Pub Date : 2026-01-23DOI: 10.1172/jci.insight.196695
Jiaqi Zhang, Danni Wang, Qiqi Tang, Yaoshu Yue, Xin Lu, Xiuya Hu, Yitong Han, Jiarun Chen, Zihan Wang, Xue Bai, Kai Zhang, Yongsheng Chang, Longhao Sun, Lu Zhu, Lingdi Wang
Mitochondrial retrograde signaling plays crucial roles in maintaining metabolic homeostasis via regulating genome modification and oxidative responsive gene expression. In this study, we identified GCN5L1, a protein localized in both mitochondria and cytoplasm, and demonstrated its specific translocation from mitochondria to cytoplasm during lipid overload and high-fat diet feeding. Using transcriptome and proteome analyses, we identified that cytoplasmic GCN5L1 binds to and promotes the acetylation of PPARγ at lysine 289 (K289). This acetylation protected PPARγ from ubiquitination-mediated degradation by proteasome. GCN5L1 translocation enhanced protein stability of PPARγ and subsequently promoted lipid accumulation in both cultured cells and murine models. Our study further reveals that PPARγ-K289 mutation reduces the ubiquitination of PPARγ and exacerbates liver steatosis in mice. These findings unveil a mitochondrial retrograde signaling during lipid overload, which regulates the crucial lipogenic transcriptional factor. This discovery elucidates an unrecognized mitochondrial function and mechanism underlying hepatic lipid synthesis.
{"title":"Mitochondrial retrograde signal through GCN5L1 transition-mediated PPARγ stabilization promotes MASLD development.","authors":"Jiaqi Zhang, Danni Wang, Qiqi Tang, Yaoshu Yue, Xin Lu, Xiuya Hu, Yitong Han, Jiarun Chen, Zihan Wang, Xue Bai, Kai Zhang, Yongsheng Chang, Longhao Sun, Lu Zhu, Lingdi Wang","doi":"10.1172/jci.insight.196695","DOIUrl":"https://doi.org/10.1172/jci.insight.196695","url":null,"abstract":"<p><p>Mitochondrial retrograde signaling plays crucial roles in maintaining metabolic homeostasis via regulating genome modification and oxidative responsive gene expression. In this study, we identified GCN5L1, a protein localized in both mitochondria and cytoplasm, and demonstrated its specific translocation from mitochondria to cytoplasm during lipid overload and high-fat diet feeding. Using transcriptome and proteome analyses, we identified that cytoplasmic GCN5L1 binds to and promotes the acetylation of PPARγ at lysine 289 (K289). This acetylation protected PPARγ from ubiquitination-mediated degradation by proteasome. GCN5L1 translocation enhanced protein stability of PPARγ and subsequently promoted lipid accumulation in both cultured cells and murine models. Our study further reveals that PPARγ-K289 mutation reduces the ubiquitination of PPARγ and exacerbates liver steatosis in mice. These findings unveil a mitochondrial retrograde signaling during lipid overload, which regulates the crucial lipogenic transcriptional factor. This discovery elucidates an unrecognized mitochondrial function and mechanism underlying hepatic lipid synthesis.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":"11 2","pages":""},"PeriodicalIF":6.1,"publicationDate":"2026-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146029718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-22DOI: 10.1172/jci.insight.198992
Arin L Melkonian, Amie M Traylor, Anna A Zmijewska, Kyle H Moore, Gelare Ghajar-Rahimi, Stephanie Esman, Yanlin Jiang, Hani Jang, Babak J Mehrara, Timmy C Lee, James F George, Anupam Agarwal
The lymphatic system maintains fluid homeostasis and orchestrates immune cell trafficking throughout tissues. While extensively studied in cancer and lymphedema, its role in non-lymphoid organs, particularly the kidney, remains an emerging area of investigation. Previous research established molecular connections between NF-κB, VEGFR-3, and PROX-1 in regulating lymphatic growth during inflammation, and studies using global knockout mice revealed that the NF-κB1 subunit (p50) influences lymphatic vessel density. However, the role of RelA-a key component of the canonical NF-κB heterodimer-in regulating lymphatic growth and kidney function following acute kidney injury (AKI) remains unexplored. Using an inducible, predominantly lymphatic-specific RelA knockout mouse model, we demonstrate that RelA expression in VEGFR-3+ cells is essential for VEGFR-3 driven lymphangiogenesis following AKI. Knockout mice exhibited significantly worse kidney function, altered histological features, impaired VEGFR-3-dependent lymphangiogenesis, and dysregulated immune cell trafficking. Compensatory upregulation of PROX-1 and podoplanin occurred despite decreased VEGFR-3 and LYVE-1 total protein expression, suggesting complex regulatory mechanisms. Our findings suggest that RelA is a critical sensor for inflammation and regulator of protective lymphangiogenesis following kidney injury and provide insights into potential therapeutic targets for improved kidney injury outcomes.
{"title":"NF-κB Driven Lymphangiogenesis Impacts Kidney Function via a VEGFR-3 Mediated Pathway.","authors":"Arin L Melkonian, Amie M Traylor, Anna A Zmijewska, Kyle H Moore, Gelare Ghajar-Rahimi, Stephanie Esman, Yanlin Jiang, Hani Jang, Babak J Mehrara, Timmy C Lee, James F George, Anupam Agarwal","doi":"10.1172/jci.insight.198992","DOIUrl":"https://doi.org/10.1172/jci.insight.198992","url":null,"abstract":"<p><p>The lymphatic system maintains fluid homeostasis and orchestrates immune cell trafficking throughout tissues. While extensively studied in cancer and lymphedema, its role in non-lymphoid organs, particularly the kidney, remains an emerging area of investigation. Previous research established molecular connections between NF-κB, VEGFR-3, and PROX-1 in regulating lymphatic growth during inflammation, and studies using global knockout mice revealed that the NF-κB1 subunit (p50) influences lymphatic vessel density. However, the role of RelA-a key component of the canonical NF-κB heterodimer-in regulating lymphatic growth and kidney function following acute kidney injury (AKI) remains unexplored. Using an inducible, predominantly lymphatic-specific RelA knockout mouse model, we demonstrate that RelA expression in VEGFR-3+ cells is essential for VEGFR-3 driven lymphangiogenesis following AKI. Knockout mice exhibited significantly worse kidney function, altered histological features, impaired VEGFR-3-dependent lymphangiogenesis, and dysregulated immune cell trafficking. Compensatory upregulation of PROX-1 and podoplanin occurred despite decreased VEGFR-3 and LYVE-1 total protein expression, suggesting complex regulatory mechanisms. Our findings suggest that RelA is a critical sensor for inflammation and regulator of protective lymphangiogenesis following kidney injury and provide insights into potential therapeutic targets for improved kidney injury outcomes.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.1,"publicationDate":"2026-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146040204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-22DOI: 10.1172/jci.insight.194613
Erin Boland, Michael G Freeman, David S Corcoran, Thomas J Ford, Barry Hennigan, Damien Collison, Aida Llucià-Valldeperas, Frances S de Man, Kanarath P Balachandran, Martin Johnson, Colin Church, Colin Berry
Background: Idiopathic pulmonary arterial hypertension (IPAH) alters right ventricular size and function, curtailing life-expectancy. Patients may experience angina and myocardial ischemia. However, the mechanisms underlying these changes are poorly understood.
Methods: A cross-sectional, case-control design of coronary pathophysiology (in vivo and ex vivo) in IPAH. Patients with IPAH (Group-1.1) undergoing clinically indicated right heart catheterization were prospectively enrolled. Participants underwent functional testing during coronary angiography using a dual pressure/temperature-sensitive guidewire. Cardiovascular magnetic resonance measured left and right ventricular mass and function. Autopsy cardiac tissues from end-stage PAH (Group-1) and control individuals were analyzed for right ventricular pathophysiology.
Results: Eleven participants with IPAH and 15 control participants completed the protocol (IPAH: 45±15 years, 73% female; controls: 58.3±9.1 years, 73% female). 73% (n=8) of IPAH patients had an elevated index of microcirculatory resistance (IMR >25) and 55% (n=6) had reduced coronary flow reserve (CRF <2.0). The mean IMR was significantly higher in IPAH participants (39.2±27.0 vs. 15.3±5.0, p=0.002) whereas mean CFR was lower (2.8±2.1 vs. 4.0±1.4; p=0.077). Paired right coronary artery/ventricular measurements (n=6) revealed IMR positively correlated with right ventricular mass (r=0.91, p=0.12), and negatively with CFR (r=-0.82, p=0.046). Compared to controls (n=5), PAH participants (n=4) had reduced right ventricular capillary density (111±18 vs. 167±20, p=0.032), increased cardiomyocyte area (383±118μm2 vs. 231±61μm2, p=0.0390), and increased mural area in small pre-capillary arterioles (127±10μm2 vs. 107±20μm2, p=0.041).
Conclusions: Coronary microvascular dysfunction is prevalent in IPAH and correlates with increased right ventricular mass. Histopathology revealed vascular rarefaction and remodeling of pre-capillary arterioles. The clinical significance merits prospective evaluation. Invasive coronary function testing was feasible and safe in IPAH, providing a platform to assess therapeutic impacts on cardiac microvascular function.
{"title":"Coronary pathophysiology in idiopathic pulmonary arterial hypertension: A systems medicine study.","authors":"Erin Boland, Michael G Freeman, David S Corcoran, Thomas J Ford, Barry Hennigan, Damien Collison, Aida Llucià-Valldeperas, Frances S de Man, Kanarath P Balachandran, Martin Johnson, Colin Church, Colin Berry","doi":"10.1172/jci.insight.194613","DOIUrl":"https://doi.org/10.1172/jci.insight.194613","url":null,"abstract":"<p><strong>Background: </strong>Idiopathic pulmonary arterial hypertension (IPAH) alters right ventricular size and function, curtailing life-expectancy. Patients may experience angina and myocardial ischemia. However, the mechanisms underlying these changes are poorly understood.</p><p><strong>Methods: </strong>A cross-sectional, case-control design of coronary pathophysiology (in vivo and ex vivo) in IPAH. Patients with IPAH (Group-1.1) undergoing clinically indicated right heart catheterization were prospectively enrolled. Participants underwent functional testing during coronary angiography using a dual pressure/temperature-sensitive guidewire. Cardiovascular magnetic resonance measured left and right ventricular mass and function. Autopsy cardiac tissues from end-stage PAH (Group-1) and control individuals were analyzed for right ventricular pathophysiology.</p><p><strong>Results: </strong>Eleven participants with IPAH and 15 control participants completed the protocol (IPAH: 45±15 years, 73% female; controls: 58.3±9.1 years, 73% female). 73% (n=8) of IPAH patients had an elevated index of microcirculatory resistance (IMR >25) and 55% (n=6) had reduced coronary flow reserve (CRF <2.0). The mean IMR was significantly higher in IPAH participants (39.2±27.0 vs. 15.3±5.0, p=0.002) whereas mean CFR was lower (2.8±2.1 vs. 4.0±1.4; p=0.077). Paired right coronary artery/ventricular measurements (n=6) revealed IMR positively correlated with right ventricular mass (r=0.91, p=0.12), and negatively with CFR (r=-0.82, p=0.046). Compared to controls (n=5), PAH participants (n=4) had reduced right ventricular capillary density (111±18 vs. 167±20, p=0.032), increased cardiomyocyte area (383±118μm2 vs. 231±61μm2, p=0.0390), and increased mural area in small pre-capillary arterioles (127±10μm2 vs. 107±20μm2, p=0.041).</p><p><strong>Conclusions: </strong>Coronary microvascular dysfunction is prevalent in IPAH and correlates with increased right ventricular mass. Histopathology revealed vascular rarefaction and remodeling of pre-capillary arterioles. The clinical significance merits prospective evaluation. Invasive coronary function testing was feasible and safe in IPAH, providing a platform to assess therapeutic impacts on cardiac microvascular function.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.1,"publicationDate":"2026-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146029485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Type 2 diabetic nephropathy (T2DN) is a major complication of type 2 diabetes and a leading cause of chronic kidney disease. This study aimed to explore MYO1C as both a candidate biomarker and elucidate its role as a mechanistic mediator of podocyte injury in T2DN. Using urinary extracellular vesicle RNA biomarkers identified from a training and validation cohort of 33 type 2 diabetes and 40 T2DN patients, we developed a machine learning diagnostic model for T2DN. The model achieved an AUC of 0.877 in validation and performed well in an independent test cohort with an AUC of 0.824. MYO1C was identified as the most influential feature in the final model. Mechanistic investigations in vitro and in vivo revealed that high glucose and high-fat conditions induced podocyte injury, inflammation, and apoptosis, with increased MYO1C expression. MYO1C knockdown in vitro and in vivo reduced podocyte damage and inflammatory responses. MYO1C overexpression enhanced p38, p-CREB, and TNF-α levels, while p38 inhibition mitigated these effects. These findings support MYO1C not only as a potential urinary biomarker for T2DN but also as a key pathogenic driver that promotes podocyte injury via p38 MAPK signaling, thereby highlighting its therapeutic promise.
{"title":"MYO1C is a urinary extracellular vesicle biomarker and mediator of podocyte injury in diabetic nephropathy.","authors":"Zihao Zhao, Qianqian Yan, Sijie Zhou, Fengxun Liu, Yong Liu, Jingjing Ren, Shaokang Pan, Zhenjie Liu, Dongwei Liu, Zhangsuo Liu, Jiayu Duan","doi":"10.1172/jci.insight.194604","DOIUrl":"https://doi.org/10.1172/jci.insight.194604","url":null,"abstract":"<p><p>Type 2 diabetic nephropathy (T2DN) is a major complication of type 2 diabetes and a leading cause of chronic kidney disease. This study aimed to explore MYO1C as both a candidate biomarker and elucidate its role as a mechanistic mediator of podocyte injury in T2DN. Using urinary extracellular vesicle RNA biomarkers identified from a training and validation cohort of 33 type 2 diabetes and 40 T2DN patients, we developed a machine learning diagnostic model for T2DN. The model achieved an AUC of 0.877 in validation and performed well in an independent test cohort with an AUC of 0.824. MYO1C was identified as the most influential feature in the final model. Mechanistic investigations in vitro and in vivo revealed that high glucose and high-fat conditions induced podocyte injury, inflammation, and apoptosis, with increased MYO1C expression. MYO1C knockdown in vitro and in vivo reduced podocyte damage and inflammatory responses. MYO1C overexpression enhanced p38, p-CREB, and TNF-α levels, while p38 inhibition mitigated these effects. These findings support MYO1C not only as a potential urinary biomarker for T2DN but also as a key pathogenic driver that promotes podocyte injury via p38 MAPK signaling, thereby highlighting its therapeutic promise.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.1,"publicationDate":"2026-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146029517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-22DOI: 10.1172/jci.insight.196153
Alessandra Ciullo, Xaviar M Jones, Hiroaki Komuro, Liang Li, Anh Nguyen, Eduardo Marbán, Ahmed Gamal-Eldin Ibrahim
{"title":"Small noncoding RNA TY2 enhances efferocytosis and improves outcomes in a mouse model of sepsis.","authors":"Alessandra Ciullo, Xaviar M Jones, Hiroaki Komuro, Liang Li, Anh Nguyen, Eduardo Marbán, Ahmed Gamal-Eldin Ibrahim","doi":"10.1172/jci.insight.196153","DOIUrl":"https://doi.org/10.1172/jci.insight.196153","url":null,"abstract":"","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.1,"publicationDate":"2026-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146085882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-22DOI: 10.1172/jci.insight.198593
Ting-Xi Yu, Hee Kyoung Chung, Amy VanderStoep, Bridgette Warner, Hongxia Chen, Haonan Zhao, Ana S G Cunnigham, Rosemary Kozar, Myriam Gorospe, Lan Xiao, Jian-Ying Wang
Disruptions in the integrity of the intestinal epithelium occur commonly in inflammatory bowel diseases (IBD) and critical surgical disorders, but the underlying mechanisms remain largely unknown. Here we identified long noncoding RNA GAS5 as a repressor of intestinal mucosa growth and the function of the gut epithelium barrier. The levels of tissue GAS5 increased in mouse intestinal mucosa after colitis and septic stress, as well as in human intestinal mucosa from IBD patients. Transient and tissue-specific knockdown of GAS5 in mice using CRISPR-Cas9 enhanced the renewal of the mucosa of the small intestine, increased the levels of tight junction (TJ) proteins ZO-1, ZO-2, claudin-1, and claudin-2, and improved gut barrier function. Conversely, ectopic overexpression of GAS5 in intestinal organoids and in cultured intestinal epithelium cells decreased the levels of these TJ proteins and caused epithelial barrier dysfunction. Mechanistic studies revealed that GAS5 acted as a transcriptional enhancer of the gene encoding small noncoding vault RNAs (vtRNAs) and that GAS5 repressed TJ expression by increasing the levels of vtRNAs. Together, our results indicate that GAS5 disrupts the integrity of the intestinal epithelium by impairing mucosal growth and epithelial barrier function and that it represses TJ expression at least in part via vtRNAs.
{"title":"Long noncoding RNA GAS5 disrupts intestinal epithelial barrier function by increasing small vault RNA levels.","authors":"Ting-Xi Yu, Hee Kyoung Chung, Amy VanderStoep, Bridgette Warner, Hongxia Chen, Haonan Zhao, Ana S G Cunnigham, Rosemary Kozar, Myriam Gorospe, Lan Xiao, Jian-Ying Wang","doi":"10.1172/jci.insight.198593","DOIUrl":"https://doi.org/10.1172/jci.insight.198593","url":null,"abstract":"<p><p>Disruptions in the integrity of the intestinal epithelium occur commonly in inflammatory bowel diseases (IBD) and critical surgical disorders, but the underlying mechanisms remain largely unknown. Here we identified long noncoding RNA GAS5 as a repressor of intestinal mucosa growth and the function of the gut epithelium barrier. The levels of tissue GAS5 increased in mouse intestinal mucosa after colitis and septic stress, as well as in human intestinal mucosa from IBD patients. Transient and tissue-specific knockdown of GAS5 in mice using CRISPR-Cas9 enhanced the renewal of the mucosa of the small intestine, increased the levels of tight junction (TJ) proteins ZO-1, ZO-2, claudin-1, and claudin-2, and improved gut barrier function. Conversely, ectopic overexpression of GAS5 in intestinal organoids and in cultured intestinal epithelium cells decreased the levels of these TJ proteins and caused epithelial barrier dysfunction. Mechanistic studies revealed that GAS5 acted as a transcriptional enhancer of the gene encoding small noncoding vault RNAs (vtRNAs) and that GAS5 repressed TJ expression by increasing the levels of vtRNAs. Together, our results indicate that GAS5 disrupts the integrity of the intestinal epithelium by impairing mucosal growth and epithelial barrier function and that it represses TJ expression at least in part via vtRNAs.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.1,"publicationDate":"2026-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146029531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Although renal fibrosis is predominantly driven by the accumulated inflammatory cells that secrete pro-inflammatory factors within the kidney, the key mechanisms underlying macrophage clearance from the kidney are not well understood. The interaction of hyaluronan (HA) with lymphatic endothelial hyaluronan receptor 1 (LYVE1) constitutes a critical initial step in macrophage adhesion and removal by lymphatic vessels. This study investigates alterations in LYVE1 during kidney disease and elucidates its role in macrophage trafficking. Three renal fibrosis models demonstrated a reduction in full-length LYVE1 and an increase in the soluble LYVE1 fragment. Immunostaining of fibrotic kidneys showed significantly reduced expression of soluble LYVE1 compared with intracellular fragment (Cyto-LYVE1), demonstrating ectodomain shedding of LYVE1 in vivo and in vitro. Functionally, human lymphatic endothelial cells exposed to TGF-β1 exhibited significant decrease in macrophage adhesion and transendothelial migration compared to controls. Mechanistic analyses identified increased matrix metalloproteinase (MMP)9 in renal injury as a key upstream regulator of LYVE1 shedding. MMP9 inhibitors reduced LYVE1 shedding, enhanced macrophage adhesion and trafficking, and mitigated macrophage accumulation and disease progression. In conclusion, MMP9-induced LYVE1 shedding is linked to progressive kidney fibrosis and macrophage accumulation. LYVE1 shedding inhibitors offer potential as therapeutic agents for mitigating immune overload and kidney fibrosis.
{"title":"LYVE1 ectodomain shedding blunts lymphatic transmigration and clearance of macrophages during kidney injury.","authors":"Jing Liu, Yuqing Liu, Wenqian Zhou, Saiya Zhu, Jianyong Zhong, Haichun Yang, Annet Kirabo, Valentina Kon, Chen Yu","doi":"10.1172/jci.insight.195176","DOIUrl":"https://doi.org/10.1172/jci.insight.195176","url":null,"abstract":"<p><p>Although renal fibrosis is predominantly driven by the accumulated inflammatory cells that secrete pro-inflammatory factors within the kidney, the key mechanisms underlying macrophage clearance from the kidney are not well understood. The interaction of hyaluronan (HA) with lymphatic endothelial hyaluronan receptor 1 (LYVE1) constitutes a critical initial step in macrophage adhesion and removal by lymphatic vessels. This study investigates alterations in LYVE1 during kidney disease and elucidates its role in macrophage trafficking. Three renal fibrosis models demonstrated a reduction in full-length LYVE1 and an increase in the soluble LYVE1 fragment. Immunostaining of fibrotic kidneys showed significantly reduced expression of soluble LYVE1 compared with intracellular fragment (Cyto-LYVE1), demonstrating ectodomain shedding of LYVE1 in vivo and in vitro. Functionally, human lymphatic endothelial cells exposed to TGF-β1 exhibited significant decrease in macrophage adhesion and transendothelial migration compared to controls. Mechanistic analyses identified increased matrix metalloproteinase (MMP)9 in renal injury as a key upstream regulator of LYVE1 shedding. MMP9 inhibitors reduced LYVE1 shedding, enhanced macrophage adhesion and trafficking, and mitigated macrophage accumulation and disease progression. In conclusion, MMP9-induced LYVE1 shedding is linked to progressive kidney fibrosis and macrophage accumulation. LYVE1 shedding inhibitors offer potential as therapeutic agents for mitigating immune overload and kidney fibrosis.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.1,"publicationDate":"2026-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146052246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-22DOI: 10.1172/jci.insight.196339
Sathish K Murali, Mariavittoria D'Acierno, Xiang Zheng, Lena K Rosenbaek, Louise N Odgaard, Paul Richard Grimm, Alice Ramesova, Robert Little, Judith Radloff, Paul A Welling, Qi Wu, Reinhold G Erben, Robert A Fenton
Loss of bone mass has a devastating effect on quality of life. Higher potassium (K+) intake is positively correlated with bone health. Here, we investigated whether kidney calcium (Ca2+) and phosphate (Pi) handling mechanisms mediate dietary K+ effects. Kidney Ca2+ and Pi handling proteins were altered in abundance in mice fed a 0% K+ diet for 2 weeks. In mice fed a 0.1% K+ diet for 4 or 8 weeks, urinary Ca2+ excretion increased, plasma Ca2+ levels were lower and plasma parathyroid hormone (PTH) levels were higher relative to control 1% K+ fed mice. The 0.1% K+ fed mice had greater excretion of the bone resorption marker deoxypyridinoline, increased osteoclast number, and decreased total femoral bone mineral density. During chronic low K+ intake, major changes in renal Ca2+ and Pi transport pathways were absent, except higher abundances of the sodium-potassium-chloride co-transporter (NKCC2) and the sodium-chloride co-transporter (NCC), in line with their role in kidney Ca2+ handling. Low dietary K+ induced hypocalcemia and changes in PTH were absent in mice with constitutively active NCC, supporting its role in mediating low K+ effects on Ca2+ homeostasis. Our study provides insights into the management of bone disorders in conditions of chronic electrolyte imbalance.
{"title":"Dietary potassium restriction causes hypercalciuria, hypocalcemia and bone loss in male mice.","authors":"Sathish K Murali, Mariavittoria D'Acierno, Xiang Zheng, Lena K Rosenbaek, Louise N Odgaard, Paul Richard Grimm, Alice Ramesova, Robert Little, Judith Radloff, Paul A Welling, Qi Wu, Reinhold G Erben, Robert A Fenton","doi":"10.1172/jci.insight.196339","DOIUrl":"https://doi.org/10.1172/jci.insight.196339","url":null,"abstract":"<p><p>Loss of bone mass has a devastating effect on quality of life. Higher potassium (K+) intake is positively correlated with bone health. Here, we investigated whether kidney calcium (Ca2+) and phosphate (Pi) handling mechanisms mediate dietary K+ effects. Kidney Ca2+ and Pi handling proteins were altered in abundance in mice fed a 0% K+ diet for 2 weeks. In mice fed a 0.1% K+ diet for 4 or 8 weeks, urinary Ca2+ excretion increased, plasma Ca2+ levels were lower and plasma parathyroid hormone (PTH) levels were higher relative to control 1% K+ fed mice. The 0.1% K+ fed mice had greater excretion of the bone resorption marker deoxypyridinoline, increased osteoclast number, and decreased total femoral bone mineral density. During chronic low K+ intake, major changes in renal Ca2+ and Pi transport pathways were absent, except higher abundances of the sodium-potassium-chloride co-transporter (NKCC2) and the sodium-chloride co-transporter (NCC), in line with their role in kidney Ca2+ handling. Low dietary K+ induced hypocalcemia and changes in PTH were absent in mice with constitutively active NCC, supporting its role in mediating low K+ effects on Ca2+ homeostasis. Our study provides insights into the management of bone disorders in conditions of chronic electrolyte imbalance.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.1,"publicationDate":"2026-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146029575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-22DOI: 10.1172/jci.insight.197475
Burak Özkan, Jan-Moritz Ramge, Diana Wiesner, Jelena Scekic-Zahirovic, Stefano Antonucci, Sandra Nungeß, Dorothea Gebauer, Anita Ignatius, Jochen H Weishaupt, Melanie Haffner-Luntzer, Francesco Roselli
Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron disease. Emerging evidence suggests manifestations beyond the neuromuscular system. Bone alterations are part of the ALS clinical picture; it remains unclear whether they are secondary to muscle denervation or due to an autonomous process. We investigated skeletal involvement in the SOD1(G93A) mouse model at presymptomatic (P45) and symptomatic (P110) stage through biomechanical and transcriptomic approaches. Three-point bending revealed significant reductions in femoral rigidity and maximum bending force in SOD1 mutants at P45, indicating early structural deficits. Micro-CT analysis demonstrated reduced trabecular bone mineral density and thickness at P45, with progressive trabecular loss and cortical thinning by P110. Histological examination revealed marked osteoblast loss at P45 suggesting impaired bone formation as the primary early mechanism. Transcriptomics of bulk bone and cultured osteoblasts from P45 mice identified dysregulation of bone differentiation, including downregulation of osteoblast differentiation genes and upregulation of negative regulators of ossification and increased cell senescence signatures. Unfolded protein response was upregulated in SOD1 osteoblasts. Immunohistochemistry confirmed the senescence phenotype with increased p16Ink4a level in SOD1 osteoblasts. These findings suggest that bone deterioration precede overt motor symptoms and are linked to osteoblast premature senescence.
{"title":"Reduced osteogenic factors and early osteoblast senescence in SOD1(G93A) ALS mouse model.","authors":"Burak Özkan, Jan-Moritz Ramge, Diana Wiesner, Jelena Scekic-Zahirovic, Stefano Antonucci, Sandra Nungeß, Dorothea Gebauer, Anita Ignatius, Jochen H Weishaupt, Melanie Haffner-Luntzer, Francesco Roselli","doi":"10.1172/jci.insight.197475","DOIUrl":"https://doi.org/10.1172/jci.insight.197475","url":null,"abstract":"<p><p>Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron disease. Emerging evidence suggests manifestations beyond the neuromuscular system. Bone alterations are part of the ALS clinical picture; it remains unclear whether they are secondary to muscle denervation or due to an autonomous process. We investigated skeletal involvement in the SOD1(G93A) mouse model at presymptomatic (P45) and symptomatic (P110) stage through biomechanical and transcriptomic approaches. Three-point bending revealed significant reductions in femoral rigidity and maximum bending force in SOD1 mutants at P45, indicating early structural deficits. Micro-CT analysis demonstrated reduced trabecular bone mineral density and thickness at P45, with progressive trabecular loss and cortical thinning by P110. Histological examination revealed marked osteoblast loss at P45 suggesting impaired bone formation as the primary early mechanism. Transcriptomics of bulk bone and cultured osteoblasts from P45 mice identified dysregulation of bone differentiation, including downregulation of osteoblast differentiation genes and upregulation of negative regulators of ossification and increased cell senescence signatures. Unfolded protein response was upregulated in SOD1 osteoblasts. Immunohistochemistry confirmed the senescence phenotype with increased p16Ink4a level in SOD1 osteoblasts. These findings suggest that bone deterioration precede overt motor symptoms and are linked to osteoblast premature senescence.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.1,"publicationDate":"2026-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146029536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-15DOI: 10.1172/jci.insight.192113
Mehri Monavarian, Resha Rajkarnikar, Emily Faith Page, Asha Kumari, Liz Quintero Macias, Felipe Massicano, Nam Y Lee, Sarthak Sahoo, Nadine Hempel, Mohit Kumar Jolly, Lara Ianov, Elizabeth Worthey, Abhyudai Singh, Igor B Roninson, Eugenia V Broude, Mengqian Chen, Karthikeyan Mythreye
Anoikis resistance or evasion of cell death triggered by matrix detachment is a hallmark of cancer cell survival and metastasis. We show that repeated exposure to suspension stress followed by recovery under attached conditions leads to development of anoikis resistance. The acquisition of anoikis resistance is associated with enhanced invasion, chemoresistance, and immune evasion in vitro and distant metastasis in vivo. This acquired anoikis resistance is not genetic, persisting for a finite duration without detachment stress, but is sensitive to CDK8/19 Mediator kinase inhibition that can also reverse anoikis resistance. Transcriptomic analysis reveals that CDK8/19 kinase inhibition induces bidirectional transcriptional changes in both sensitive and resistant cells, disrupting the balanced reprogramming required for anoikis adaptation and resistance by reversing some resistance associated pathways and enhancing others. Both anoikis resistance and in vivo metastatic growth of ovarian cancers are sensitive to CDK8/19 inhibition, thereby providing a therapeutic opportunity to both prevent and suppress ovarian cancer metastasis.
{"title":"Anoikis resistance and metastasis of ovarian cancer can be overcome by CDK8/19 Mediator kinase inhibition.","authors":"Mehri Monavarian, Resha Rajkarnikar, Emily Faith Page, Asha Kumari, Liz Quintero Macias, Felipe Massicano, Nam Y Lee, Sarthak Sahoo, Nadine Hempel, Mohit Kumar Jolly, Lara Ianov, Elizabeth Worthey, Abhyudai Singh, Igor B Roninson, Eugenia V Broude, Mengqian Chen, Karthikeyan Mythreye","doi":"10.1172/jci.insight.192113","DOIUrl":"10.1172/jci.insight.192113","url":null,"abstract":"<p><p>Anoikis resistance or evasion of cell death triggered by matrix detachment is a hallmark of cancer cell survival and metastasis. We show that repeated exposure to suspension stress followed by recovery under attached conditions leads to development of anoikis resistance. The acquisition of anoikis resistance is associated with enhanced invasion, chemoresistance, and immune evasion in vitro and distant metastasis in vivo. This acquired anoikis resistance is not genetic, persisting for a finite duration without detachment stress, but is sensitive to CDK8/19 Mediator kinase inhibition that can also reverse anoikis resistance. Transcriptomic analysis reveals that CDK8/19 kinase inhibition induces bidirectional transcriptional changes in both sensitive and resistant cells, disrupting the balanced reprogramming required for anoikis adaptation and resistance by reversing some resistance associated pathways and enhancing others. Both anoikis resistance and in vivo metastatic growth of ovarian cancers are sensitive to CDK8/19 inhibition, thereby providing a therapeutic opportunity to both prevent and suppress ovarian cancer metastasis.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.1,"publicationDate":"2026-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145984887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}