首页 > 最新文献

J. Comput. Sci.最新文献

英文 中文
NIE-GAT: node importance evaluation method for inter-domain routing network based on graph attention network 基于图关注网络的域间路由网络节点重要性评价方法
Pub Date : 2022-10-01 DOI: 10.1016/j.jocs.2022.101885
Zimian Liu, Han Qiu, Wei Guo, Junhu Zhu, Qingxian Wang
{"title":"NIE-GAT: node importance evaluation method for inter-domain routing network based on graph attention network","authors":"Zimian Liu, Han Qiu, Wei Guo, Junhu Zhu, Qingxian Wang","doi":"10.1016/j.jocs.2022.101885","DOIUrl":"https://doi.org/10.1016/j.jocs.2022.101885","url":null,"abstract":"","PeriodicalId":14601,"journal":{"name":"J. Comput. Sci.","volume":"21 1","pages":"101885"},"PeriodicalIF":0.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77988230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Parkinson's disease gene prioritising using an efficient and biologically appropriate network-based consensus strategy 帕金森氏病基因优先使用有效和生物学上适当的基于网络的共识策略
Pub Date : 2022-10-01 DOI: 10.1016/j.jocs.2022.101879
B. Kumari, P. S. Dholaniya
{"title":"Parkinson's disease gene prioritising using an efficient and biologically appropriate network-based consensus strategy","authors":"B. Kumari, P. S. Dholaniya","doi":"10.1016/j.jocs.2022.101879","DOIUrl":"https://doi.org/10.1016/j.jocs.2022.101879","url":null,"abstract":"","PeriodicalId":14601,"journal":{"name":"J. Comput. Sci.","volume":"9 1","pages":"101879"},"PeriodicalIF":0.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78922186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Padasip: An open-source Python toolbox for adaptive filtering Padasip:用于自适应过滤的开源Python工具箱
Pub Date : 2022-10-01 DOI: 10.1016/j.jocs.2022.101887
Matous Cejnek, J. Vrba
{"title":"Padasip: An open-source Python toolbox for adaptive filtering","authors":"Matous Cejnek, J. Vrba","doi":"10.1016/j.jocs.2022.101887","DOIUrl":"https://doi.org/10.1016/j.jocs.2022.101887","url":null,"abstract":"","PeriodicalId":14601,"journal":{"name":"J. Comput. Sci.","volume":"15 1","pages":"101887"},"PeriodicalIF":0.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81453687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chaos follow the leader algorithm: Application to data classification 混沌跟随先导算法:在数据分类中的应用
Pub Date : 2022-10-01 DOI: 10.1016/j.jocs.2022.101886
Priyanka Singh, Rahul Kottath
{"title":"Chaos follow the leader algorithm: Application to data classification","authors":"Priyanka Singh, Rahul Kottath","doi":"10.1016/j.jocs.2022.101886","DOIUrl":"https://doi.org/10.1016/j.jocs.2022.101886","url":null,"abstract":"","PeriodicalId":14601,"journal":{"name":"J. Comput. Sci.","volume":"68 1","pages":"101886"},"PeriodicalIF":0.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73573075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Estimation of Correlation Matrices from Limited time series Data using Machine Learning 用机器学习估计有限时间序列数据的相关矩阵
Pub Date : 2022-09-02 DOI: 10.48550/arXiv.2209.01198
Nikhil Easaw, Woo Soek, Prashant Singh Lohiya, S. Jalan, Priodyuti Pradhan
Correlation matrices contain a wide variety of spatio-temporal information about a dynamical system. Predicting correlation matrices from partial time series information of a few nodes characterizes the spatio-temporal dynamics of the entire underlying system. This information can help to predict the underlying network structure, e.g., inferring neuronal connections from spiking data, deducing causal dependencies between genes from expression data, and discovering long spatial range influences in climate variations. Traditional methods of predicting correlation matrices utilize time series data of all the nodes of the underlying networks. Here, we use a supervised machine learning technique to predict the correlation matrix of entire systems from finite time series information of a few randomly selected nodes. The accuracy of the prediction validates that only a limited time series of a subset of the entire system is enough to make good correlation matrix predictions. Furthermore, using an unsupervised learning algorithm, we furnish insights into the success of the predictions from our model. Finally, we employ the machine learning model developed here to real-world data sets.
相关矩阵包含了动态系统的各种时空信息。从几个节点的部分时间序列信息预测相关矩阵表征了整个底层系统的时空动态。这些信息有助于预测潜在的网络结构,例如,从峰值数据推断神经元连接,从表达数据推断基因之间的因果关系,以及发现气候变化的长空间范围影响。传统的预测相关矩阵的方法是利用底层网络所有节点的时间序列数据。在这里,我们使用有监督的机器学习技术从一些随机选择的节点的有限时间序列信息中预测整个系统的相关矩阵。预测的准确性验证了整个系统的一个子集的有限时间序列足以做出良好的相关矩阵预测。此外,使用无监督学习算法,我们提供了从我们的模型预测成功的见解。最后,我们将这里开发的机器学习模型应用于现实世界的数据集。
{"title":"Estimation of Correlation Matrices from Limited time series Data using Machine Learning","authors":"Nikhil Easaw, Woo Soek, Prashant Singh Lohiya, S. Jalan, Priodyuti Pradhan","doi":"10.48550/arXiv.2209.01198","DOIUrl":"https://doi.org/10.48550/arXiv.2209.01198","url":null,"abstract":"Correlation matrices contain a wide variety of spatio-temporal information about a dynamical system. Predicting correlation matrices from partial time series information of a few nodes characterizes the spatio-temporal dynamics of the entire underlying system. This information can help to predict the underlying network structure, e.g., inferring neuronal connections from spiking data, deducing causal dependencies between genes from expression data, and discovering long spatial range influences in climate variations. Traditional methods of predicting correlation matrices utilize time series data of all the nodes of the underlying networks. Here, we use a supervised machine learning technique to predict the correlation matrix of entire systems from finite time series information of a few randomly selected nodes. The accuracy of the prediction validates that only a limited time series of a subset of the entire system is enough to make good correlation matrix predictions. Furthermore, using an unsupervised learning algorithm, we furnish insights into the success of the predictions from our model. Finally, we employ the machine learning model developed here to real-world data sets.","PeriodicalId":14601,"journal":{"name":"J. Comput. Sci.","volume":"41 1","pages":"102053"},"PeriodicalIF":0.0,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77158547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Verification of a real-time ensemble-based method for updating earth model based on GAN 基于GAN的实时集成地球模型更新方法的验证
Pub Date : 2022-07-07 DOI: 10.1016/j.jocs.2022.101876
K. Fossum, S. Alyaev, J. Tveranger, A. Elsheikh
{"title":"Verification of a real-time ensemble-based method for updating earth model based on GAN","authors":"K. Fossum, S. Alyaev, J. Tveranger, A. Elsheikh","doi":"10.1016/j.jocs.2022.101876","DOIUrl":"https://doi.org/10.1016/j.jocs.2022.101876","url":null,"abstract":"","PeriodicalId":14601,"journal":{"name":"J. Comput. Sci.","volume":"3 4 1","pages":"101876"},"PeriodicalIF":0.0,"publicationDate":"2022-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79713424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
AVIDA: Alternating method for Visualizing and Integrating Data AVIDA:数据可视化和集成的交替方法
Pub Date : 2022-05-31 DOI: 10.48550/arXiv.2206.00135
Kathryn Dover, Zixuan Cang, A. Ma, Qing Nie, R. Vershynin
High-dimensional multimodal data arises in many scientific fields. The integration of multimodal data becomes challenging when there is no known correspondence between the samples and the features of different datasets. To tackle this challenge, we introduce AVIDA, a framework for simultaneously performing data alignment and dimension reduction. In the numerical experiments, Gromov-Wasserstein optimal transport and t-distributed stochastic neighbor embedding are used as the alignment and dimension reduction modules respectively. We show that AVIDA correctly aligns high-dimensional datasets without common features with four synthesized datasets and two real multimodal single-cell datasets. Compared to several existing methods, we demonstrate that AVIDA better preserves structures of individual datasets, especially distinct local structures in the joint low-dimensional visualization, while achieving comparable alignment performance. Such a property is important in multimodal single-cell data analysis as some biological processes are uniquely captured by one of the datasets. In general applications, other methods can be used for the alignment and dimension reduction modules.
高维多模态数据出现在许多科学领域。当样本和不同数据集的特征之间没有已知的对应关系时,多模态数据的集成变得具有挑战性。为了应对这一挑战,我们引入了AVIDA,这是一个同时执行数据对齐和降维的框架。在数值实验中,分别采用Gromov-Wasserstein最优输运和t分布随机邻居嵌入作为对齐和降维模块。我们证明了AVIDA可以正确地将没有共同特征的高维数据集与四个合成数据集和两个真实的多模态单细胞数据集对齐。与现有的几种方法相比,AVIDA可以更好地保留单个数据集的结构,特别是在关节低维可视化中不同的局部结构,同时获得相当的对齐性能。这种特性在多模态单细胞数据分析中很重要,因为某些生物过程是由一个数据集唯一捕获的。在一般的应用中,其他方法可以用于对中和降维模块。
{"title":"AVIDA: Alternating method for Visualizing and Integrating Data","authors":"Kathryn Dover, Zixuan Cang, A. Ma, Qing Nie, R. Vershynin","doi":"10.48550/arXiv.2206.00135","DOIUrl":"https://doi.org/10.48550/arXiv.2206.00135","url":null,"abstract":"High-dimensional multimodal data arises in many scientific fields. The integration of multimodal data becomes challenging when there is no known correspondence between the samples and the features of different datasets. To tackle this challenge, we introduce AVIDA, a framework for simultaneously performing data alignment and dimension reduction. In the numerical experiments, Gromov-Wasserstein optimal transport and t-distributed stochastic neighbor embedding are used as the alignment and dimension reduction modules respectively. We show that AVIDA correctly aligns high-dimensional datasets without common features with four synthesized datasets and two real multimodal single-cell datasets. Compared to several existing methods, we demonstrate that AVIDA better preserves structures of individual datasets, especially distinct local structures in the joint low-dimensional visualization, while achieving comparable alignment performance. Such a property is important in multimodal single-cell data analysis as some biological processes are uniquely captured by one of the datasets. In general applications, other methods can be used for the alignment and dimension reduction modules.","PeriodicalId":14601,"journal":{"name":"J. Comput. Sci.","volume":"16 1","pages":"101998"},"PeriodicalIF":0.0,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82291790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Deep Reinforcement Learning for Computational Fluid Dynamics on HPC Systems HPC系统计算流体力学的深度强化学习
Pub Date : 2022-05-13 DOI: 10.1016/j.jocs.2022.101884
Marius Kurz, Philipp Offenhauser, Dominic Viola, Oleksandr Shcherbakov, Michael M. Resch, A. Beck
{"title":"Deep Reinforcement Learning for Computational Fluid Dynamics on HPC Systems","authors":"Marius Kurz, Philipp Offenhauser, Dominic Viola, Oleksandr Shcherbakov, Michael M. Resch, A. Beck","doi":"10.1016/j.jocs.2022.101884","DOIUrl":"https://doi.org/10.1016/j.jocs.2022.101884","url":null,"abstract":"","PeriodicalId":14601,"journal":{"name":"J. Comput. Sci.","volume":"32 1","pages":"101884"},"PeriodicalIF":0.0,"publicationDate":"2022-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90496802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
An improved numerical method for hyperbolic Lagrangian Coherent Structures using Differential Algebra 用微分代数改进双曲拉格朗日相干结构的数值计算方法
Pub Date : 2022-04-13 DOI: 10.1016/j.jocs.2022.101883
J. Tyler, A. Wittig
{"title":"An improved numerical method for hyperbolic Lagrangian Coherent Structures using Differential Algebra","authors":"J. Tyler, A. Wittig","doi":"10.1016/j.jocs.2022.101883","DOIUrl":"https://doi.org/10.1016/j.jocs.2022.101883","url":null,"abstract":"","PeriodicalId":14601,"journal":{"name":"J. Comput. Sci.","volume":"51 4 1","pages":"101883"},"PeriodicalIF":0.0,"publicationDate":"2022-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77803528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Technical solution to counter potential crime: Text analysis to detect fake news and disinformation 打击潜在犯罪的技术解决方案:文本分析,以检测假新闻和虚假信息
Pub Date : 2022-04-01 DOI: 10.1016/j.jocs.2022.101576
R. Kozik, Sebastian Kula, M. Choraś, Michael Wozniak
{"title":"Technical solution to counter potential crime: Text analysis to detect fake news and disinformation","authors":"R. Kozik, Sebastian Kula, M. Choraś, Michael Wozniak","doi":"10.1016/j.jocs.2022.101576","DOIUrl":"https://doi.org/10.1016/j.jocs.2022.101576","url":null,"abstract":"","PeriodicalId":14601,"journal":{"name":"J. Comput. Sci.","volume":"20 1","pages":"101576"},"PeriodicalIF":0.0,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76707624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
期刊
J. Comput. Sci.
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1