Pub Date : 2024-11-08DOI: 10.1172/jci.insight.173052
Jinkyung Kim, Jesus Maldonado, Dorothy W Pan, Patricia M Quiñones, Samantha Zenteno, John S Oghalai, Anthony J Ricci
Effective, reproducible, and safe delivery of therapeutics into the inner ear is required for the prevention and treatment of hearing loss. A commonly used delivery method is via the posterior semicircular canal (PSCC); however, its specific targeting within the cochlea remains unclear, impacting precision and reproducibility. To assess safety and target specificity, we conducted in vivo recordings of the pharmacological manipulations delivered through the PSCC. Measurements of auditory brainstem response (ABR), vibrometry, and vestibular behavioral and sensory-evoked potential (VsEP) revealed preserved hearing and vestibular functions after artificial perilymph injections. Injection of curare, a mechanoelectrical transducer (MET) channel blocker that affects hearing when in the endolymph, had no effect on ABR or VsEP thresholds. Conversely, injection of CNQX, an AMPA receptor blocker, or lidocaine, a Na+ channel blocker, which affects hearing when in the perilymph, significantly increased both thresholds, indicating that PSCC injections selectively target the perilymphatic space. In vivo tracking of gold nanoparticles confirmed their exclusive distribution in the perilymph during PSCC injection, supporting the pharmacological finding. Together, PSCC injection is a safe method for inner ear delivery, specifically targeting the perilymphatic space. Our findings will allow for precise delivery of therapeutics within the inner ear for therapeutic and research purposes.
{"title":"Semicircular canal drug delivery safely targets the inner ear perilymphatic space.","authors":"Jinkyung Kim, Jesus Maldonado, Dorothy W Pan, Patricia M Quiñones, Samantha Zenteno, John S Oghalai, Anthony J Ricci","doi":"10.1172/jci.insight.173052","DOIUrl":"https://doi.org/10.1172/jci.insight.173052","url":null,"abstract":"<p><p>Effective, reproducible, and safe delivery of therapeutics into the inner ear is required for the prevention and treatment of hearing loss. A commonly used delivery method is via the posterior semicircular canal (PSCC); however, its specific targeting within the cochlea remains unclear, impacting precision and reproducibility. To assess safety and target specificity, we conducted in vivo recordings of the pharmacological manipulations delivered through the PSCC. Measurements of auditory brainstem response (ABR), vibrometry, and vestibular behavioral and sensory-evoked potential (VsEP) revealed preserved hearing and vestibular functions after artificial perilymph injections. Injection of curare, a mechanoelectrical transducer (MET) channel blocker that affects hearing when in the endolymph, had no effect on ABR or VsEP thresholds. Conversely, injection of CNQX, an AMPA receptor blocker, or lidocaine, a Na+ channel blocker, which affects hearing when in the perilymph, significantly increased both thresholds, indicating that PSCC injections selectively target the perilymphatic space. In vivo tracking of gold nanoparticles confirmed their exclusive distribution in the perilymph during PSCC injection, supporting the pharmacological finding. Together, PSCC injection is a safe method for inner ear delivery, specifically targeting the perilymphatic space. Our findings will allow for precise delivery of therapeutics within the inner ear for therapeutic and research purposes.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":"9 21","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142604499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1172/jci.insight.182766
Sophia Y Chen, Heng-Chung Kung, Birginia Espinoza, India Washington, Kai Chen, Jianxin Wang, Haley Zlomke, Michael Loycano, Rulin Wang, Michael Pickup, William R Burns, Juan Fu, William L Hwang, Lei Zheng
The dual tumor-suppressive and -promoting functions of TGF-β signaling has made its targeting challenging. We examined the effects of TGF-β depletion by AVID200/BMS-986416 (TGF-β-TRAP), a TGF-β ligand trap, on the tumor microenvironment of pancreatic ductal adenocarcinoma (PDAC) murine models with different organ-specific metastasis. Our study demonstrated that TGF-β-TRAP potentiates the efficacy of anti-programmed cell death 1 (anti-PD-1) in a PDAC orthotopic murine model with liver metastasis tropism, significantly reducing liver metastases. We further demonstrated the heterogeneous response of cytotoxic effector T cells to combination TGF-β-TRAP and anti-PD-1 treatment across several tumor models. Single-nuclear RNA sequencing suggested that TGF-β-TRAP modulates cancer-associated fibroblast (CAF) heterogeneity and suppresses neutrophil degranulation and CD4+ T cell response to neutrophil degranulation. Ligand-receptor analysis indicated that TGF-β-TRAP may modulate the CCL5/CCR5 axis as well as costimulatory and checkpoint signaling from CAFs and myeloid cells. Notably, the most highly expressed ligands of CCR5 shifted from the immunosuppressive CCL5 to CCL7 and CCL8, which may mediate the immune agonist activity of CCR5 following TGF-β-TRAP and anti-PD-1 combination treatment. This study suggested that TGF-β depletion modulates CAF heterogeneity and potentially reprograms CAFs and myeloid cells into antitumor immune agonists in PDAC, supporting the validation of such effects in human specimens.
TGFβ 信号具有抑制肿瘤和促进肿瘤生长的双重功能,因此其靶向治疗具有挑战性。我们在此研究了通过TGFβ配体捕获剂AVID200/BMS-986416(TGFβ-TRAP)消耗TGFβ对不同器官特异性转移的胰腺导管腺癌(PDAC)鼠模型肿瘤微环境的影响。我们的研究表明,TGFβ-TRAP 在具有肝转移倾向的 PDAC 正位小鼠模型中增强了抗 PD-1 的疗效,显著减少了肝转移。我们进一步证明了细胞毒性效应 T 细胞在多个肿瘤模型中对 TGFβ-TRAP 和抗 PD-1 联合治疗的异质性反应。单核 RNA 序列分析表明,TGFβ-TRAP 可调节癌症相关成纤维细胞(CAF)的异质性,抑制中性粒细胞脱颗粒和 CD4+ T 细胞对中性粒细胞脱颗粒的反应。配体-受体分析表明,TGFβ-TRAP可调节CCL5-CCR5轴以及CAFs和髓系细胞的共刺激和检查点信号。值得注意的是,在TGFβ-TRAP和抗PD-1联合治疗后,CCR5的高表达配体从免疫抑制性的CCL5转变为CCL7和CCL8,这可能介导了CCR5的免疫激动活性。这项研究表明,TGFβ消耗可调节CAF的异质性,并有可能将PDAC中的CAFs和骨髓细胞重编程为抗肿瘤免疫激动剂,支持在人体标本中验证这种效应。
{"title":"Targeting heterogeneous tumor microenvironments in pancreatic cancer mouse models of metastasis by TGF-β depletion.","authors":"Sophia Y Chen, Heng-Chung Kung, Birginia Espinoza, India Washington, Kai Chen, Jianxin Wang, Haley Zlomke, Michael Loycano, Rulin Wang, Michael Pickup, William R Burns, Juan Fu, William L Hwang, Lei Zheng","doi":"10.1172/jci.insight.182766","DOIUrl":"10.1172/jci.insight.182766","url":null,"abstract":"<p><p>The dual tumor-suppressive and -promoting functions of TGF-β signaling has made its targeting challenging. We examined the effects of TGF-β depletion by AVID200/BMS-986416 (TGF-β-TRAP), a TGF-β ligand trap, on the tumor microenvironment of pancreatic ductal adenocarcinoma (PDAC) murine models with different organ-specific metastasis. Our study demonstrated that TGF-β-TRAP potentiates the efficacy of anti-programmed cell death 1 (anti-PD-1) in a PDAC orthotopic murine model with liver metastasis tropism, significantly reducing liver metastases. We further demonstrated the heterogeneous response of cytotoxic effector T cells to combination TGF-β-TRAP and anti-PD-1 treatment across several tumor models. Single-nuclear RNA sequencing suggested that TGF-β-TRAP modulates cancer-associated fibroblast (CAF) heterogeneity and suppresses neutrophil degranulation and CD4+ T cell response to neutrophil degranulation. Ligand-receptor analysis indicated that TGF-β-TRAP may modulate the CCL5/CCR5 axis as well as costimulatory and checkpoint signaling from CAFs and myeloid cells. Notably, the most highly expressed ligands of CCR5 shifted from the immunosuppressive CCL5 to CCL7 and CCL8, which may mediate the immune agonist activity of CCR5 following TGF-β-TRAP and anti-PD-1 combination treatment. This study suggested that TGF-β depletion modulates CAF heterogeneity and potentially reprograms CAFs and myeloid cells into antitumor immune agonists in PDAC, supporting the validation of such effects in human specimens.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142287567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1172/jci.insight.177789
Bingjie Zheng, Xuyang Zhang, Xiangxi Kong, Jie Li, Bao Huang, Hui Li, Zhongyin Ji, Xiaoan Wei, Siyue Tao, Zhi Shan, Zemin Ling, Junhui Liu, Jian Chen, Fengdong Zhao
As the aging process progresses, age-related intervertebral disc degeneration (IVDD) is becoming an emerging public health issue. Site-1 protease (S1P) has recently been found to be associated with abnormal spinal development in patients with mutations and has multiple biological functions. Here, we discovered a reduction of S1P in degenerated and aging intervertebral discs, primarily regulated by DNA methylation. Furthermore, through drug treatment and siRNA-mediated S1P knockdown, nucleus pulposus cells were more prone to exhibit degenerative and aging phenotypes. Conditional KO of S1P in mice resulted in spinal developmental abnormalities and premature aging. Mechanistically, S1P deficiency impeded COP II-mediated transport vesicle formation, which leads to protein retention in the endoplasmic reticulum (ER) and subsequently ER distension. ER distension increased the contact between the ER and mitochondria, disrupting ER-to-mitochondria calcium flow and resulting in mitochondrial dysfunction and energy metabolism disturbance. Finally, using 2-APB to inhibit calcium ion channels and the senolytic drug dasatinib and quercetin (D + Q) partially rescued the aging and degenerative phenotypes caused by S1P deficiency. In conclusion, our findings suggest that S1P is a critical factor in causing IVDD in the process of aging and highlight the potential of targeting S1P as a therapeutic approach for age-related IVDD.
{"title":"S1P regulates intervertebral disc aging by mediating endoplasmic reticulum-mitochondrial calcium ion homeostasis.","authors":"Bingjie Zheng, Xuyang Zhang, Xiangxi Kong, Jie Li, Bao Huang, Hui Li, Zhongyin Ji, Xiaoan Wei, Siyue Tao, Zhi Shan, Zemin Ling, Junhui Liu, Jian Chen, Fengdong Zhao","doi":"10.1172/jci.insight.177789","DOIUrl":"10.1172/jci.insight.177789","url":null,"abstract":"<p><p>As the aging process progresses, age-related intervertebral disc degeneration (IVDD) is becoming an emerging public health issue. Site-1 protease (S1P) has recently been found to be associated with abnormal spinal development in patients with mutations and has multiple biological functions. Here, we discovered a reduction of S1P in degenerated and aging intervertebral discs, primarily regulated by DNA methylation. Furthermore, through drug treatment and siRNA-mediated S1P knockdown, nucleus pulposus cells were more prone to exhibit degenerative and aging phenotypes. Conditional KO of S1P in mice resulted in spinal developmental abnormalities and premature aging. Mechanistically, S1P deficiency impeded COP II-mediated transport vesicle formation, which leads to protein retention in the endoplasmic reticulum (ER) and subsequently ER distension. ER distension increased the contact between the ER and mitochondria, disrupting ER-to-mitochondria calcium flow and resulting in mitochondrial dysfunction and energy metabolism disturbance. Finally, using 2-APB to inhibit calcium ion channels and the senolytic drug dasatinib and quercetin (D + Q) partially rescued the aging and degenerative phenotypes caused by S1P deficiency. In conclusion, our findings suggest that S1P is a critical factor in causing IVDD in the process of aging and highlight the potential of targeting S1P as a therapeutic approach for age-related IVDD.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142346984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1172/jci.insight.187849
Joseph R Visker, Ahmad A Cluntun, Jesse N Velasco-Silva, David R Eberhardt, Luis Cedeño-Rosario, Thirupura S Shankar, Rana Hamouche, Jing Ling, Hyoin Kwak, J Yanni Hillas, Ian Aist, Eleni Tseliou, Sutip Navankasattusas, Dipayan Chaudhuri, Gregory S Ducker, Stavros G Drakos, Jared Rutter
{"title":"Enhancing mitochondrial pyruvate metabolism ameliorates ischemic reperfusion injury in the heart.","authors":"Joseph R Visker, Ahmad A Cluntun, Jesse N Velasco-Silva, David R Eberhardt, Luis Cedeño-Rosario, Thirupura S Shankar, Rana Hamouche, Jing Ling, Hyoin Kwak, J Yanni Hillas, Ian Aist, Eleni Tseliou, Sutip Navankasattusas, Dipayan Chaudhuri, Gregory S Ducker, Stavros G Drakos, Jared Rutter","doi":"10.1172/jci.insight.187849","DOIUrl":"https://doi.org/10.1172/jci.insight.187849","url":null,"abstract":"","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":"9 21","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142604481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1172/jci.insight.181330
Jeb English, Sriya Dhanikonda, Kathryn E Tanaka, Wade Koba, Gary Eichenbaum, Weng-Lang Yang, Chandan Guha
Radiation-induced lung injury (RILI) initiates radiation pneumonitis and progresses to fibrosis as the main side effect experienced by patients with lung cancer treated with radiotherapy. There is no effective drug for RILI. Sustained vascular activation is a major contributor to the establishment of chronic disease. Here, using a whole thoracic irradiation (WTI) mouse model, we investigated the mechanisms and effectiveness of thrombopoietin mimetic (TPOm) for preventing RILI. We demonstrated that administering TPOm 24 hours before irradiation decreased histologic lung injury score, apoptosis, vascular permeability, expression of proinflammatory cytokines, and neutrophil infiltration in the lungs of mice 2 weeks after WTI. We described the expression of c-MPL, a TPO receptor, in mouse primary pulmonary microvascular endothelial cells, showing that TPOm reduced endothelial cell-neutrophil adhesion by inhibiting ICAM-1 expression. Seven months after WTI, TPOm-treated lung exhibited less collagen deposition and expression of MMP-9, TIMP-1, IL-6, TGF-β, and p21. Moreover, TPOm improved lung vascular structure, lung density, and respiration rate, leading to a prolonged survival time after WTI. Single-cell RNA sequencing analysis of lungs 2 weeks after WTI revealed that TPOm shifted populations of capillary endothelial cells toward a less activated and more homeostatic phenotype. Taken together, TPOm is protective for RILI by inhibiting endothelial cell activation.
{"title":"Thrombopoietin mimetic reduces mouse lung inflammation and fibrosis after radiation by attenuating activated endothelial phenotypes.","authors":"Jeb English, Sriya Dhanikonda, Kathryn E Tanaka, Wade Koba, Gary Eichenbaum, Weng-Lang Yang, Chandan Guha","doi":"10.1172/jci.insight.181330","DOIUrl":"https://doi.org/10.1172/jci.insight.181330","url":null,"abstract":"<p><p>Radiation-induced lung injury (RILI) initiates radiation pneumonitis and progresses to fibrosis as the main side effect experienced by patients with lung cancer treated with radiotherapy. There is no effective drug for RILI. Sustained vascular activation is a major contributor to the establishment of chronic disease. Here, using a whole thoracic irradiation (WTI) mouse model, we investigated the mechanisms and effectiveness of thrombopoietin mimetic (TPOm) for preventing RILI. We demonstrated that administering TPOm 24 hours before irradiation decreased histologic lung injury score, apoptosis, vascular permeability, expression of proinflammatory cytokines, and neutrophil infiltration in the lungs of mice 2 weeks after WTI. We described the expression of c-MPL, a TPO receptor, in mouse primary pulmonary microvascular endothelial cells, showing that TPOm reduced endothelial cell-neutrophil adhesion by inhibiting ICAM-1 expression. Seven months after WTI, TPOm-treated lung exhibited less collagen deposition and expression of MMP-9, TIMP-1, IL-6, TGF-β, and p21. Moreover, TPOm improved lung vascular structure, lung density, and respiration rate, leading to a prolonged survival time after WTI. Single-cell RNA sequencing analysis of lungs 2 weeks after WTI revealed that TPOm shifted populations of capillary endothelial cells toward a less activated and more homeostatic phenotype. Taken together, TPOm is protective for RILI by inhibiting endothelial cell activation.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":"9 21","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142604535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1172/jci.insight.184138
Emily A Nelson, Anna L Tyler, Taylor Lakusta-Wong, Karolyn G Lahue, Katherine C Hankes, Cory Teuscher, Rachel M Lynch, Martin T Ferris, J Matthew Mahoney, Dimitry N Krementsov
Multiple sclerosis (MS) is a complex disease with significant heterogeneity in disease course and progression. Genetic studies have identified numerous loci associated with MS risk, but the genetic basis of disease progression remains elusive. To address this, we leveraged the Collaborative Cross (CC), a genetically diverse mouse strain panel, and experimental autoimmune encephalomyelitis (EAE). The 32 CC strains studied captured a wide spectrum of EAE severity, trajectory, and presentation, including severe-progressive, monophasic, relapsing remitting, and axial rotary-EAE (AR-EAE), accompanied by distinct immunopathology. Sex differences in EAE severity were observed in 6 strains. Quantitative trait locus analysis revealed distinct genetic linkage patterns for different EAE phenotypes, including EAE severity and incidence of AR-EAE. Machine learning-based approaches prioritized candidate genes for loci underlying EAE severity (Abcc4 and Gpc6) and AR-EAE (Yap1 and Dync2h1). This work expands the EAE phenotypic repertoire and identifies potentially novel loci controlling unique EAE phenotypes, supporting the hypothesis that heterogeneity in MS disease course is driven by genetic variation.
{"title":"Analysis of CNS autoimmunity in genetically diverse mice reveals unique phenotypes and mechanisms.","authors":"Emily A Nelson, Anna L Tyler, Taylor Lakusta-Wong, Karolyn G Lahue, Katherine C Hankes, Cory Teuscher, Rachel M Lynch, Martin T Ferris, J Matthew Mahoney, Dimitry N Krementsov","doi":"10.1172/jci.insight.184138","DOIUrl":"10.1172/jci.insight.184138","url":null,"abstract":"<p><p>Multiple sclerosis (MS) is a complex disease with significant heterogeneity in disease course and progression. Genetic studies have identified numerous loci associated with MS risk, but the genetic basis of disease progression remains elusive. To address this, we leveraged the Collaborative Cross (CC), a genetically diverse mouse strain panel, and experimental autoimmune encephalomyelitis (EAE). The 32 CC strains studied captured a wide spectrum of EAE severity, trajectory, and presentation, including severe-progressive, monophasic, relapsing remitting, and axial rotary-EAE (AR-EAE), accompanied by distinct immunopathology. Sex differences in EAE severity were observed in 6 strains. Quantitative trait locus analysis revealed distinct genetic linkage patterns for different EAE phenotypes, including EAE severity and incidence of AR-EAE. Machine learning-based approaches prioritized candidate genes for loci underlying EAE severity (Abcc4 and Gpc6) and AR-EAE (Yap1 and Dync2h1). This work expands the EAE phenotypic repertoire and identifies potentially novel loci controlling unique EAE phenotypes, supporting the hypothesis that heterogeneity in MS disease course is driven by genetic variation.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142346968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1172/jci.insight.180239
Justin Sui, Hanxi Xiao, Ugonna Mbaekwe, Nai-Chun Ting, Kaley Murday, Qianjiang Hu, Alyssa D Gregory, Theodore S Kapellos, Ali Öender Yildirim, Melanie Königshoff, Yingze Zhang, Frank Sciurba, Jishnu Das, Corrine R Kliment
Transcriptomic analyses have advanced the understanding of complex disease pathophysiology including chronic obstructive pulmonary disease (COPD). However, identifying relevant biologic causative factors has been limited by the integration of high dimensionality data. COPD is characterized by lung destruction and inflammation, with smoke exposure being a major risk factor. To define previously unknown biological mechanisms in COPD, we utilized unsupervised and supervised interpretable machine learning analyses of single-cell RNA-Seq data from the mouse smoke-exposure model to identify significant latent factors (context-specific coexpression modules) impacting pathophysiology. The machine learning transcriptomic signatures coupled to protein networks uncovered a reduction in network complexity and new biological alterations in actin-associated gelsolin (GSN), which was transcriptionally linked to disease state. GSN was altered in airway epithelial cells in the mouse model and in human COPD. GSN was increased in plasma from patients with COPD, and smoke exposure resulted in enhanced GSN release from airway cells from patients with COPD. This method provides insights into rewiring of transcriptional networks that are associated with COPD pathogenesis and provides a translational analytical platform for other diseases.
{"title":"Interpretable machine learning uncovers epithelial transcriptional rewiring and a role for Gelsolin in COPD.","authors":"Justin Sui, Hanxi Xiao, Ugonna Mbaekwe, Nai-Chun Ting, Kaley Murday, Qianjiang Hu, Alyssa D Gregory, Theodore S Kapellos, Ali Öender Yildirim, Melanie Königshoff, Yingze Zhang, Frank Sciurba, Jishnu Das, Corrine R Kliment","doi":"10.1172/jci.insight.180239","DOIUrl":"10.1172/jci.insight.180239","url":null,"abstract":"<p><p>Transcriptomic analyses have advanced the understanding of complex disease pathophysiology including chronic obstructive pulmonary disease (COPD). However, identifying relevant biologic causative factors has been limited by the integration of high dimensionality data. COPD is characterized by lung destruction and inflammation, with smoke exposure being a major risk factor. To define previously unknown biological mechanisms in COPD, we utilized unsupervised and supervised interpretable machine learning analyses of single-cell RNA-Seq data from the mouse smoke-exposure model to identify significant latent factors (context-specific coexpression modules) impacting pathophysiology. The machine learning transcriptomic signatures coupled to protein networks uncovered a reduction in network complexity and new biological alterations in actin-associated gelsolin (GSN), which was transcriptionally linked to disease state. GSN was altered in airway epithelial cells in the mouse model and in human COPD. GSN was increased in plasma from patients with COPD, and smoke exposure resulted in enhanced GSN release from airway cells from patients with COPD. This method provides insights into rewiring of transcriptional networks that are associated with COPD pathogenesis and provides a translational analytical platform for other diseases.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142346983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1172/jci.insight.174725
Mauricio Torres, Brent Pederson, Hui Wang, Liangguang Leo Lin, Huilun Helen Wang, Amara Bugarin-Lapuz, Zhen Zhao, Ling Qi
Recent studies have identified multiple genetic variants of SEL1L-HRD1 endoplasmic reticulum-associated degradation (ERAD) in humans with neurodevelopmental disorders and locomotor dysfunctions, including ataxia. However, the relevance and importance of SEL1L-HRD1 ERAD in the pathogenesis of ataxia remain unexplored. Here, we showed that SEL1L deficiency in Purkinje cells leads to early-onset progressive cerebellar ataxia with progressive loss of Purkinje cells with age. Mice with Purkinje cell-specific deletion of SEL1L (Sel1LPcp2Cre) exhibited motor dysfunction beginning around 9 weeks of age. Transmission electron microscopy analysis revealed dilated ER and fragmented nuclei in Purkinje cells of adult Sel1LPcp2Cre mice, indicative of altered ER homeostasis and cell death. Finally, loss of Purkinje cells was associated with a secondary neurodegeneration of granular cells, as well as robust activation of astrocytes and proliferation of microglia, in the cerebellums of Sel1LPcp2Cre mice. These data demonstrate the pathophysiological importance of SEL1L-HRD1 ERAD in Purkinje cells in the pathogenesis of cerebellar ataxia.
最近的研究发现,SEL1L-HRD1 ER相关降解(ERAD)的多种遗传变异存在于神经发育障碍和运动功能障碍(包括共济失调)患者中。然而,SEL1L-HRD1 ERAD在共济失调发病机制中的相关性和重要性仍有待探索。在这里,我们发现普金叶细胞中 SEL1L 的缺乏会导致早发的进行性小脑共济失调,并且随着年龄的增长,普金叶细胞会逐渐丧失。Purkinje细胞特异性缺失SEL1L(Sel1LPcp2Cre)的小鼠在9周龄左右开始出现运动功能障碍。透射电子显微镜(TEM)分析显示,成年 Sel1LPcp2Cre 小鼠的浦肯野细胞内存在扩张的 ER 和破碎的细胞核,这表明 ER 平衡发生了改变并导致细胞死亡。最后,在Sel1LPcp2Cre小鼠的小脑中,Purkinje细胞的丧失与颗粒细胞的继发性神经变性以及星形胶质细胞的强力激活和小胶质细胞的增殖有关。这些数据证明了浦肯野细胞中的SEL1L-HRD1 ERAD在小脑共济失调发病机制中的重要病理生理作用。
{"title":"Purkinje cell-specific deficiency in SEL1L-hrd1 endoplasmic reticulum-associated degradation causes progressive cerebellar ataxia in mice.","authors":"Mauricio Torres, Brent Pederson, Hui Wang, Liangguang Leo Lin, Huilun Helen Wang, Amara Bugarin-Lapuz, Zhen Zhao, Ling Qi","doi":"10.1172/jci.insight.174725","DOIUrl":"10.1172/jci.insight.174725","url":null,"abstract":"<p><p>Recent studies have identified multiple genetic variants of SEL1L-HRD1 endoplasmic reticulum-associated degradation (ERAD) in humans with neurodevelopmental disorders and locomotor dysfunctions, including ataxia. However, the relevance and importance of SEL1L-HRD1 ERAD in the pathogenesis of ataxia remain unexplored. Here, we showed that SEL1L deficiency in Purkinje cells leads to early-onset progressive cerebellar ataxia with progressive loss of Purkinje cells with age. Mice with Purkinje cell-specific deletion of SEL1L (Sel1LPcp2Cre) exhibited motor dysfunction beginning around 9 weeks of age. Transmission electron microscopy analysis revealed dilated ER and fragmented nuclei in Purkinje cells of adult Sel1LPcp2Cre mice, indicative of altered ER homeostasis and cell death. Finally, loss of Purkinje cells was associated with a secondary neurodegeneration of granular cells, as well as robust activation of astrocytes and proliferation of microglia, in the cerebellums of Sel1LPcp2Cre mice. These data demonstrate the pathophysiological importance of SEL1L-HRD1 ERAD in Purkinje cells in the pathogenesis of cerebellar ataxia.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563667/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1172/jci.insight.179530
Min Fu, Yiling Zhang, Bi Peng, Na Luo, Yuanyuan Zhang, Wenjun Zhu, Feng Yang, Ziqi Chen, Qiang Zhang, Qianxia Li, Xin Chen, Yuanhui Liu, Guoxian Long, Guangyuan Hu, Xiaohong Peng
Radiotherapy (RT) remains a primary treatment modality for glioblastoma (GBM), but it induces cellular senescence and is strongly implicated in GBM progression and RT-related injury. Recently, eliminating senescent cells has emerged as a promising strategy for treating cancer and for mitigating radiation-induced brain injury (RBI). Here, we investigated the impact of all-trans retinoic acid (RA) on radiation-induced senescence. The findings of this study revealed that RA effectively eliminated astrocytes, which are particularly prone to senescence after radiation, and that the removal of senescence-associated secretory phenotype factor-producing astrocytes inhibited GBM cell proliferation in vitro. Moreover, RA-mediated clearance of senescent cells improved survival in GBM-bearing mice and alleviated radiation-induced cognitive impairment. Through RNA sequencing, we found that the AKT/mTOR/PPARγ/Plin4 signaling pathway is involved in RA-mediated clearance of senescent cells. In summary, these results suggest that RA could be a potential senolytic drug for preventing GBM progression and improving RBI.
{"title":"All-trans retinoic acid inhibits glioblastoma progression and attenuates radiation-induced brain injury.","authors":"Min Fu, Yiling Zhang, Bi Peng, Na Luo, Yuanyuan Zhang, Wenjun Zhu, Feng Yang, Ziqi Chen, Qiang Zhang, Qianxia Li, Xin Chen, Yuanhui Liu, Guoxian Long, Guangyuan Hu, Xiaohong Peng","doi":"10.1172/jci.insight.179530","DOIUrl":"https://doi.org/10.1172/jci.insight.179530","url":null,"abstract":"<p><p>Radiotherapy (RT) remains a primary treatment modality for glioblastoma (GBM), but it induces cellular senescence and is strongly implicated in GBM progression and RT-related injury. Recently, eliminating senescent cells has emerged as a promising strategy for treating cancer and for mitigating radiation-induced brain injury (RBI). Here, we investigated the impact of all-trans retinoic acid (RA) on radiation-induced senescence. The findings of this study revealed that RA effectively eliminated astrocytes, which are particularly prone to senescence after radiation, and that the removal of senescence-associated secretory phenotype factor-producing astrocytes inhibited GBM cell proliferation in vitro. Moreover, RA-mediated clearance of senescent cells improved survival in GBM-bearing mice and alleviated radiation-induced cognitive impairment. Through RNA sequencing, we found that the AKT/mTOR/PPARγ/Plin4 signaling pathway is involved in RA-mediated clearance of senescent cells. In summary, these results suggest that RA could be a potential senolytic drug for preventing GBM progression and improving RBI.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":"9 21","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142604477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1172/jci.insight.177840
Krizia Rohena-Rivera, Sungyong You, Minhyung Kim, Sandrine Billet, Johanna Ten Hoeve, Gabrielle Gonzales, Chengqun Huang, Ashley Heard, Keith Syson Chan, Neil A Bhowmick
Chemotherapy is often combined with surgery for muscle invasive and non-muscle invasive bladder cancer. However, 70% of the patients recur within 5 years. Metabolic reprogramming is an emerging hallmark in cancer chemoresistance. Here, we report a gemcitabine resistance mechanism which promotes cancer reprogramming via the metabolic enzyme, OXCT1. This mitochondrial enzyme, responsible for the rate-limiting step in β-hydroxybutyrate (βHB) catabolism, was elevated in muscle invasive disease and in chemo-resistant bladder cancer patients. Resistant orthotopic tumors presented an OXCT1-dependent rise in mitochondrial oxygen consumption rate, ATP, and nucleotide biosynthesis. In resistant bladder cancer, knocking out OXCT1 restored gemcitabine sensitivity, and administering the non-metabolizable βHB, enantiomer (S-βHB) only partially restored gemcitabine sensitivity. Suggesting an extra-metabolic role for OXCT1, multi-omics analysis of gemcitabine sensitive and resistant cells revealed an OXCT1-dependent signature with the transcriptional repressor, OVOL1, as a master regulator of epithelial differentiation. The elevation of OVOL1 target genes was associated with its cytoplasmic translocation and poor prognosis in a chemotherapy-treated BCa patient cohort. The knockout of OXCT1 restored OVOL1 transcriptional repressive activity by its nuclear translocation. Orthotopic mouse models of bladder cancer supported OXCT1 as a mediator of gemcitabine sensitivity through ketone metabolism and regulating cancer stem cell differentiation.
{"title":"Targeting ketone body metabolism in mitigating gemcitabine resistance.","authors":"Krizia Rohena-Rivera, Sungyong You, Minhyung Kim, Sandrine Billet, Johanna Ten Hoeve, Gabrielle Gonzales, Chengqun Huang, Ashley Heard, Keith Syson Chan, Neil A Bhowmick","doi":"10.1172/jci.insight.177840","DOIUrl":"https://doi.org/10.1172/jci.insight.177840","url":null,"abstract":"<p><p>Chemotherapy is often combined with surgery for muscle invasive and non-muscle invasive bladder cancer. However, 70% of the patients recur within 5 years. Metabolic reprogramming is an emerging hallmark in cancer chemoresistance. Here, we report a gemcitabine resistance mechanism which promotes cancer reprogramming via the metabolic enzyme, OXCT1. This mitochondrial enzyme, responsible for the rate-limiting step in β-hydroxybutyrate (βHB) catabolism, was elevated in muscle invasive disease and in chemo-resistant bladder cancer patients. Resistant orthotopic tumors presented an OXCT1-dependent rise in mitochondrial oxygen consumption rate, ATP, and nucleotide biosynthesis. In resistant bladder cancer, knocking out OXCT1 restored gemcitabine sensitivity, and administering the non-metabolizable βHB, enantiomer (S-βHB) only partially restored gemcitabine sensitivity. Suggesting an extra-metabolic role for OXCT1, multi-omics analysis of gemcitabine sensitive and resistant cells revealed an OXCT1-dependent signature with the transcriptional repressor, OVOL1, as a master regulator of epithelial differentiation. The elevation of OVOL1 target genes was associated with its cytoplasmic translocation and poor prognosis in a chemotherapy-treated BCa patient cohort. The knockout of OXCT1 restored OVOL1 transcriptional repressive activity by its nuclear translocation. Orthotopic mouse models of bladder cancer supported OXCT1 as a mediator of gemcitabine sensitivity through ketone metabolism and regulating cancer stem cell differentiation.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142604476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}