图构造的最大团枚举并行算法
Pub Date : 2022-11-01 DOI: 10.1016/j.jocs.2022.101905
Xiang Gao, Fan Zhou, Kedi Xu, Xiang Tian, Yao-wu Chen
{"title":"A parallel algorithm for maximal cliques enumeration to improve hypergraph construction","authors":"Xiang Gao, Fan Zhou, Kedi Xu, Xiang Tian, Yao-wu Chen","doi":"10.1016/j.jocs.2022.101905","DOIUrl":"https://doi.org/10.1016/j.jocs.2022.101905","url":null,"abstract":"","PeriodicalId":14601,"journal":{"name":"J. Comput. Sci.","volume":"54 1","pages":"101905"},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77072557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Ensemble data assimilation using optimal control in the Wasserstein metric 在Wasserstein度量中使用最优控制的集成数据同化
Pub Date : 2022-11-01 DOI: 10.1016/j.jocs.2022.101895
Xin Liu, J. Frank
{"title":"Ensemble data assimilation using optimal control in the Wasserstein metric","authors":"Xin Liu, J. Frank","doi":"10.1016/j.jocs.2022.101895","DOIUrl":"https://doi.org/10.1016/j.jocs.2022.101895","url":null,"abstract":"","PeriodicalId":14601,"journal":{"name":"J. Comput. Sci.","volume":"19 1","pages":"101895"},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76488384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced expected hypervolume improvement criterion for parallel multi-objective optimization 改进的并行多目标优化期望超容量改进准则
Pub Date : 2022-11-01 DOI: 10.1016/j.jocs.2022.101903
Qingyu Wang, Takuji Nakashima, Chenguang Lai, Bo Hu, Xinru Du, Zhongzheng Fu, Taiga Kanehira, Y. Konishi, Hiroyuki Okuizumi, Hidemi Mutsuda
{"title":"Enhanced expected hypervolume improvement criterion for parallel multi-objective optimization","authors":"Qingyu Wang, Takuji Nakashima, Chenguang Lai, Bo Hu, Xinru Du, Zhongzheng Fu, Taiga Kanehira, Y. Konishi, Hiroyuki Okuizumi, Hidemi Mutsuda","doi":"10.1016/j.jocs.2022.101903","DOIUrl":"https://doi.org/10.1016/j.jocs.2022.101903","url":null,"abstract":"","PeriodicalId":14601,"journal":{"name":"J. Comput. Sci.","volume":"104 1","pages":"101903"},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75988432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Soft isogeometric analysis of the Bound States of a Quantum Three-Body Problem in 1D 一维量子三体问题束缚态的软等几何分析
Pub Date : 2022-10-13 DOI: 10.48550/arXiv.2210.06832
Danyang Li, Quanling Deng
The study of quantum three-body problems has been centered on low-energy states that rely on accurate numerical approximation. Recently, isogeometric analysis (IGA) has been adopted to solve the problem as an alternative but more robust (with respect to atom mass ratios) method that outperforms the classical Born-Oppenheimer (BO) approximation. In this paper, we focus on the performance of IGA and apply the recently-developed softIGA to reduce the spectral errors of the low-energy bound states. The main idea is to add high-order derivative-jump terms with a penalty parameter to the IGA bilinear forms. With an optimal choice of the penalty parameter, we observe eigenvalue error superconvergence. We focus on linear (finite elements) and quadratic elements and demonstrate the outperformance of softIGA over IGA through a variety of examples including both two- and three-body problems in 1D.
量子三体问题的研究主要集中在依赖精确数值近似的低能态上。最近,等几何分析(IGA)被采用来解决这个问题,作为一种替代方法,但更健壮(关于原子质量比),优于经典的Born-Oppenheimer (BO)近似。在本文中,我们重点研究了IGA的性能,并应用最新开发的软件tiga来降低低能束缚态的光谱误差。其主要思想是在IGA双线性形式中加入带有惩罚参数的高阶导数跳跃项。通过对惩罚参数的最优选择,我们观察到特征值误差超收敛。我们专注于线性(有限元)和二次元,并通过包括一维二体和三体问题在内的各种示例展示了softtiga优于IGA的性能。
{"title":"Soft isogeometric analysis of the Bound States of a Quantum Three-Body Problem in 1D","authors":"Danyang Li, Quanling Deng","doi":"10.48550/arXiv.2210.06832","DOIUrl":"https://doi.org/10.48550/arXiv.2210.06832","url":null,"abstract":"The study of quantum three-body problems has been centered on low-energy states that rely on accurate numerical approximation. Recently, isogeometric analysis (IGA) has been adopted to solve the problem as an alternative but more robust (with respect to atom mass ratios) method that outperforms the classical Born-Oppenheimer (BO) approximation. In this paper, we focus on the performance of IGA and apply the recently-developed softIGA to reduce the spectral errors of the low-energy bound states. The main idea is to add high-order derivative-jump terms with a penalty parameter to the IGA bilinear forms. With an optimal choice of the penalty parameter, we observe eigenvalue error superconvergence. We focus on linear (finite elements) and quadratic elements and demonstrate the outperformance of softIGA over IGA through a variety of examples including both two- and three-body problems in 1D.","PeriodicalId":14601,"journal":{"name":"J. Comput. Sci.","volume":"3 1","pages":"102032"},"PeriodicalIF":0.0,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78255565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The impact of domain-driven and data-driven feature selection on the inverse design of nanoparticle catalysts 领域驱动和数据驱动特征选择对纳米颗粒催化剂反设计的影响
Pub Date : 2022-10-01 DOI: 10.1016/j.jocs.2022.101896
Sichao Li, Jonathan Y. C. Ting, A. Barnard
{"title":"The impact of domain-driven and data-driven feature selection on the inverse design of nanoparticle catalysts","authors":"Sichao Li, Jonathan Y. C. Ting, A. Barnard","doi":"10.1016/j.jocs.2022.101896","DOIUrl":"https://doi.org/10.1016/j.jocs.2022.101896","url":null,"abstract":"","PeriodicalId":14601,"journal":{"name":"J. Comput. Sci.","volume":"14 1","pages":"101896"},"PeriodicalIF":0.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82504722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A machine learning framework for identifying influenza pneumonia from bacterial pneumonia for medical decision making 用于识别流行性肺炎和细菌性肺炎的机器学习框架,用于医疗决策
Pub Date : 2022-10-01 DOI: 10.1016/j.jocs.2022.101871
Qian Zhang, Anran Huang, Lianyou Shao, Peiliang Wu, Ali Asghar Heidari, Zhennao Cai, Guoxi Liang, Huiling Chen, F. Alotaibi, Majdi M. Mafarja, Jinsheng Ouyang
{"title":"A machine learning framework for identifying influenza pneumonia from bacterial pneumonia for medical decision making","authors":"Qian Zhang, Anran Huang, Lianyou Shao, Peiliang Wu, Ali Asghar Heidari, Zhennao Cai, Guoxi Liang, Huiling Chen, F. Alotaibi, Majdi M. Mafarja, Jinsheng Ouyang","doi":"10.1016/j.jocs.2022.101871","DOIUrl":"https://doi.org/10.1016/j.jocs.2022.101871","url":null,"abstract":"","PeriodicalId":14601,"journal":{"name":"J. Comput. Sci.","volume":"07 1","pages":"101871"},"PeriodicalIF":0.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86019575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
期刊
J. Comput. Sci.
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1