Tumor-associated macrophages (TAMs) are one of the key immunosuppressive components in the tumor microenvironment (TME) and contribute to tumor development, progression, and resistance to cancer immunotherapy. Several reagents targeting TAMs have been tested in preclinical and clinical studies, but they have had limited success. Here, we show that a unique reagent, FF-10101, exhibited a sustained inhibitory effect against colony-stimulating factor 1 receptor by forming a covalent bond and reduced immunosuppressive TAMs in the TME, which led to strong antitumor immunity. In preclinical animal models, FF-10101 treatment significantly reduced immunosuppressive TAMs and increased antitumor TAMs in the TME. In addition, tumor antigen-specific CD8+ T cells were increased; consequently, tumor growth was significantly inhibited. Moreover, combination treatment with an anti-programmed cell death 1 (anti-PD-1) antibody and FF-10101 exhibited a far stronger antitumor effect than either treatment alone. In human cancer specimens, FF-10101 treatment reduced programmed cell death 1 ligand 1 (PD-L1) expression on TAMs, as observed in animal models. Thus, FF-10101 acts as an immunomodulatory agent that can reduce immunosuppressive TAMs and augment tumor antigen-specific T cell responses, thereby generating an immunostimulatory TME. We propose that FF-10101 is a potential candidate for successful combination cancer immunotherapy with immune checkpoint inhibitors, such as PD-1/PD-L1 blockade.
{"title":"Sustained inhibition of CSF1R signaling augments antitumor immunity through inhibiting tumor-associated macrophages.","authors":"Takahiko Sato, Daisuke Sugiyama, Jun Koseki, Yasuhiro Kojima, Satomi Hattori, Kazuki Sone, Hitomi Nishinakamura, Tomohiro Ishikawa, Yuichi Ishikawa, Takuma Kato, Hitoshi Kiyoi, Hiroyoshi Nishikawa","doi":"10.1172/jci.insight.178146","DOIUrl":"10.1172/jci.insight.178146","url":null,"abstract":"<p><p>Tumor-associated macrophages (TAMs) are one of the key immunosuppressive components in the tumor microenvironment (TME) and contribute to tumor development, progression, and resistance to cancer immunotherapy. Several reagents targeting TAMs have been tested in preclinical and clinical studies, but they have had limited success. Here, we show that a unique reagent, FF-10101, exhibited a sustained inhibitory effect against colony-stimulating factor 1 receptor by forming a covalent bond and reduced immunosuppressive TAMs in the TME, which led to strong antitumor immunity. In preclinical animal models, FF-10101 treatment significantly reduced immunosuppressive TAMs and increased antitumor TAMs in the TME. In addition, tumor antigen-specific CD8+ T cells were increased; consequently, tumor growth was significantly inhibited. Moreover, combination treatment with an anti-programmed cell death 1 (anti-PD-1) antibody and FF-10101 exhibited a far stronger antitumor effect than either treatment alone. In human cancer specimens, FF-10101 treatment reduced programmed cell death 1 ligand 1 (PD-L1) expression on TAMs, as observed in animal models. Thus, FF-10101 acts as an immunomodulatory agent that can reduce immunosuppressive TAMs and augment tumor antigen-specific T cell responses, thereby generating an immunostimulatory TME. We propose that FF-10101 is a potential candidate for successful combination cancer immunotherapy with immune checkpoint inhibitors, such as PD-1/PD-L1 blockade.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":"10 1","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11721313/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142948832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-09DOI: 10.1172/jci.insight.184301
Jennifer A Dantzer, Sloan A Lewis, Kevin J Psoter, Aaron Sutherland, April Frazier, Eve Richardson, Synaida Maiche, Gregory Seumois, Bjoern Peters, Robert A Wood
BACKGROUNDCow's milk (CM) allergy is the most common food allergy in young children. Treatment with oral immunotherapy (OIT) has shown efficacy, but high rates of adverse reactions. The aim of this study was to determine whether baked milk OIT (BMOIT) could reduce adverse reactions while still inducing desensitization, and to identify immunological correlates of successful BMOIT.METHODSThis phase II, randomized trial evaluated the safety and efficacy of BMOIT in milk-allergic children 3-18 years old. After the initial placebo-controlled first year of treatment, placebo-treated participants crossed over to active BMOIT. Double-blind, placebo-controlled oral food challenges (OFCs) were conducted with BM after year 1 and to both BM and unheated milk (UM) after year 2. IgG and IgE antibodies were measured along with CM-specific (CM+) CD4+ memory T cell populations, profiled using flow cytometry and scRNA-Seq.RESULTSTwenty-one of 30 (70%) reached the primary endpoint of tolerating 4044 mg of BM protein at month 24, and 11 of 30 tolerated 2000 mg or more of UM protein. Dosing symptoms were common, but more than 98% were mild, with no severe reactions. Immunological changes associated with desensitization included increased CM IgG4, CM+ FOXP3+ cells, and Tregs and corresponding decreases in CM IgE, CM+ Th2A cells, and CD154+ cells. T cell and antibody measurements were combined to build a model that predicted UM OFC outcomes.CONCLUSIONBMOIT was well tolerated and induced desensitization to BM and UM. This desensitization corresponded to redistribution within antigen-specific antibody and T cell compartments that provided insight into the mechanistic changes that occur with OIT treatment.TRIAL REGISTRATIONClinicalTrials.gov NCT03462030.FUNDING: Myra Reinhardt Family Foundation (grant number 128388), NIH/NIAID (U19AI135731, T32AI125179, S10OD025052).
{"title":"Clinical and immunological outcomes after randomized trial of baked milk oral immunotherapy for milk allergy.","authors":"Jennifer A Dantzer, Sloan A Lewis, Kevin J Psoter, Aaron Sutherland, April Frazier, Eve Richardson, Synaida Maiche, Gregory Seumois, Bjoern Peters, Robert A Wood","doi":"10.1172/jci.insight.184301","DOIUrl":"10.1172/jci.insight.184301","url":null,"abstract":"<p><p>BACKGROUNDCow's milk (CM) allergy is the most common food allergy in young children. Treatment with oral immunotherapy (OIT) has shown efficacy, but high rates of adverse reactions. The aim of this study was to determine whether baked milk OIT (BMOIT) could reduce adverse reactions while still inducing desensitization, and to identify immunological correlates of successful BMOIT.METHODSThis phase II, randomized trial evaluated the safety and efficacy of BMOIT in milk-allergic children 3-18 years old. After the initial placebo-controlled first year of treatment, placebo-treated participants crossed over to active BMOIT. Double-blind, placebo-controlled oral food challenges (OFCs) were conducted with BM after year 1 and to both BM and unheated milk (UM) after year 2. IgG and IgE antibodies were measured along with CM-specific (CM+) CD4+ memory T cell populations, profiled using flow cytometry and scRNA-Seq.RESULTSTwenty-one of 30 (70%) reached the primary endpoint of tolerating 4044 mg of BM protein at month 24, and 11 of 30 tolerated 2000 mg or more of UM protein. Dosing symptoms were common, but more than 98% were mild, with no severe reactions. Immunological changes associated with desensitization included increased CM IgG4, CM+ FOXP3+ cells, and Tregs and corresponding decreases in CM IgE, CM+ Th2A cells, and CD154+ cells. T cell and antibody measurements were combined to build a model that predicted UM OFC outcomes.CONCLUSIONBMOIT was well tolerated and induced desensitization to BM and UM. This desensitization corresponded to redistribution within antigen-specific antibody and T cell compartments that provided insight into the mechanistic changes that occur with OIT treatment.TRIAL REGISTRATIONClinicalTrials.gov NCT03462030.FUNDING: Myra Reinhardt Family Foundation (grant number 128388), NIH/NIAID (U19AI135731, T32AI125179, S10OD025052).</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":"10 1","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11721308/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142949244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-09DOI: 10.1172/jci.insight.182228
Emily L Lasse-Opsahl, Ivana Barravecchia, Elyse McLintock, Jennifer M Lee, Sarah F Ferris, Carlos E Espinoza, Rachael Hinshaw, Sophia Cavanaugh, Marzia Robotti, Lily Rober, Kristee Brown, Kristena Y Abdelmalak, Craig J Galban, Timothy L Frankel, Yaqing Zhang, Marina Pasca di Magliano, Stefanie Galban
Lung cancer is the leading cause of cancer deaths in the United States. New targeted therapies against the once-deemed undruggable oncogenic KRAS are changing current therapeutic paradigms. However, resistance to targeted KRAS inhibitors almost inevitably occurs; resistance can be driven by tumor cell-intrinsic changes or by changes in the microenvironment. Here, we utilized a genetically engineered mouse model of KRASG12D-driven lung cancer that allows for inducible and reversible expression of the oncogene: activation of oncogenic KRASG12D induces tumor growth; conversely, inactivation of KRASG12D causes tumor regression. We showed that in addition to regulating cancer cell growth and survival, oncogenic KRAS regulated the transcriptional status of cancer-associated fibroblasts and macrophages in this model. Utilizing ex vivo approaches, we showed that secreted factors from cancer cells induced the expression of multiple cytokines in lung fibroblasts, and in turn drove expression of immunosuppressive factors, such as arginase 1, in macrophages. In summary, fibroblasts emerged as a key source of immune regulatory signals, and a potential therapeutic target for improving the efficacy of KRAS inhibitors in lung cancer.
{"title":"KRASG12D drives immunosuppression in lung adenocarcinoma through paracrine signaling.","authors":"Emily L Lasse-Opsahl, Ivana Barravecchia, Elyse McLintock, Jennifer M Lee, Sarah F Ferris, Carlos E Espinoza, Rachael Hinshaw, Sophia Cavanaugh, Marzia Robotti, Lily Rober, Kristee Brown, Kristena Y Abdelmalak, Craig J Galban, Timothy L Frankel, Yaqing Zhang, Marina Pasca di Magliano, Stefanie Galban","doi":"10.1172/jci.insight.182228","DOIUrl":"10.1172/jci.insight.182228","url":null,"abstract":"<p><p>Lung cancer is the leading cause of cancer deaths in the United States. New targeted therapies against the once-deemed undruggable oncogenic KRAS are changing current therapeutic paradigms. However, resistance to targeted KRAS inhibitors almost inevitably occurs; resistance can be driven by tumor cell-intrinsic changes or by changes in the microenvironment. Here, we utilized a genetically engineered mouse model of KRASG12D-driven lung cancer that allows for inducible and reversible expression of the oncogene: activation of oncogenic KRASG12D induces tumor growth; conversely, inactivation of KRASG12D causes tumor regression. We showed that in addition to regulating cancer cell growth and survival, oncogenic KRAS regulated the transcriptional status of cancer-associated fibroblasts and macrophages in this model. Utilizing ex vivo approaches, we showed that secreted factors from cancer cells induced the expression of multiple cytokines in lung fibroblasts, and in turn drove expression of immunosuppressive factors, such as arginase 1, in macrophages. In summary, fibroblasts emerged as a key source of immune regulatory signals, and a potential therapeutic target for improving the efficacy of KRAS inhibitors in lung cancer.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":"10 1","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11721295/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142947890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-09DOI: 10.1172/jci.insight.174848
Hak Joo Lee, Yuyang Sun, Falguni Das, Wenjun Ju, Viji Nair, Christopher G Kevil, Shankara Varadarajan, Guanshi Zhang, Goutam Ghosh Choudhury, Brij B Singh, Matthias Kretzler, Robert G Nelson, Kumar Sharma, Balakuntalam S Kasinath
The role played by anionic channels in diabetic kidney disease (DKD) is not known. Chloride channel accessory 1 (CLCA1) facilitates the activity of TMEM16A (Anoctamin-1), a Ca2+-dependent Cl- channel. We examined if CLCA1/TMEM16A had a role in DKD. In mice with type 2 diabetes, renal cortical CLCA1 and TMEM16A content was increased. CLCA1 and TMEM16A content was associated with hydrogen sulfide (H2S) deficiency, mTOR complex 1 (mTORC1) activation, albuminuria, and matrix increase. Administering sodium hydrosulfide (NaHS), a source of H2S, mitigated these changes. In proximal tubular epithelial (MCT) cells, high glucose rapidly increased CLCA1 by recruiting the IL-6/STAT3 axis and augmented TMEM16A expression by stimulating its mRNA translation; these changes were abolished by NaHS. Patch clamp experiments showed that high glucose increased Cl- current in MCT cells that was ameliorated by NaHS and a TMEM16A chemical inhibitor. siRNA against CLCA1 or TMEM16A and TMEM16A inhibitor abolished high glucose-induced mTORC1 activation and matrix protein increase. Tubular expression of TMEM16A correlated with albuminuria in kidney biopsies from people with type 2 diabetes. We report a pathway for DKD in which H2S deficiency results in kidney injury by the recruitment of the CLCA1/TMEM16A/Cl- current system.
{"title":"The CLCA1/TMEM16A/Cl- current axis associates with H2S deficiency in diabetic kidney injury.","authors":"Hak Joo Lee, Yuyang Sun, Falguni Das, Wenjun Ju, Viji Nair, Christopher G Kevil, Shankara Varadarajan, Guanshi Zhang, Goutam Ghosh Choudhury, Brij B Singh, Matthias Kretzler, Robert G Nelson, Kumar Sharma, Balakuntalam S Kasinath","doi":"10.1172/jci.insight.174848","DOIUrl":"https://doi.org/10.1172/jci.insight.174848","url":null,"abstract":"<p><p>The role played by anionic channels in diabetic kidney disease (DKD) is not known. Chloride channel accessory 1 (CLCA1) facilitates the activity of TMEM16A (Anoctamin-1), a Ca2+-dependent Cl- channel. We examined if CLCA1/TMEM16A had a role in DKD. In mice with type 2 diabetes, renal cortical CLCA1 and TMEM16A content was increased. CLCA1 and TMEM16A content was associated with hydrogen sulfide (H2S) deficiency, mTOR complex 1 (mTORC1) activation, albuminuria, and matrix increase. Administering sodium hydrosulfide (NaHS), a source of H2S, mitigated these changes. In proximal tubular epithelial (MCT) cells, high glucose rapidly increased CLCA1 by recruiting the IL-6/STAT3 axis and augmented TMEM16A expression by stimulating its mRNA translation; these changes were abolished by NaHS. Patch clamp experiments showed that high glucose increased Cl- current in MCT cells that was ameliorated by NaHS and a TMEM16A chemical inhibitor. siRNA against CLCA1 or TMEM16A and TMEM16A inhibitor abolished high glucose-induced mTORC1 activation and matrix protein increase. Tubular expression of TMEM16A correlated with albuminuria in kidney biopsies from people with type 2 diabetes. We report a pathway for DKD in which H2S deficiency results in kidney injury by the recruitment of the CLCA1/TMEM16A/Cl- current system.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":"10 1","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11721299/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143055839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-09DOI: 10.1172/jci.insight.180962
Bo Wang, Yun Xia, Can Zhou, Yuhan Zeng, Heehwa G Son, Shadmehr Demehri
CD4+ T cells contribute to antitumor immunity and are implicated in the efficacy of cancer immunotherapies. In particular, CD4+ T helper 2 (Th2) cells were recently found to block spontaneous breast carcinogenesis. However, the antitumor potential of Th2 cells in targeting established breast cancer remains uncertain. Herein, we demonstrate that Th2 cells induced by the topical calcipotriol/thymic stromal lymphopoietin cytokine axis suppressed the growth of established mammary tumors in mice. Interleukin-24 (IL-24), an anticancer cytokine, was highly upregulated in macrophages infiltrating calcipotriol-treated mammary tumors. Macrophages expressed IL-24 in response to IL-4 signaling in combination with Toll-like receptor 4 (TLR4) agonists (e.g., HMGB1) in vitro. Calcipotriol treatment significantly increased HMGB1 release by tumor cells in vivo. CD4+ T cell depletion reduced HMGB1 and IL-24 expression, reversing calcipotriol's therapeutic efficacy. Macrophage depletion and TLR4 inhibition also reduced the therapeutic efficacy of calcipotriol. Importantly, calcipotriol treatment failed to control mammary tumors lacking the IL-24 receptor on tumor cells. Collectively, our findings reveal that Th2 cell-macrophage crosstalk leads to IL-24-mediated tumor cell death, highlighting a promising therapeutic strategy to tackle breast cancer.
{"title":"CD4+ T helper 2 cell-macrophage crosstalk induces IL-24-mediated breast cancer suppression.","authors":"Bo Wang, Yun Xia, Can Zhou, Yuhan Zeng, Heehwa G Son, Shadmehr Demehri","doi":"10.1172/jci.insight.180962","DOIUrl":"10.1172/jci.insight.180962","url":null,"abstract":"<p><p>CD4+ T cells contribute to antitumor immunity and are implicated in the efficacy of cancer immunotherapies. In particular, CD4+ T helper 2 (Th2) cells were recently found to block spontaneous breast carcinogenesis. However, the antitumor potential of Th2 cells in targeting established breast cancer remains uncertain. Herein, we demonstrate that Th2 cells induced by the topical calcipotriol/thymic stromal lymphopoietin cytokine axis suppressed the growth of established mammary tumors in mice. Interleukin-24 (IL-24), an anticancer cytokine, was highly upregulated in macrophages infiltrating calcipotriol-treated mammary tumors. Macrophages expressed IL-24 in response to IL-4 signaling in combination with Toll-like receptor 4 (TLR4) agonists (e.g., HMGB1) in vitro. Calcipotriol treatment significantly increased HMGB1 release by tumor cells in vivo. CD4+ T cell depletion reduced HMGB1 and IL-24 expression, reversing calcipotriol's therapeutic efficacy. Macrophage depletion and TLR4 inhibition also reduced the therapeutic efficacy of calcipotriol. Importantly, calcipotriol treatment failed to control mammary tumors lacking the IL-24 receptor on tumor cells. Collectively, our findings reveal that Th2 cell-macrophage crosstalk leads to IL-24-mediated tumor cell death, highlighting a promising therapeutic strategy to tackle breast cancer.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":"10 1","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11721301/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142949235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-07DOI: 10.1172/jci.insight.186649
Jing Zeng, Derrick Zhao, Grayson Way, Andrew Fagan, Michael Fuchs, Puneet Puri, Brian C Davis, Xuan Wang, Emily C Gurley, Phillip B Hylemon, Jian-Gao Fan, Masoumeh Sikaroodi, Patrick M Gillevet, Huiping Zhou, Jasmohan S Bajaj
{"title":"Intestinal mucosal mitochondrial oxidative phosphorylation worsens with cirrhosis progression and is ameliorated with FMT.","authors":"Jing Zeng, Derrick Zhao, Grayson Way, Andrew Fagan, Michael Fuchs, Puneet Puri, Brian C Davis, Xuan Wang, Emily C Gurley, Phillip B Hylemon, Jian-Gao Fan, Masoumeh Sikaroodi, Patrick M Gillevet, Huiping Zhou, Jasmohan S Bajaj","doi":"10.1172/jci.insight.186649","DOIUrl":"https://doi.org/10.1172/jci.insight.186649","url":null,"abstract":"","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142949204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-07DOI: 10.1172/jci.insight.185963
Joyce K Hwang, Eda K Holl, Yuan Wu, Anika Agarwal, Mark D Starr, Marco A Reyes Martinez, Andrew Z Wang, Andrew J Armstrong, Michael R Harrison, Daniel J George, Andrew B Nixon, Tian Zhang
As multiple front-line immune checkpoint inhibitor (ICI)-based combinations are approved for metastatic renal cell carcinoma, biomarkers predicting for ICI responses are needed past clinical prognostication scores and transcriptome gene expression profiling. Circulating markers represent opportunities to assess baseline and dynamic changes in immune cell frequency and cytokine levels while on treatment. We conducted an exploratory prospective correlative study of 33 patients with metastatic clear cell renal cell carcinoma undergoing treatment with ICIs and correlated changes in circulating immune cell subsets and cytokines with clinical responses to treatment. Cell frequencies and cytokine levels were compared between responders and non-responders using unpaired parametric t tests, using a pre-specified level of significance of p<0.05. Classical monocyte subsets (CD14+ CD16-), as well as seven cytokines (IL-12/23 p40, macrophage inflammatory protein-1a, macrophage inflammatory protein-1b, vascular cell adhesion molecule-1, intercellular adhesion molecule-1, IL-8, and TNF-alpha) were higher at baseline for responding versus non-responding patients. Dynamic changes in thymus- and activation-regulation chemokine (TARC), placental growth factor (PlGF), and vascular endothelial growth factor (VEGF) also correlated with patients with ICI response. In summary, macrophage activating agents were observed to be important in ICI response and may highlight the importance of the innate immune response in ICI responses.
{"title":"Circulating immune biomarkers correlating with response in patients with metastatic renal cell carcinoma on immunotherapy.","authors":"Joyce K Hwang, Eda K Holl, Yuan Wu, Anika Agarwal, Mark D Starr, Marco A Reyes Martinez, Andrew Z Wang, Andrew J Armstrong, Michael R Harrison, Daniel J George, Andrew B Nixon, Tian Zhang","doi":"10.1172/jci.insight.185963","DOIUrl":"https://doi.org/10.1172/jci.insight.185963","url":null,"abstract":"<p><p>As multiple front-line immune checkpoint inhibitor (ICI)-based combinations are approved for metastatic renal cell carcinoma, biomarkers predicting for ICI responses are needed past clinical prognostication scores and transcriptome gene expression profiling. Circulating markers represent opportunities to assess baseline and dynamic changes in immune cell frequency and cytokine levels while on treatment. We conducted an exploratory prospective correlative study of 33 patients with metastatic clear cell renal cell carcinoma undergoing treatment with ICIs and correlated changes in circulating immune cell subsets and cytokines with clinical responses to treatment. Cell frequencies and cytokine levels were compared between responders and non-responders using unpaired parametric t tests, using a pre-specified level of significance of p<0.05. Classical monocyte subsets (CD14+ CD16-), as well as seven cytokines (IL-12/23 p40, macrophage inflammatory protein-1a, macrophage inflammatory protein-1b, vascular cell adhesion molecule-1, intercellular adhesion molecule-1, IL-8, and TNF-alpha) were higher at baseline for responding versus non-responding patients. Dynamic changes in thymus- and activation-regulation chemokine (TARC), placental growth factor (PlGF), and vascular endothelial growth factor (VEGF) also correlated with patients with ICI response. In summary, macrophage activating agents were observed to be important in ICI response and may highlight the importance of the innate immune response in ICI responses.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142949196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-07DOI: 10.1172/jci.insight.186000
Anil Kumar, Jugal Das, Hao-Yun Peng, Liqing Wang, Darby Ballard, Yijie Ren, Xiaofang Xiong, Xingcong Ren, Jin-Ming Yang, Paul de Figueiredo, Jianxun Song
The nucleus accumbens-associated protein-1 (NAC1) has recently emerged as a pivotal factor in oncogenesis by promoting glycolysis. Deletion of NAC1 in regulatory T cells (Tregs) has been shown to enhance FoxP3 stability, a suppressor of glycolysis. This study delves into the intriguing dual role of NAC1, uncovering that Tregs-specific deletion of NAC1 fosters metabolic fitness in Tregs, thereby promoting tumorigenesis. Our results unveil that NAC1-deficient Tregs exhibit prolonged survival and heightened function, particularly in acidic environments. Mechanistically, we find that NAC1-deficient Tregs adapt to adverse conditions by upregulating FoxP3 expression, engaging in CD36-mediated lipid metabolism, and enhancing PGC-1α-regulated mitochondrial function. In mouse tumor xenograft models, NAC1-deficient mice demonstrate increased susceptibility to tumor growth. Notably, Tregs lacking NAC1 not only display elevated lipid metabolism and mitochondrial fitness but also exhibit enhanced tumoral infiltration. Adoptive Treg transfer experiments further underscore the supportive role of NAC1-deficient Tregs in tumor growth. These findings suggest that modulating NAC1 expression in FoxP3+ Tregs could serve as a promising approach to augment antitumor immunity. Understanding the intricate interplay between NAC1 and Tregs opens avenues for potential therapeutic strategies targeting the tumor microenvironment (TME).
{"title":"Metabolic Fitness of NAC1-Deficient Regulatory T Cells in the Tumor Microenvironment Fuels Tumor Growth.","authors":"Anil Kumar, Jugal Das, Hao-Yun Peng, Liqing Wang, Darby Ballard, Yijie Ren, Xiaofang Xiong, Xingcong Ren, Jin-Ming Yang, Paul de Figueiredo, Jianxun Song","doi":"10.1172/jci.insight.186000","DOIUrl":"https://doi.org/10.1172/jci.insight.186000","url":null,"abstract":"<p><p>The nucleus accumbens-associated protein-1 (NAC1) has recently emerged as a pivotal factor in oncogenesis by promoting glycolysis. Deletion of NAC1 in regulatory T cells (Tregs) has been shown to enhance FoxP3 stability, a suppressor of glycolysis. This study delves into the intriguing dual role of NAC1, uncovering that Tregs-specific deletion of NAC1 fosters metabolic fitness in Tregs, thereby promoting tumorigenesis. Our results unveil that NAC1-deficient Tregs exhibit prolonged survival and heightened function, particularly in acidic environments. Mechanistically, we find that NAC1-deficient Tregs adapt to adverse conditions by upregulating FoxP3 expression, engaging in CD36-mediated lipid metabolism, and enhancing PGC-1α-regulated mitochondrial function. In mouse tumor xenograft models, NAC1-deficient mice demonstrate increased susceptibility to tumor growth. Notably, Tregs lacking NAC1 not only display elevated lipid metabolism and mitochondrial fitness but also exhibit enhanced tumoral infiltration. Adoptive Treg transfer experiments further underscore the supportive role of NAC1-deficient Tregs in tumor growth. These findings suggest that modulating NAC1 expression in FoxP3+ Tregs could serve as a promising approach to augment antitumor immunity. Understanding the intricate interplay between NAC1 and Tregs opens avenues for potential therapeutic strategies targeting the tumor microenvironment (TME).</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142949208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-07DOI: 10.1172/jci.insight.174264
Zeribe C Nwosu, Heather Giza, Maya Nassif, Verodia Charlestin, Rosa E Menjivar, Daeho Kim, Samantha B Kemp, Peter Sajjakulnukit, Anthony Andren, Li Zhang, William Km Lai, Ian Loveless, Nina G Steele, Jiantao Hu, Biao Hu, Shaomeng Wang, Marina Pasca di Magliano, Costas A Lyssiotis
Pancreatic ductal adenocarcinoma (PDAC) is a drug resistant and lethal cancer. Identification of the genes that consistently show altered expression across patients' cohorts can expose effective therapeutic targets and strategies. To identify such genes, we separately analyzed five human PDAC microarray datasets. We defined genes as 'consistent' if upregulated or downregulated in ≥ 4 datasets (adjusted P<0.05). The genes were subsequently queried in additional datasets, including single-cell RNA-sequencing data, and we analyzed their pathway enrichment, tissue-specificity, essentiality for cell viability, association with cancer features e.g., tumor subtype, proliferation, metastasis and poor survival outcome. We identified 2,010 consistently upregulated and 1,928 downregulated genes of which >50%, to our knowledge, were uncharacterized in PDAC. These genes spanned multiple processes, including cell cycle, immunity, transport, metabolism, signaling and transcriptional/epigenetic regulation - cell cycle and glycolysis being the most altered. Several upregulated genes correlated with cancer features, and their suppression impaired PDAC cell viability in prior CRISPR/Cas9 and RNA interference screens. Further, the upregulated genes predicted sensitivity to bromodomain and extraterminal (epigenetic) protein inhibition, which, in combination with gemcitabine, disrupted amino acid metabolism and in vivo tumor growth. Our results highlight genes for further studies in the quest for PDAC mechanisms, therapeutic targets and biomarkers.
{"title":"Multi-dimensional analyses identify genes of high priority for pancreatic cancer research.","authors":"Zeribe C Nwosu, Heather Giza, Maya Nassif, Verodia Charlestin, Rosa E Menjivar, Daeho Kim, Samantha B Kemp, Peter Sajjakulnukit, Anthony Andren, Li Zhang, William Km Lai, Ian Loveless, Nina G Steele, Jiantao Hu, Biao Hu, Shaomeng Wang, Marina Pasca di Magliano, Costas A Lyssiotis","doi":"10.1172/jci.insight.174264","DOIUrl":"https://doi.org/10.1172/jci.insight.174264","url":null,"abstract":"<p><p>Pancreatic ductal adenocarcinoma (PDAC) is a drug resistant and lethal cancer. Identification of the genes that consistently show altered expression across patients' cohorts can expose effective therapeutic targets and strategies. To identify such genes, we separately analyzed five human PDAC microarray datasets. We defined genes as 'consistent' if upregulated or downregulated in ≥ 4 datasets (adjusted P<0.05). The genes were subsequently queried in additional datasets, including single-cell RNA-sequencing data, and we analyzed their pathway enrichment, tissue-specificity, essentiality for cell viability, association with cancer features e.g., tumor subtype, proliferation, metastasis and poor survival outcome. We identified 2,010 consistently upregulated and 1,928 downregulated genes of which >50%, to our knowledge, were uncharacterized in PDAC. These genes spanned multiple processes, including cell cycle, immunity, transport, metabolism, signaling and transcriptional/epigenetic regulation - cell cycle and glycolysis being the most altered. Several upregulated genes correlated with cancer features, and their suppression impaired PDAC cell viability in prior CRISPR/Cas9 and RNA interference screens. Further, the upregulated genes predicted sensitivity to bromodomain and extraterminal (epigenetic) protein inhibition, which, in combination with gemcitabine, disrupted amino acid metabolism and in vivo tumor growth. Our results highlight genes for further studies in the quest for PDAC mechanisms, therapeutic targets and biomarkers.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142949212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-07DOI: 10.1172/jci.insight.160257
Paramita Pati, Carmen De Miguel, Jodi R Paul, Dingguo Zhang, Jackson Colson, John Miller Allan, Claudia J Edell, Megan K Rhoads, Luke S Dunaway, Sara N Biswal, Yihan Zhong, Randee Sedaka, Telisha Millender-Swain, Shannon M Bailey, Karen L Gamble, David M Pollock, Jennifer S Pollock
Disrupted feeding and fasting cycles as well as chronic high fat diet (HFD)-induced obesity are associated with cardiovascular disease risk factors. We designed studies that determined whether two weeks of time-restricted feeding (TRF) intervention in mice fed a chronic HFD would reduce cardiovascular disease risk factors. Mice were fed a normal diet (ND; 10% fat) ad libitum or HFD (45% fat) for 18 weeks ad libitum to establish diet-induced obesity. ND or HFD mice were continued on ad libitum diet or subjected to TRF (limiting food availability to 12 hr only during the dark phase) during the final two weeks of the feeding protocol. TRF improved whole-body metabolic diurnal rhythms without a change in body weight. HFD mice showed reduced blood pressure dipping compared to ND, which was restored by TRF. Further, TRF reduced aortic wall thickness, decreased aortic stiffness, as well as increased kidney tubular brush border integrity, decreased renal medullary fibrosis, and reduced renal medullary T cell inflammation in HFD mice. These findings indicate that TRF may be an effective intervention for improving vascular and kidney health in a model of established diet-induced obesity.
{"title":"Time-restricted feeding reduces cardiovascular disease risk in obese mice.","authors":"Paramita Pati, Carmen De Miguel, Jodi R Paul, Dingguo Zhang, Jackson Colson, John Miller Allan, Claudia J Edell, Megan K Rhoads, Luke S Dunaway, Sara N Biswal, Yihan Zhong, Randee Sedaka, Telisha Millender-Swain, Shannon M Bailey, Karen L Gamble, David M Pollock, Jennifer S Pollock","doi":"10.1172/jci.insight.160257","DOIUrl":"10.1172/jci.insight.160257","url":null,"abstract":"<p><p>Disrupted feeding and fasting cycles as well as chronic high fat diet (HFD)-induced obesity are associated with cardiovascular disease risk factors. We designed studies that determined whether two weeks of time-restricted feeding (TRF) intervention in mice fed a chronic HFD would reduce cardiovascular disease risk factors. Mice were fed a normal diet (ND; 10% fat) ad libitum or HFD (45% fat) for 18 weeks ad libitum to establish diet-induced obesity. ND or HFD mice were continued on ad libitum diet or subjected to TRF (limiting food availability to 12 hr only during the dark phase) during the final two weeks of the feeding protocol. TRF improved whole-body metabolic diurnal rhythms without a change in body weight. HFD mice showed reduced blood pressure dipping compared to ND, which was restored by TRF. Further, TRF reduced aortic wall thickness, decreased aortic stiffness, as well as increased kidney tubular brush border integrity, decreased renal medullary fibrosis, and reduced renal medullary T cell inflammation in HFD mice. These findings indicate that TRF may be an effective intervention for improving vascular and kidney health in a model of established diet-induced obesity.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142983357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}