Pub Date : 2025-01-07DOI: 10.1172/jci.insight.184202
Alyssa Grogan, Annie Brong, Humberto C Joca, Liron Boyman, Aaron D Kaplan, Christopher W Ward, Maura Greiser, Aikaterini Kontrogianni-Konstantopoulos
Obscurin is a giant protein that coordinates diverse aspects of striated muscle physiology. Obscurin immunoglobulin domains 58/59 (Ig58/59) associate with essential sarcomeric and Ca2+ cycling proteins. To explore the pathophysiological significance of Ig58/59, we generated the Obscn-ΔIg58/59 mouse model, expressing obscurin constitutively lacking Ig58/59. Males in this line develop atrial fibrillation by 6-months, with atrial and ventricular dilation by 12-months. As Obscn-ΔIg58/59 left ventricles at 6-months exhibit no deficits in sarcomeric ultrastructure or Ca2+ signaling, we hypothesized that susceptibility to arrhythmia may emanate from the atria. Ultrastructural evaluation of male Obscn-ΔIg58/59 atria uncovered prominent Z-disk streaming by 6-months and further misalignment by 12-months. Relatedly, isolated Obscn-ΔIg58/59 atrial cardiomyocytes exhibited increased Ca2+ spark frequency and age-specific alterations in Ca2+ cycling dynamics, coinciding with arrythmia onset and progression. Quantitative analysis of the transverse-axial tubule (TAT) network using super-resolution microscopy demonstrated significant TAT depletion in Obscn-ΔIg58/59 atria. These structural and Ca2+ signaling deficits were accompanied by age-specific alterations in the expression and/or phosphorylation of T-cap, which links transverse-tubules to Z-disks, and junctophilin-2, which connects transverse-tubules to the sarcoplasmic reticulum. Collectively, our work establishes the Obscn-ΔIg58/59 model as a reputable genetic model for atrial cardiomyopathy and provides mechanistic insights into atrial fibrillation and remodeling.
{"title":"Constitutive deletion of the obscurin-Ig58/59 domains induces atrial remodeling and Ca2+-based arrhythmogenesis.","authors":"Alyssa Grogan, Annie Brong, Humberto C Joca, Liron Boyman, Aaron D Kaplan, Christopher W Ward, Maura Greiser, Aikaterini Kontrogianni-Konstantopoulos","doi":"10.1172/jci.insight.184202","DOIUrl":"https://doi.org/10.1172/jci.insight.184202","url":null,"abstract":"<p><p>Obscurin is a giant protein that coordinates diverse aspects of striated muscle physiology. Obscurin immunoglobulin domains 58/59 (Ig58/59) associate with essential sarcomeric and Ca2+ cycling proteins. To explore the pathophysiological significance of Ig58/59, we generated the Obscn-ΔIg58/59 mouse model, expressing obscurin constitutively lacking Ig58/59. Males in this line develop atrial fibrillation by 6-months, with atrial and ventricular dilation by 12-months. As Obscn-ΔIg58/59 left ventricles at 6-months exhibit no deficits in sarcomeric ultrastructure or Ca2+ signaling, we hypothesized that susceptibility to arrhythmia may emanate from the atria. Ultrastructural evaluation of male Obscn-ΔIg58/59 atria uncovered prominent Z-disk streaming by 6-months and further misalignment by 12-months. Relatedly, isolated Obscn-ΔIg58/59 atrial cardiomyocytes exhibited increased Ca2+ spark frequency and age-specific alterations in Ca2+ cycling dynamics, coinciding with arrythmia onset and progression. Quantitative analysis of the transverse-axial tubule (TAT) network using super-resolution microscopy demonstrated significant TAT depletion in Obscn-ΔIg58/59 atria. These structural and Ca2+ signaling deficits were accompanied by age-specific alterations in the expression and/or phosphorylation of T-cap, which links transverse-tubules to Z-disks, and junctophilin-2, which connects transverse-tubules to the sarcoplasmic reticulum. Collectively, our work establishes the Obscn-ΔIg58/59 model as a reputable genetic model for atrial cardiomyopathy and provides mechanistic insights into atrial fibrillation and remodeling.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142978541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-07DOI: 10.1172/jci.insight.187876
Nicholas M Negretti, Yeongseo Son, Philip Crooke, Erin J Plosa, John T Benjamin, Christopher S Jetter, Claire Bunn, Nicholas Mignemi, John Marini, Alice N Hackett, Meaghan Ransom, Shriya Garg, David Nichols, Susan H Guttentag, Heather H Pua, Timothy S Blackwell, William Zacharias, David B Frank, John A Kozub, Anita Mahadevan-Jansen, Evan Krystofiak, Jonathan A Kropski, Christopher Ve Wright, Bryan Millis, Jennifer Ms Sucre
Determining how alveoli are formed and maintained is critical to understanding lung organogenesis and regeneration after injury. To study the cellular dynamics of this critical stage of lung development, we have used scanned oblique-plane illumination microscopy of living lung slices to observe alveologenesis in real time at high resolution over several days. Contrary to the prevailing notion that alveologenesis occurs by airspace subdivision via ingrowing septa, we find that alveoli form by ballooning epithelial outgrowth supported by contracting mesenchymal ring structures. Systematic analysis has produced a computational model of finely timed cellular structural changes that drive normal alveologenesis. With this model, we can now quantify how perturbing known regulatory intercellular signaling pathways and cell migration processes effects alveologenesis. In the future, this new paradigm and platform can be leveraged for mechanistic studies and screening for therapies to promote lung regeneration.
{"title":"Epithelial outgrowth through mesenchymal rings drives alveologenesis.","authors":"Nicholas M Negretti, Yeongseo Son, Philip Crooke, Erin J Plosa, John T Benjamin, Christopher S Jetter, Claire Bunn, Nicholas Mignemi, John Marini, Alice N Hackett, Meaghan Ransom, Shriya Garg, David Nichols, Susan H Guttentag, Heather H Pua, Timothy S Blackwell, William Zacharias, David B Frank, John A Kozub, Anita Mahadevan-Jansen, Evan Krystofiak, Jonathan A Kropski, Christopher Ve Wright, Bryan Millis, Jennifer Ms Sucre","doi":"10.1172/jci.insight.187876","DOIUrl":"10.1172/jci.insight.187876","url":null,"abstract":"<p><p>Determining how alveoli are formed and maintained is critical to understanding lung organogenesis and regeneration after injury. To study the cellular dynamics of this critical stage of lung development, we have used scanned oblique-plane illumination microscopy of living lung slices to observe alveologenesis in real time at high resolution over several days. Contrary to the prevailing notion that alveologenesis occurs by airspace subdivision via ingrowing septa, we find that alveoli form by ballooning epithelial outgrowth supported by contracting mesenchymal ring structures. Systematic analysis has produced a computational model of finely timed cellular structural changes that drive normal alveologenesis. With this model, we can now quantify how perturbing known regulatory intercellular signaling pathways and cell migration processes effects alveologenesis. In the future, this new paradigm and platform can be leveraged for mechanistic studies and screening for therapies to promote lung regeneration.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142949200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-07DOI: 10.1172/jci.insight.186003
Hans Desale, Weihong Tu, Kelly Goff, Preston A Marx, Claudia Herrera, Eric Dumonteil
Chagas disease is a neglected tropical disease caused by Trypanosoma cruzi with clinical presentations ranging from asymptomatic to cardiac and/or gastrointestinal complications. The mechanisms of pathogenesis are still poorly understood, but T. cruzi strain diversity may be associated with disease progression. Therefore, we evaluated the transcriptomic response of PBMCs from macaques with natural chronic infections and tested for heterogeneity in their gene signatures. Remarkably, transcriptomic response to T. cruzi infection matched parasite strain profiles, indicating that parasite diversity is a key determinant of host response. While differences in adaptive immune responses were identified, more striking alterations of innate immune processes were detected. Thus, initial innate response to T. cruzi infection may be conditioned by parasite strain diversity, resulting in different profiles of trained immunity modulating subsequent adaptive responses, allowing parasite control or its persistence during the chronic phase. These results call for further characterization of the cross-talk between innate and adaptive immunity according to parasite diversity, and how altered trained immunity contributes to pathogenesis, as this may lead to better treatments and vaccines.
{"title":"PBMC transcriptomic signatures reflect Trypanosoma cruzi strain diversity and trained immunity in chronically infected macaques.","authors":"Hans Desale, Weihong Tu, Kelly Goff, Preston A Marx, Claudia Herrera, Eric Dumonteil","doi":"10.1172/jci.insight.186003","DOIUrl":"10.1172/jci.insight.186003","url":null,"abstract":"<p><p>Chagas disease is a neglected tropical disease caused by Trypanosoma cruzi with clinical presentations ranging from asymptomatic to cardiac and/or gastrointestinal complications. The mechanisms of pathogenesis are still poorly understood, but T. cruzi strain diversity may be associated with disease progression. Therefore, we evaluated the transcriptomic response of PBMCs from macaques with natural chronic infections and tested for heterogeneity in their gene signatures. Remarkably, transcriptomic response to T. cruzi infection matched parasite strain profiles, indicating that parasite diversity is a key determinant of host response. While differences in adaptive immune responses were identified, more striking alterations of innate immune processes were detected. Thus, initial innate response to T. cruzi infection may be conditioned by parasite strain diversity, resulting in different profiles of trained immunity modulating subsequent adaptive responses, allowing parasite control or its persistence during the chronic phase. These results call for further characterization of the cross-talk between innate and adaptive immunity according to parasite diversity, and how altered trained immunity contributes to pathogenesis, as this may lead to better treatments and vaccines.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142949216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31DOI: 10.1172/jci.insight.173071
Sunny Kataria, Isha Rana, Krithika Badarinath, Rania F Zaarour, Gaurav Kansagara, Sultan Ahmed, Abrar Rizvi, Dyuti Saha, Binita Dam, Abhik Dutta, Ravindra K Zirmire, Edries Yousaf Hajam, Pankaj Kumar, Akash Gulyani, Colin Jamora
Fibrosis results from excessive extracellular matrix (ECM) deposition, causing tissue stiffening and organ dysfunction. Activated fibroblasts, central to fibrosis, exhibit increased migration, proliferation, contraction, and ECM production. However, it remains unclear if the same fibroblast performs all of the processes that fall under the umbrella term of "activation". Due to fibroblast heterogeneity in connective tissues, subpopulations with specific functions may operate under distinct regulatory controls. Using a transgenic mouse model of skin fibrosis, we found that Mindin (spondin-2), secreted by Snail transgenic keratinocytes, differentially regulates fibroblast subpopulations. Mindin promotes migration and inflammatory gene expression in SCA1+ dermal fibroblasts via Fyn kinase. In contrast, it enhances contractility and collagen production in papillary CD26+ fibroblasts through c-Src signalling. Moreover, in the context of the fibrotic microenvironment of the tumour stroma, we found that differential responses of resident fibroblasts subpopulations to Mindin extend to the generation of functionally heterogeneous cancer-associated fibroblasts (CAFs). This study unveils Mindin as a key orchestrator of dermal fibroblast heterogeneity, reshaping cellular dynamics and signalling diversity in the complex landscapes of skin fibrosis and cancer.
{"title":"Mindin/spondin-2 regulates fibroblast subpopulations through distinct Src family kinases during fibrogenesis.","authors":"Sunny Kataria, Isha Rana, Krithika Badarinath, Rania F Zaarour, Gaurav Kansagara, Sultan Ahmed, Abrar Rizvi, Dyuti Saha, Binita Dam, Abhik Dutta, Ravindra K Zirmire, Edries Yousaf Hajam, Pankaj Kumar, Akash Gulyani, Colin Jamora","doi":"10.1172/jci.insight.173071","DOIUrl":"https://doi.org/10.1172/jci.insight.173071","url":null,"abstract":"<p><p>Fibrosis results from excessive extracellular matrix (ECM) deposition, causing tissue stiffening and organ dysfunction. Activated fibroblasts, central to fibrosis, exhibit increased migration, proliferation, contraction, and ECM production. However, it remains unclear if the same fibroblast performs all of the processes that fall under the umbrella term of \"activation\". Due to fibroblast heterogeneity in connective tissues, subpopulations with specific functions may operate under distinct regulatory controls. Using a transgenic mouse model of skin fibrosis, we found that Mindin (spondin-2), secreted by Snail transgenic keratinocytes, differentially regulates fibroblast subpopulations. Mindin promotes migration and inflammatory gene expression in SCA1+ dermal fibroblasts via Fyn kinase. In contrast, it enhances contractility and collagen production in papillary CD26+ fibroblasts through c-Src signalling. Moreover, in the context of the fibrotic microenvironment of the tumour stroma, we found that differential responses of resident fibroblasts subpopulations to Mindin extend to the generation of functionally heterogeneous cancer-associated fibroblasts (CAFs). This study unveils Mindin as a key orchestrator of dermal fibroblast heterogeneity, reshaping cellular dynamics and signalling diversity in the complex landscapes of skin fibrosis and cancer.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142909743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31DOI: 10.1172/jci.insight.173746
Emilie Jaune-Pons, Xiaoyi Wang, Fatemeh Mousavi, Zachary Klassen, Abdessamad Elkaoutari, Kurt Berger, Charis Johnson, Mickenzie B Martin, Saloni Aggarwal, Sukhman Brar, Muhammad Khalid, Joanna F Ryan, Parisa Shooshtari, Angela J Mathison, Nelson Dusetti, Raul Urrutia, Gwen Lomberk, Christopher L Pin
Enhancer of Zeste Homologue 2 (EZH2) is part of the Polycomb Repressor Complex 2, which promotes trimethylation of lysine 27 on histone 3 (H3K27me3) and genes repression. EZH2 is overexpressed in many cancers and studies in mice attributed both pro-oncogenic and tumor suppressive functions to EZH2 in pancreatic ductal adenocarcinoma (PDAC). EZH2 deletion enhances de novo KRAS-driven neoplasia following pancreatic injury, while increased EZH2 expression in PDAC patients is correlated to poor prognosis, suggesting a context-dependant effect for EZH2 in PDAC progression. In this study, we examined EZH2 in pre- and early neoplastic stages of PDAC. Using an inducible model to delete the SET domain of EZH2 in adult acinar cells (EZH2∆SET), we showed loss of EZH2 activity did not prevent acinar cell regeneration in the absence of oncogenic KRAS (KRASG12D), nor increase PanIN formation following KRASG12D activation in adult mice. Loss of EZH2 did reduce recruitment of inflammatory cells and, when combined with a more aggressive PDAC model, promoted widespread PDAC progression and remodeling of the tumor microenvironment. This study suggests expression of EZH2 in adult acinar cells restricts PDAC initiation and progression by affecting both the tumour microenvironment and acinar cell differentiation.
{"title":"EZH2 deletion does not impact acinar regeneration but restricts progression to pancreatic cancer in mice.","authors":"Emilie Jaune-Pons, Xiaoyi Wang, Fatemeh Mousavi, Zachary Klassen, Abdessamad Elkaoutari, Kurt Berger, Charis Johnson, Mickenzie B Martin, Saloni Aggarwal, Sukhman Brar, Muhammad Khalid, Joanna F Ryan, Parisa Shooshtari, Angela J Mathison, Nelson Dusetti, Raul Urrutia, Gwen Lomberk, Christopher L Pin","doi":"10.1172/jci.insight.173746","DOIUrl":"https://doi.org/10.1172/jci.insight.173746","url":null,"abstract":"<p><p>Enhancer of Zeste Homologue 2 (EZH2) is part of the Polycomb Repressor Complex 2, which promotes trimethylation of lysine 27 on histone 3 (H3K27me3) and genes repression. EZH2 is overexpressed in many cancers and studies in mice attributed both pro-oncogenic and tumor suppressive functions to EZH2 in pancreatic ductal adenocarcinoma (PDAC). EZH2 deletion enhances de novo KRAS-driven neoplasia following pancreatic injury, while increased EZH2 expression in PDAC patients is correlated to poor prognosis, suggesting a context-dependant effect for EZH2 in PDAC progression. In this study, we examined EZH2 in pre- and early neoplastic stages of PDAC. Using an inducible model to delete the SET domain of EZH2 in adult acinar cells (EZH2∆SET), we showed loss of EZH2 activity did not prevent acinar cell regeneration in the absence of oncogenic KRAS (KRASG12D), nor increase PanIN formation following KRASG12D activation in adult mice. Loss of EZH2 did reduce recruitment of inflammatory cells and, when combined with a more aggressive PDAC model, promoted widespread PDAC progression and remodeling of the tumor microenvironment. This study suggests expression of EZH2 in adult acinar cells restricts PDAC initiation and progression by affecting both the tumour microenvironment and acinar cell differentiation.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142909742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-26DOI: 10.1172/jci.insight.174825
Rola Hammoud, Kiran Deep Kaur, Jacqueline A Koehler, Laurie L Baggio, Chi Kin Wong, Katie E Advani, Bernardo Yusta, Irina Efimova, Fiona M Gribble, Frank Reimann, Sigal Fishman, Chen Varol, Daniel J Drucker
Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) are gut-derived peptide hormones that potentiate glucose-dependent insulin secretion. The clinical development of GIP receptor (GIPR)-GLP-1 receptor (GLP-1R) multi-agonists exemplified by tirzepatide and emerging GIPR antagonist-GLP-1R agonist therapeutics such as maritide is increasing interest in the extra-pancreatic actions of incretin therapies. Both GLP-1 and GIP modulate inflammation, with GLP-1 also acting locally to alleviate gut inflammation in part through anti-inflammatory actions on GLP-1R+ intestinal intraepithelial lymphocytes. In contrast, whether GIP modulates gut inflammation is not known. Here, using gain and loss of function studies, we show that GIP alleviates 5-fluorouracil (5FU)-induced gut inflammation, whereas genetic deletion of Gipr exacerbates the proinflammatory response to 5FU in the murine small bowel (SB). Bone marrow (BM) transplant studies demonstrated that BM-derived Gipr-expressing cells suppress 5FU-induced gut inflammation in the context of global Gipr deficiency. Within the gut, Gipr was localized to non-immune cells, specifically stromal CD146+ cells. Hence, the extra-pancreatic actions of GIPR signaling extend to the attenuation of gut inflammation, findings with potential translational relevance for clinical strategies modulating GIPR action in people with type 2 diabetes or obesity.
{"title":"Glucose-dependent insulinotropic polypeptide receptor signaling alleviates gut inflammation in mice.","authors":"Rola Hammoud, Kiran Deep Kaur, Jacqueline A Koehler, Laurie L Baggio, Chi Kin Wong, Katie E Advani, Bernardo Yusta, Irina Efimova, Fiona M Gribble, Frank Reimann, Sigal Fishman, Chen Varol, Daniel J Drucker","doi":"10.1172/jci.insight.174825","DOIUrl":"https://doi.org/10.1172/jci.insight.174825","url":null,"abstract":"<p><p>Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) are gut-derived peptide hormones that potentiate glucose-dependent insulin secretion. The clinical development of GIP receptor (GIPR)-GLP-1 receptor (GLP-1R) multi-agonists exemplified by tirzepatide and emerging GIPR antagonist-GLP-1R agonist therapeutics such as maritide is increasing interest in the extra-pancreatic actions of incretin therapies. Both GLP-1 and GIP modulate inflammation, with GLP-1 also acting locally to alleviate gut inflammation in part through anti-inflammatory actions on GLP-1R+ intestinal intraepithelial lymphocytes. In contrast, whether GIP modulates gut inflammation is not known. Here, using gain and loss of function studies, we show that GIP alleviates 5-fluorouracil (5FU)-induced gut inflammation, whereas genetic deletion of Gipr exacerbates the proinflammatory response to 5FU in the murine small bowel (SB). Bone marrow (BM) transplant studies demonstrated that BM-derived Gipr-expressing cells suppress 5FU-induced gut inflammation in the context of global Gipr deficiency. Within the gut, Gipr was localized to non-immune cells, specifically stromal CD146+ cells. Hence, the extra-pancreatic actions of GIPR signaling extend to the attenuation of gut inflammation, findings with potential translational relevance for clinical strategies modulating GIPR action in people with type 2 diabetes or obesity.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142894329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-26DOI: 10.1172/jci.insight.188216
Andrew W Stacey, Kenji Nakamichi, Jennifer Huey, Jeffrey Stevens, Natalie Waligorski, Erin E Crotty, Russell N Van Gelder, Debarshi Mustafi
Background: Current clinical sequencing methods cannot effectively detect DNA methylation and allele-specific variation to provide parent-of-origin information from the proband alone. Parent-of-origin effects can lead to differential disease and the inability to assign this in de novo cases limits prognostication in the majority of affected individuals with retinoblastoma, a hereditary cancer with suspected parent-of-origin effects.
Methods: To directly assign parent-of-origin in retinoblastoma patients, genomic DNA was extracted from blood samples for sequencing using a programmable, targeted single-molecule long-read DNA genomic and epigenomic approach. This allowed germline variant calling and simultaneous haplotype-resolved CpG methylation in subjects with familial (n=7) and de novo (n=9) retinoblastoma.
Results: Targeted long-read sequencing allowed phasing genomic variation with a differentially methylated region in intron 2 of the RB1 gene to confirm parent-of-origin in known familial samples. Leveraging this approach allowed us to directly assign parent-of-origin rapidly in simple and complex de novo cases from the proband alone. The ability to assign parent-of-origin in all cases of retinoblastoma showed that harboring disease-causing variants on the paternally inherited allele, whether arising familial or de novo, is associated with more advanced cancer staging at presentation and significantly greater risk of chemotherapy failure (P=0.002).
Conclusion: This study demonstrates the diagnostic potential of multi-omic long-read profiling to unveil the parent-of-origin effect in hereditary cancer. The approach in this work will be instrumental in assigning parent-of-origin to other genetic diseases using local and distant imprinting signals in the genome.
Funding: National Eye Institute, NIH (K08EY033789); Gerber Foundation; Research to Prevent Blindness.
{"title":"Prognostic importance of direct assignment of parent-of-origin via long-read genome and epigenome sequencing in retinoblastoma.","authors":"Andrew W Stacey, Kenji Nakamichi, Jennifer Huey, Jeffrey Stevens, Natalie Waligorski, Erin E Crotty, Russell N Van Gelder, Debarshi Mustafi","doi":"10.1172/jci.insight.188216","DOIUrl":"10.1172/jci.insight.188216","url":null,"abstract":"<p><strong>Background: </strong>Current clinical sequencing methods cannot effectively detect DNA methylation and allele-specific variation to provide parent-of-origin information from the proband alone. Parent-of-origin effects can lead to differential disease and the inability to assign this in de novo cases limits prognostication in the majority of affected individuals with retinoblastoma, a hereditary cancer with suspected parent-of-origin effects.</p><p><strong>Methods: </strong>To directly assign parent-of-origin in retinoblastoma patients, genomic DNA was extracted from blood samples for sequencing using a programmable, targeted single-molecule long-read DNA genomic and epigenomic approach. This allowed germline variant calling and simultaneous haplotype-resolved CpG methylation in subjects with familial (n=7) and de novo (n=9) retinoblastoma.</p><p><strong>Results: </strong>Targeted long-read sequencing allowed phasing genomic variation with a differentially methylated region in intron 2 of the RB1 gene to confirm parent-of-origin in known familial samples. Leveraging this approach allowed us to directly assign parent-of-origin rapidly in simple and complex de novo cases from the proband alone. The ability to assign parent-of-origin in all cases of retinoblastoma showed that harboring disease-causing variants on the paternally inherited allele, whether arising familial or de novo, is associated with more advanced cancer staging at presentation and significantly greater risk of chemotherapy failure (P=0.002).</p><p><strong>Conclusion: </strong>This study demonstrates the diagnostic potential of multi-omic long-read profiling to unveil the parent-of-origin effect in hereditary cancer. The approach in this work will be instrumental in assigning parent-of-origin to other genetic diseases using local and distant imprinting signals in the genome.</p><p><strong>Funding: </strong>National Eye Institute, NIH (K08EY033789); Gerber Foundation; Research to Prevent Blindness.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142894333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-26DOI: 10.1172/jci.insight.187328
Andrew Gould, Yu Luan, Ye Hou, Farida V Korobova, Li Chen, Victor A Arrieta, Christina Amidei, Rachel Ward, Cristal Gomez, Brandyn Castro, Karl Habashy, Daniel Zhang, Mark Youngblood, Crismita Dmello, John Bebawy, Guillaume Bouchoux, Roger Stupp, Michael Canney, Feng Yue, M Luisa Iruela-Arispe, Adam M Sonabend
Cerebral endothelial cell (EC) injury and blood-brain barrier (BBB) permeability contribute to neuronal injury in acute neurological disease states. Preclinical experiments have used animal models to study this phenomenon, yet the response of human cerebral ECs to BBB disruption remains unclear. In our Phase 1 clinical trial (NCT04528680), we used low-intensity pulsed ultrasound with microbubbles (LIPU/MB) to induce transient BBB disruption of peri-tumoral brain in patients with recurrent glioblastoma. We found radiographic evidence that BBB integrity was mostly restored within 1-hour of this procedure. Using single-cell RNA sequencing and transmission electron microscopy, we analyzed the acute response of human brain ECs to ultrasound-mediated BBB disruption. Our analysis revealed distinct EC gene expression changes after LIPU/MB, particularly in genes related to neurovascular barrier function and structure, including changes to genes involved in the basement membrane, EC cytoskeleton, and junction complexes, as well as caveolar transcytosis and various solute transporters. Ultrastructural analysis showed that LIPU/MB led to a decrease in luminal caveolae, the emergence of cytoplasmic vacuoles, and the disruption of the basement membrane and tight junctions, among other things. These findings suggested that acute BBB disruption by LIPU/MB led to specific transcriptional and ultrastructural changes and could represent a conserved mechanism of BBB repair after neurovascular injury in humans.
{"title":"Endothelial Response to Blood-Brain Barrier Disruption in the Human Brain.","authors":"Andrew Gould, Yu Luan, Ye Hou, Farida V Korobova, Li Chen, Victor A Arrieta, Christina Amidei, Rachel Ward, Cristal Gomez, Brandyn Castro, Karl Habashy, Daniel Zhang, Mark Youngblood, Crismita Dmello, John Bebawy, Guillaume Bouchoux, Roger Stupp, Michael Canney, Feng Yue, M Luisa Iruela-Arispe, Adam M Sonabend","doi":"10.1172/jci.insight.187328","DOIUrl":"https://doi.org/10.1172/jci.insight.187328","url":null,"abstract":"<p><p>Cerebral endothelial cell (EC) injury and blood-brain barrier (BBB) permeability contribute to neuronal injury in acute neurological disease states. Preclinical experiments have used animal models to study this phenomenon, yet the response of human cerebral ECs to BBB disruption remains unclear. In our Phase 1 clinical trial (NCT04528680), we used low-intensity pulsed ultrasound with microbubbles (LIPU/MB) to induce transient BBB disruption of peri-tumoral brain in patients with recurrent glioblastoma. We found radiographic evidence that BBB integrity was mostly restored within 1-hour of this procedure. Using single-cell RNA sequencing and transmission electron microscopy, we analyzed the acute response of human brain ECs to ultrasound-mediated BBB disruption. Our analysis revealed distinct EC gene expression changes after LIPU/MB, particularly in genes related to neurovascular barrier function and structure, including changes to genes involved in the basement membrane, EC cytoskeleton, and junction complexes, as well as caveolar transcytosis and various solute transporters. Ultrastructural analysis showed that LIPU/MB led to a decrease in luminal caveolae, the emergence of cytoplasmic vacuoles, and the disruption of the basement membrane and tight junctions, among other things. These findings suggested that acute BBB disruption by LIPU/MB led to specific transcriptional and ultrastructural changes and could represent a conserved mechanism of BBB repair after neurovascular injury in humans.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142893731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-24DOI: 10.1172/jci.insight.182103
Meike Sambale, Starlee Lively, Osvaldo Espin-Garcia, Pratibha Potla, Chiara Pastrello, Sarah Bödecker, Linda Wessendorf, Simon Kleimann, Peter Paruzel, Rojiar Asgarian, Alexandra Tosun, Johanna Intemann, Jessica Bertrand, Francesco Dell'Accio, Mohit Kapoor, Thomas Pap, Joanna Sherwood
Transient receptor potential channel 1 (TRPC1) is a widely expressed mechanosensitive ion channel located within the endoplasmic reticulum membrane, crucial for refilling depleted internal calcium stores during activation of calcium-dependent signaling pathways. Here, we demonstrate that TRPC1 activity is protective within cartilage homeostasis in the prevention of cellular senescence associated cartilage breakdown during mechanical and inflammatory challenge. We reveal that TRPC1 loss is associated with early stages of osteoarthritis (OA) and plays a non-redundant role in calcium signaling in chondrocytes. Trpc1-/- mice subjected to destabilization of the medial meniscus induced OA developed a more severe OA phenotype than wild type controls. During early OA development, Trpc1-/- mice displayed an increased chondrocyte survival rate, however remaining cells displayed features of senescence including p16INK4a expression and decreased Sox9. RNA sequencing identified differentially expressed genes related to cell number, apoptosis and extracellular matrix organization. Trpc1-/-chondrocytes exhibited accelerated dedifferentiation, while demonstrating an increased susceptibility to cellular senescence. Targeting the mechanism of Trpc1 activation may be a promising therapeutic strategy in osteoarthritis prevention.
{"title":"TRPC1 links calcium signaling to cellular senescence in the protection against post-traumatic osteoarthritis.","authors":"Meike Sambale, Starlee Lively, Osvaldo Espin-Garcia, Pratibha Potla, Chiara Pastrello, Sarah Bödecker, Linda Wessendorf, Simon Kleimann, Peter Paruzel, Rojiar Asgarian, Alexandra Tosun, Johanna Intemann, Jessica Bertrand, Francesco Dell'Accio, Mohit Kapoor, Thomas Pap, Joanna Sherwood","doi":"10.1172/jci.insight.182103","DOIUrl":"10.1172/jci.insight.182103","url":null,"abstract":"<p><p>Transient receptor potential channel 1 (TRPC1) is a widely expressed mechanosensitive ion channel located within the endoplasmic reticulum membrane, crucial for refilling depleted internal calcium stores during activation of calcium-dependent signaling pathways. Here, we demonstrate that TRPC1 activity is protective within cartilage homeostasis in the prevention of cellular senescence associated cartilage breakdown during mechanical and inflammatory challenge. We reveal that TRPC1 loss is associated with early stages of osteoarthritis (OA) and plays a non-redundant role in calcium signaling in chondrocytes. Trpc1-/- mice subjected to destabilization of the medial meniscus induced OA developed a more severe OA phenotype than wild type controls. During early OA development, Trpc1-/- mice displayed an increased chondrocyte survival rate, however remaining cells displayed features of senescence including p16INK4a expression and decreased Sox9. RNA sequencing identified differentially expressed genes related to cell number, apoptosis and extracellular matrix organization. Trpc1-/-chondrocytes exhibited accelerated dedifferentiation, while demonstrating an increased susceptibility to cellular senescence. Targeting the mechanism of Trpc1 activation may be a promising therapeutic strategy in osteoarthritis prevention.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142885283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-24DOI: 10.1172/jci.insight.180606
Yvonne Baumer, Komudi Singh, Abhinav Saurabh, Andrew S Baez, Cristhian A Gutierrez-Huerta, Long Chen, Muna Igboko, Briana S Turner, Josette A Yeboah, Robert N Reger, Lola R Ortiz-Whittingham, Sahil Joshi, Marcus R Andrews, Elizabeth M Aquino Peterson, Christopher Ke Bleck, Laurel G Mendelsohn, Valerie M Mitchell, Billy S Collins, Neelam R Redekar, Skyler A Kuhn, Christian A Combs, Mehdi Pirooznia, Pradeep K Dagur, David Sj Allan, Daniella M Schwartz, Richard W Childs, Tiffany M Powell-Wiley
African American (AA) women are disproportionately affected by obesity and hyperlipidemia, particularly in the setting of adverse social determinants of health (aSDoH) that contribute to health disparities. Obesity, hyperlipidemia, and aSDoH appear to impair NK cells. As potential common underlying mechanisms are largely unknown, we sought to investigate common signaling pathways involved in NK cell dysfunction related to obesity and hyperlipidemia in AA women from underresourced neighborhoods. We determined in freshly isolated NK cells that obesity and measures of aSDoH were associated with a shift in NK cell subsets away from CD56dim/CD16+ cytotoxic NK cells. Using ex vivo data, we identified LDL as a marker related to NK cell function in an AA population from underresourced neighborhoods. Additionally, NK cells from AA women with obesity and LDL-treated NK cells displayed a loss in NK cell function. Comparative unbiased RNA-sequencing analysis revealed DUSP1 as a common factor. Subsequently, chemical inhibition of Dusp1 and Dusp1 overexpression in NK cells highlighted its significance in NK cell function and lysosome biogenesis in a mTOR/TFEB-related fashion. Our data demonstrate a pathway by which obesity and hyperlipidemia in the setting of aSDoH may relate to NK cell dysfunction, making DUSP1 an important target for further investigation of health disparities.
{"title":"Obesity modulates NK cell activity via LDL and DUSP1 signaling for populations with adverse social determinants.","authors":"Yvonne Baumer, Komudi Singh, Abhinav Saurabh, Andrew S Baez, Cristhian A Gutierrez-Huerta, Long Chen, Muna Igboko, Briana S Turner, Josette A Yeboah, Robert N Reger, Lola R Ortiz-Whittingham, Sahil Joshi, Marcus R Andrews, Elizabeth M Aquino Peterson, Christopher Ke Bleck, Laurel G Mendelsohn, Valerie M Mitchell, Billy S Collins, Neelam R Redekar, Skyler A Kuhn, Christian A Combs, Mehdi Pirooznia, Pradeep K Dagur, David Sj Allan, Daniella M Schwartz, Richard W Childs, Tiffany M Powell-Wiley","doi":"10.1172/jci.insight.180606","DOIUrl":"10.1172/jci.insight.180606","url":null,"abstract":"<p><p>African American (AA) women are disproportionately affected by obesity and hyperlipidemia, particularly in the setting of adverse social determinants of health (aSDoH) that contribute to health disparities. Obesity, hyperlipidemia, and aSDoH appear to impair NK cells. As potential common underlying mechanisms are largely unknown, we sought to investigate common signaling pathways involved in NK cell dysfunction related to obesity and hyperlipidemia in AA women from underresourced neighborhoods. We determined in freshly isolated NK cells that obesity and measures of aSDoH were associated with a shift in NK cell subsets away from CD56dim/CD16+ cytotoxic NK cells. Using ex vivo data, we identified LDL as a marker related to NK cell function in an AA population from underresourced neighborhoods. Additionally, NK cells from AA women with obesity and LDL-treated NK cells displayed a loss in NK cell function. Comparative unbiased RNA-sequencing analysis revealed DUSP1 as a common factor. Subsequently, chemical inhibition of Dusp1 and Dusp1 overexpression in NK cells highlighted its significance in NK cell function and lysosome biogenesis in a mTOR/TFEB-related fashion. Our data demonstrate a pathway by which obesity and hyperlipidemia in the setting of aSDoH may relate to NK cell dysfunction, making DUSP1 an important target for further investigation of health disparities.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790026/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142884999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}