首页 > 最新文献

JCI insight最新文献

英文 中文
Antisense oligonucleotides modulate aberrant inclusion of poison exons in SCN1A-related Dravet syndrome.
IF 6.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-02-13 DOI: 10.1172/jci.insight.188014
Sheng Tang, Hannah Stamberger, Jeffrey D Calhoun, Sarah Weckhuysen, Gemma L Carvill

Dravet syndrome is a developmental and epileptic encephalopathy associated with pathogenic variants in SCN1A. Most disease-causing variants are located within coding regions, but recent work has shed light on the role of non-coding variants associated with a poison exon in intron 20 of SCN1A. Discovery of the SCN1A poison exon known as 20N has led to the first potential disease-modifying therapy for Dravet syndrome in the form of an antisense oligonucleotide. Here, we demonstrate the existence of two additional poison exons in introns 1 and 22 of SCN1A through targeted, deep-coverage long-read sequencing of SCN1A transcripts. We show that inclusion of these poison exons is developmentally regulated in the human brain, and that deep intronic variants associated with these poison exons lead to their aberrant inclusion in vitro in a minigene assay or in iPSC-derived neurons. Additionally, we show that splice-modulating antisense oligonucleotides (ASOs) can ameliorate aberrant inclusion of poison exons. Our findings highlight the role of deep intronic pathogenic variants in disease and provide additional therapeutic targets for precision medicine in Dravet syndrome and other SCN1A-related disorders.

{"title":"Antisense oligonucleotides modulate aberrant inclusion of poison exons in SCN1A-related Dravet syndrome.","authors":"Sheng Tang, Hannah Stamberger, Jeffrey D Calhoun, Sarah Weckhuysen, Gemma L Carvill","doi":"10.1172/jci.insight.188014","DOIUrl":"https://doi.org/10.1172/jci.insight.188014","url":null,"abstract":"<p><p>Dravet syndrome is a developmental and epileptic encephalopathy associated with pathogenic variants in SCN1A. Most disease-causing variants are located within coding regions, but recent work has shed light on the role of non-coding variants associated with a poison exon in intron 20 of SCN1A. Discovery of the SCN1A poison exon known as 20N has led to the first potential disease-modifying therapy for Dravet syndrome in the form of an antisense oligonucleotide. Here, we demonstrate the existence of two additional poison exons in introns 1 and 22 of SCN1A through targeted, deep-coverage long-read sequencing of SCN1A transcripts. We show that inclusion of these poison exons is developmentally regulated in the human brain, and that deep intronic variants associated with these poison exons lead to their aberrant inclusion in vitro in a minigene assay or in iPSC-derived neurons. Additionally, we show that splice-modulating antisense oligonucleotides (ASOs) can ameliorate aberrant inclusion of poison exons. Our findings highlight the role of deep intronic pathogenic variants in disease and provide additional therapeutic targets for precision medicine in Dravet syndrome and other SCN1A-related disorders.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143414110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of aging on pulmonary cellular responses during mechanical ventilation.
IF 6.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-02-13 DOI: 10.1172/jci.insight.185834
Aminmohamed Manji, Lefeng Wang, Cynthia M Pape, Lynda A McCaig, Alexandra Troitskaya, Onon Batnyam, Leah Jj McDonald, C Thomas Appleton, Ruud Aw Veldhuizen, Sean E Gill

Acute respiratory distress syndrome (ARDS) results in significant morbidity and mortality, especially in the elderly. Mechanical ventilation, a common supportive treatment for ARDS, is necessary for maintaining gas exchange, but can also propagate injury. We hypothesized that aging leads to alterations in surfactant function, inflammatory signaling, and microvascular permeability within the lung during mechanical ventilation. Young and aged male mice were mechanically ventilated, and surfactant function, inflammation, and vascular permeability were assessed. Additionally, single-cell RNA sequencing was used to delineate cell-specific transcriptional changes. The results showed that in aged mice, surfactant dysfunction and vascular permeability were significantly augmented, while inflammation was less pronounced. Differential gene expression and pathway analyses revealed that alveolar macrophages in aged mice showed a blunted inflammatory response, while aged endothelial cells exhibited altered cell-cell junction formation. In vitro functional analysis revealed that aged endothelial cells had an impaired ability to form a barrier. These results highlight the complex interplay between aging and mechanical ventilation, including an age-related predisposition to endothelial barrier dysfunction, due to altered cell-cell junction formation, and decreased inflammation, potentially due to immune exhaustion. It is concluded that age-related vascular changes may underlie the increased susceptibility to injury during mechanical ventilation in elderly patients.

{"title":"Impact of aging on pulmonary cellular responses during mechanical ventilation.","authors":"Aminmohamed Manji, Lefeng Wang, Cynthia M Pape, Lynda A McCaig, Alexandra Troitskaya, Onon Batnyam, Leah Jj McDonald, C Thomas Appleton, Ruud Aw Veldhuizen, Sean E Gill","doi":"10.1172/jci.insight.185834","DOIUrl":"https://doi.org/10.1172/jci.insight.185834","url":null,"abstract":"<p><p>Acute respiratory distress syndrome (ARDS) results in significant morbidity and mortality, especially in the elderly. Mechanical ventilation, a common supportive treatment for ARDS, is necessary for maintaining gas exchange, but can also propagate injury. We hypothesized that aging leads to alterations in surfactant function, inflammatory signaling, and microvascular permeability within the lung during mechanical ventilation. Young and aged male mice were mechanically ventilated, and surfactant function, inflammation, and vascular permeability were assessed. Additionally, single-cell RNA sequencing was used to delineate cell-specific transcriptional changes. The results showed that in aged mice, surfactant dysfunction and vascular permeability were significantly augmented, while inflammation was less pronounced. Differential gene expression and pathway analyses revealed that alveolar macrophages in aged mice showed a blunted inflammatory response, while aged endothelial cells exhibited altered cell-cell junction formation. In vitro functional analysis revealed that aged endothelial cells had an impaired ability to form a barrier. These results highlight the complex interplay between aging and mechanical ventilation, including an age-related predisposition to endothelial barrier dysfunction, due to altered cell-cell junction formation, and decreased inflammation, potentially due to immune exhaustion. It is concluded that age-related vascular changes may underlie the increased susceptibility to injury during mechanical ventilation in elderly patients.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143414187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quinolinic acid potentially links kidney injury to brain toxicity. 喹啉酸可能将肾损伤与脑中毒联系在一起。
IF 6.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-02-13 DOI: 10.1172/jci.insight.180229
Afaf Saliba, Subrata Debnath, Ian Tamayo, Hak Joo Lee, Nagarjunachary Ragi, Falguni Das, Richard Montellano, Jana Tumova, Meyer Maddox, Esmeralda Trevino, Pragya Singh, Caitlyn Fastenau, Soumya Maity, Guanshi Zhang, Leila Hejazi, Manjeri A Venkatachalam, Jason C O'Connor, Bernard Fongang, Sarah C Hopp, Kevin F Bieniek, James D Lechleiter, Kumar Sharma

Kidney dysfunction often leads to neurological impairment, yet the complex kidney-brain relationship remains elusive. We employed spatial and bulk metabolomics to investigate a mouse model of rapid kidney failure induced by Mdm2 conditional deletion in the kidney tubules to interrogate kidney and brain metabolism. Pathway enrichment analysis of focused plasma metabolomics panel pinpointed tryptophan metabolism as the most altered pathway with kidney failure. Spatial metabolomics showed toxic tryptophan metabolites in the kidneys and brains, revealing a connection between advanced kidney disease and accelerated kynurenine degradation. In particular, the excitotoxic metabolite quinolinic acid was localized in ependymal cells in the setting of kidney failure. These findings were associated with brain inflammation and cell death. Separate mouse models of ischemia-induced acute kidney injury and adenine-induced chronic kidney disease also exhibited systemic inflammation and accumulating toxic tryptophan metabolites. Patients with advanced CKD (stage 3B-4, n = 18 and stage 5, n = 8), similarly demonstrated elevated plasma kynurenine metabolites and quinolinic acid was uniquely correlated with fatigue and reduced quality of life. Overall, our study identifies the kynurenine pathway as a bridge between kidney decline, systemic inflammation, and brain toxicity, offering potential avenues for diagnosis and treatment of neurological issues in kidney disease.

{"title":"Quinolinic acid potentially links kidney injury to brain toxicity.","authors":"Afaf Saliba, Subrata Debnath, Ian Tamayo, Hak Joo Lee, Nagarjunachary Ragi, Falguni Das, Richard Montellano, Jana Tumova, Meyer Maddox, Esmeralda Trevino, Pragya Singh, Caitlyn Fastenau, Soumya Maity, Guanshi Zhang, Leila Hejazi, Manjeri A Venkatachalam, Jason C O'Connor, Bernard Fongang, Sarah C Hopp, Kevin F Bieniek, James D Lechleiter, Kumar Sharma","doi":"10.1172/jci.insight.180229","DOIUrl":"10.1172/jci.insight.180229","url":null,"abstract":"<p><p>Kidney dysfunction often leads to neurological impairment, yet the complex kidney-brain relationship remains elusive. We employed spatial and bulk metabolomics to investigate a mouse model of rapid kidney failure induced by Mdm2 conditional deletion in the kidney tubules to interrogate kidney and brain metabolism. Pathway enrichment analysis of focused plasma metabolomics panel pinpointed tryptophan metabolism as the most altered pathway with kidney failure. Spatial metabolomics showed toxic tryptophan metabolites in the kidneys and brains, revealing a connection between advanced kidney disease and accelerated kynurenine degradation. In particular, the excitotoxic metabolite quinolinic acid was localized in ependymal cells in the setting of kidney failure. These findings were associated with brain inflammation and cell death. Separate mouse models of ischemia-induced acute kidney injury and adenine-induced chronic kidney disease also exhibited systemic inflammation and accumulating toxic tryptophan metabolites. Patients with advanced CKD (stage 3B-4, n = 18 and stage 5, n = 8), similarly demonstrated elevated plasma kynurenine metabolites and quinolinic acid was uniquely correlated with fatigue and reduced quality of life. Overall, our study identifies the kynurenine pathway as a bridge between kidney decline, systemic inflammation, and brain toxicity, offering potential avenues for diagnosis and treatment of neurological issues in kidney disease.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143414196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genotype-phenotype correlation in multiple endocrine neoplasia type 1.
IF 6.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-02-13 DOI: 10.1172/jci.insight.176993
Charlita C Worthy, Rana Tora, Chandra N Uttarkar, James M Welch, Lynn Bliss, Craig Cochran, Anisha Ninan, Sheila Kumar, Stephen Wank, Sungyoung Auh, Lee S Weinstein, William F Simonds, Sunita K Agarwal, Jenny E Blau, Smita Jha

Background: 80% of patients with multiple endocrine neoplasia type 1 (MEN1) develop duodenopancreatic neuroendocrine tumors (dpNETs), of whom, 15% to 25% die of metastasis. There is a need to identify biomarkers to predict aggressive disease. MEN1 genotype affords an attractive possibility as a biomarker as it remains constant during lifetime. Currently, patients are clinically diagnosed with MEN1 by the presence of ≥ 2 primary endocrine tumors (pituitary, parathyroid and pancreas) or ≥ 1 primary endocrine tumor(s) with a positive family history. 10-30% of patients diagnosed clinically with MEN1 have no pathogenic germline MEN1 variants.

Methods: Retrospective study of 162 index patients or probands with genotype-positive and 47 with genotype-negative MEN1 enrolled from 1977-2022.

Results: Compared to patients with genotype-negative disease, patients with genotype-positive disease were younger at diagnosis and had an increased frequency of recurrent parathyroid tumors, dpNETs and angiofibromas or collagenomas. We propose a novel weighted scoring system to diagnose genotype-positive MEN1 based on clinical characteristics. No evidence of MEN1 mosaicism was seen in 30 tumors from 17 patients with genotype-negative MEN1. Patients with germline MEN1 variants in exons 2 and 3 have a reduced risk of distant metastases.

Conclusions: The clinical course of genotype-negative MEN1 is distinct from genotype-positive disease raising uncertainty about the benefits of lifetime surveillance inpatients with genotype-negative disease. MEN1 mosaicism is rare.

Trial registration:

Clinicaltrials: gov NCT04969926.

Funding: Intramural Research Program of NIDDK (ZIA DK043006-46).

{"title":"Genotype-phenotype correlation in multiple endocrine neoplasia type 1.","authors":"Charlita C Worthy, Rana Tora, Chandra N Uttarkar, James M Welch, Lynn Bliss, Craig Cochran, Anisha Ninan, Sheila Kumar, Stephen Wank, Sungyoung Auh, Lee S Weinstein, William F Simonds, Sunita K Agarwal, Jenny E Blau, Smita Jha","doi":"10.1172/jci.insight.176993","DOIUrl":"https://doi.org/10.1172/jci.insight.176993","url":null,"abstract":"<p><strong>Background: </strong>80% of patients with multiple endocrine neoplasia type 1 (MEN1) develop duodenopancreatic neuroendocrine tumors (dpNETs), of whom, 15% to 25% die of metastasis. There is a need to identify biomarkers to predict aggressive disease. MEN1 genotype affords an attractive possibility as a biomarker as it remains constant during lifetime. Currently, patients are clinically diagnosed with MEN1 by the presence of ≥ 2 primary endocrine tumors (pituitary, parathyroid and pancreas) or ≥ 1 primary endocrine tumor(s) with a positive family history. 10-30% of patients diagnosed clinically with MEN1 have no pathogenic germline MEN1 variants.</p><p><strong>Methods: </strong>Retrospective study of 162 index patients or probands with genotype-positive and 47 with genotype-negative MEN1 enrolled from 1977-2022.</p><p><strong>Results: </strong>Compared to patients with genotype-negative disease, patients with genotype-positive disease were younger at diagnosis and had an increased frequency of recurrent parathyroid tumors, dpNETs and angiofibromas or collagenomas. We propose a novel weighted scoring system to diagnose genotype-positive MEN1 based on clinical characteristics. No evidence of MEN1 mosaicism was seen in 30 tumors from 17 patients with genotype-negative MEN1. Patients with germline MEN1 variants in exons 2 and 3 have a reduced risk of distant metastases.</p><p><strong>Conclusions: </strong>The clinical course of genotype-negative MEN1 is distinct from genotype-positive disease raising uncertainty about the benefits of lifetime surveillance inpatients with genotype-negative disease. MEN1 mosaicism is rare.</p><p><strong>Trial registration: </strong></p><p><strong>Clinicaltrials: </strong>gov NCT04969926.</p><p><strong>Funding: </strong>Intramural Research Program of NIDDK (ZIA DK043006-46).</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143414129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Short-term disruption of TGFβ signaling in adult mice renders the aorta vulnerable to hypertension-induced dissection.
IF 6.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-02-11 DOI: 10.1172/jci.insight.182629
Bo Jiang, Pengwei Ren, Changshun He, Mo Wang, Sae-Il Murtada, María Jesús Ruiz-Rodríguez, Yu Chen, Abhay B Ramachandra, Guangxin Li, Lingfeng Qin, Roland Assi, Martin A Schwartz, Jay D Humphrey, George Tellides

Hypertension and transient increases in blood pressure from extreme exertion are risk factors for aortic dissection in patients with age-related vascular degeneration or inherited connective tissue disorders. Yet, a common experimental model of angiotensin II-induced aortopathy in mice appears independent of high blood pressure as lesions do not occur in response to an alternative vasoconstrictor, norepinephrine, and are not prevented by co-treatment with a vasodilator, hydralazine. We investigated vasoconstrictor administration to adult mice following 1 week of disrupted TGFβ signaling in smooth muscle cells (SMCs). Norepinephrine increased blood pressure and induced aortic dissection by 7 days and even within 30 minutes (as did angiotensin II) that was prevented by hydralazine. Initial medial injury manifested as blood extravasation among SMCs and fibrillar matrix, progressive delamination from accumulation of blood, and stretched or ruptured SMCs with persistent attachments to elastic fibers. Altered regulatory contractile molecule expression was not of pathological importance. Rather, reduced synthesis of extracellular matrix yielded a vulnerable aortic phenotype by decreasing medial collagen, most dynamically basement membrane-associated multiplexin collagen, and impairing cell-matrix adhesion. We conclude that transient and sustained increases in blood pressure can cause dissection in aortas rendered vulnerable by inhibition of TGFβ-driven extracellular matrix production by SMCs.

{"title":"Short-term disruption of TGFβ signaling in adult mice renders the aorta vulnerable to hypertension-induced dissection.","authors":"Bo Jiang, Pengwei Ren, Changshun He, Mo Wang, Sae-Il Murtada, María Jesús Ruiz-Rodríguez, Yu Chen, Abhay B Ramachandra, Guangxin Li, Lingfeng Qin, Roland Assi, Martin A Schwartz, Jay D Humphrey, George Tellides","doi":"10.1172/jci.insight.182629","DOIUrl":"10.1172/jci.insight.182629","url":null,"abstract":"<p><p>Hypertension and transient increases in blood pressure from extreme exertion are risk factors for aortic dissection in patients with age-related vascular degeneration or inherited connective tissue disorders. Yet, a common experimental model of angiotensin II-induced aortopathy in mice appears independent of high blood pressure as lesions do not occur in response to an alternative vasoconstrictor, norepinephrine, and are not prevented by co-treatment with a vasodilator, hydralazine. We investigated vasoconstrictor administration to adult mice following 1 week of disrupted TGFβ signaling in smooth muscle cells (SMCs). Norepinephrine increased blood pressure and induced aortic dissection by 7 days and even within 30 minutes (as did angiotensin II) that was prevented by hydralazine. Initial medial injury manifested as blood extravasation among SMCs and fibrillar matrix, progressive delamination from accumulation of blood, and stretched or ruptured SMCs with persistent attachments to elastic fibers. Altered regulatory contractile molecule expression was not of pathological importance. Rather, reduced synthesis of extracellular matrix yielded a vulnerable aortic phenotype by decreasing medial collagen, most dynamically basement membrane-associated multiplexin collagen, and impairing cell-matrix adhesion. We conclude that transient and sustained increases in blood pressure can cause dissection in aortas rendered vulnerable by inhibition of TGFβ-driven extracellular matrix production by SMCs.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143399064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Loss of long-chain acyl-CoA dehydrogenase protects against acute kidney injury.
IF 6.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-02-11 DOI: 10.1172/jci.insight.186073
Takuto Chiba, Akira Oda, Yuxun Zhang, Katherine E Pfister, Joanna Bons, Sivakama S Bharathi, Ayako Kinoshita, Bob B Zhang, Adam C Richert, Birgit Schilling, Eric S Goetzman, Sunder Sims-Lucas

The renal tubular epithelial cells (RTECs) are particularly vulnerable to acute kidney injury (AKI). While fatty acids are the preferred energy source for RTECs via fatty acid oxidation (FAO), FAO-mediated H2O2 production in mitochondria has been shown to be a major source of oxidative stress. We have previously shown that a mitochondrial flavoprotein, long-chain acyl-CoA dehydrogenase (LCAD), which catalyzes a key step in mitochondrial FAO, directly produces H2O2 in vitro. Further, we showed that renal LCAD becomes hyposuccinylated during AKI. Here, we demonstrated that succinylation of recombinant LCAD protein suppresses the production of H2O2. Following two distinct models of AKI, cisplatin treatment or renal ischemia/reperfusion injury (IRI), LCAD-/- mice demonstrated renoprotection. Specifically, LCAD-/- kidneys displayed mitigated renal tubular injury, decreased oxidative stress, preserved mitochondrial function, enhanced peroxisomal FAO, and decreased ferroptotic cell death. LCAD deficiency confers protection against two distinct models of AKI. This suggests a therapeutically attractive mechanism whereby preserved mitochondrial respiration as well as enhanced peroxisomal FAO by loss of LCAD mediates renoprotection against AKI.

{"title":"Loss of long-chain acyl-CoA dehydrogenase protects against acute kidney injury.","authors":"Takuto Chiba, Akira Oda, Yuxun Zhang, Katherine E Pfister, Joanna Bons, Sivakama S Bharathi, Ayako Kinoshita, Bob B Zhang, Adam C Richert, Birgit Schilling, Eric S Goetzman, Sunder Sims-Lucas","doi":"10.1172/jci.insight.186073","DOIUrl":"10.1172/jci.insight.186073","url":null,"abstract":"<p><p>The renal tubular epithelial cells (RTECs) are particularly vulnerable to acute kidney injury (AKI). While fatty acids are the preferred energy source for RTECs via fatty acid oxidation (FAO), FAO-mediated H2O2 production in mitochondria has been shown to be a major source of oxidative stress. We have previously shown that a mitochondrial flavoprotein, long-chain acyl-CoA dehydrogenase (LCAD), which catalyzes a key step in mitochondrial FAO, directly produces H2O2 in vitro. Further, we showed that renal LCAD becomes hyposuccinylated during AKI. Here, we demonstrated that succinylation of recombinant LCAD protein suppresses the production of H2O2. Following two distinct models of AKI, cisplatin treatment or renal ischemia/reperfusion injury (IRI), LCAD-/- mice demonstrated renoprotection. Specifically, LCAD-/- kidneys displayed mitigated renal tubular injury, decreased oxidative stress, preserved mitochondrial function, enhanced peroxisomal FAO, and decreased ferroptotic cell death. LCAD deficiency confers protection against two distinct models of AKI. This suggests a therapeutically attractive mechanism whereby preserved mitochondrial respiration as well as enhanced peroxisomal FAO by loss of LCAD mediates renoprotection against AKI.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143399034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative hypermorphic FAM111A alleles cause autosomal recessive Kenny-Caffey syndrome type 2 and osteocraniostenosis.
IF 6.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-02-11 DOI: 10.1172/jci.insight.186862
Dong Li, Niels Mailand, Emma U Ewing, Saskia Hoffmann, Richard C Caswell, Lewis Pang, Jacqueline Eason, Ying Dou, Kathleen E Sullivan, Hakon Hakonarson, Michael A Levine

Kenny-Caffey syndrome (KCS) is a rare genetic disorder characterized by extreme short stature, cortical thickening and medullary stenosis of tubular bones, facial dysmorphism, abnormal T-cell function, and hypoparathyroidism. Biallelic loss-of-function variants in TBCE cause autosomal recessive type 1 KCS (KCS1). By contrast, heterozygous missense variants in a restricted region of the FAM111A gene have been identified in autosomal dominant type 2 KCS (KCS2) and a more severe lethal phenotype, osteocraniostenosis (OCS) that have recently been shown to confer a gain-of-function. In this study, we describe two unrelated children with KCS and OCS who were homozygous for different FAM111A variant alleles that result in replacement of the same residue, Tyr414 (c.1241A>G, p.Y414C and c.1240T>A, p.Y414N), in the mature FAM111A protein. Their heterozygous relatives are asymptomatic. Functional studies of recombinant FAM111AY414C demonstrated normal dimerization and a mild gain-of-function effect. This study provides evidence that both biallelic and monoallelic variants of FAM111A with varying degrees of activation can lead to dominant or recessive KCS2 and OCS.

{"title":"Quantitative hypermorphic FAM111A alleles cause autosomal recessive Kenny-Caffey syndrome type 2 and osteocraniostenosis.","authors":"Dong Li, Niels Mailand, Emma U Ewing, Saskia Hoffmann, Richard C Caswell, Lewis Pang, Jacqueline Eason, Ying Dou, Kathleen E Sullivan, Hakon Hakonarson, Michael A Levine","doi":"10.1172/jci.insight.186862","DOIUrl":"https://doi.org/10.1172/jci.insight.186862","url":null,"abstract":"<p><p>Kenny-Caffey syndrome (KCS) is a rare genetic disorder characterized by extreme short stature, cortical thickening and medullary stenosis of tubular bones, facial dysmorphism, abnormal T-cell function, and hypoparathyroidism. Biallelic loss-of-function variants in TBCE cause autosomal recessive type 1 KCS (KCS1). By contrast, heterozygous missense variants in a restricted region of the FAM111A gene have been identified in autosomal dominant type 2 KCS (KCS2) and a more severe lethal phenotype, osteocraniostenosis (OCS) that have recently been shown to confer a gain-of-function. In this study, we describe two unrelated children with KCS and OCS who were homozygous for different FAM111A variant alleles that result in replacement of the same residue, Tyr414 (c.1241A>G, p.Y414C and c.1240T>A, p.Y414N), in the mature FAM111A protein. Their heterozygous relatives are asymptomatic. Functional studies of recombinant FAM111AY414C demonstrated normal dimerization and a mild gain-of-function effect. This study provides evidence that both biallelic and monoallelic variants of FAM111A with varying degrees of activation can lead to dominant or recessive KCS2 and OCS.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143399057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The AURKA inhibitor alters the immune microenvironment and enhances targeting B7-H3 immunotherapy in glioblastoma.
IF 6.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-02-10 DOI: 10.1172/jci.insight.173700
Jinqiu Liu, Yuxuan Deng, Zhuonan Pu, Yazhou Miao, Zhaonian Hao, Herui Wang, Shaodong Zhang, Hanjie Liu, Jiejun Wang, Yifan Lv, Boyi Hu, Hong Wan, Zhengping Zhuang, Tai Sun, Shuyu Hao, Nan Ji, Jie Feng

Glioblastoma (GBM) is one of the most lethal adult brain tumors with limited effective therapeutic options. Immunotherapy targeting B7-H3 (CD276) has shown promising efficacy in the treatment of gliomas. However, the response to this treatment varies among glioma patients due to individual differences. It's necessary to find an effective strategy to improve the efficacy of targeting B7-H3 immunotherapy for nonresponders. In this study, we demonstrated a strong correlation between aurora kinase A (AURKA) and CD276 expression in glioma tissue samples. Additionally, both AURKA knockdown and overexpression resulted in parallel changes in B7-H3 expression levels in glioma cells. Mechanistically, AURKA elevated B7-H3 expression by promoting epidermal growth factor receptor (EGFR) phosphorylation, which was validated in glioma cell lines and primary GBM cells. What's more, the combination of AURKA inhibitor (alisertib) and anti-B7-H3 antibody markedly reduced tumor size and promoted CD8+ T cell infiltration and activation in mouse orthotopic syngeneic glioma models. To our knowledge, this study is the first to demonstrate AURKA-mediated B7-H3 upregulation in glioma cells; moreover, it proposes a promising therapeutic strategy combining the AURKA inhibitor alisertib with B7-H3-specific blocking mAbs.

{"title":"The AURKA inhibitor alters the immune microenvironment and enhances targeting B7-H3 immunotherapy in glioblastoma.","authors":"Jinqiu Liu, Yuxuan Deng, Zhuonan Pu, Yazhou Miao, Zhaonian Hao, Herui Wang, Shaodong Zhang, Hanjie Liu, Jiejun Wang, Yifan Lv, Boyi Hu, Hong Wan, Zhengping Zhuang, Tai Sun, Shuyu Hao, Nan Ji, Jie Feng","doi":"10.1172/jci.insight.173700","DOIUrl":"10.1172/jci.insight.173700","url":null,"abstract":"<p><p>Glioblastoma (GBM) is one of the most lethal adult brain tumors with limited effective therapeutic options. Immunotherapy targeting B7-H3 (CD276) has shown promising efficacy in the treatment of gliomas. However, the response to this treatment varies among glioma patients due to individual differences. It's necessary to find an effective strategy to improve the efficacy of targeting B7-H3 immunotherapy for nonresponders. In this study, we demonstrated a strong correlation between aurora kinase A (AURKA) and CD276 expression in glioma tissue samples. Additionally, both AURKA knockdown and overexpression resulted in parallel changes in B7-H3 expression levels in glioma cells. Mechanistically, AURKA elevated B7-H3 expression by promoting epidermal growth factor receptor (EGFR) phosphorylation, which was validated in glioma cell lines and primary GBM cells. What's more, the combination of AURKA inhibitor (alisertib) and anti-B7-H3 antibody markedly reduced tumor size and promoted CD8+ T cell infiltration and activation in mouse orthotopic syngeneic glioma models. To our knowledge, this study is the first to demonstrate AURKA-mediated B7-H3 upregulation in glioma cells; moreover, it proposes a promising therapeutic strategy combining the AURKA inhibitor alisertib with B7-H3-specific blocking mAbs.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143391009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prenatal alcohol exposure is associated with altered feto-placental blood flow and sex-specific placental changes.
IF 6.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-02-10 DOI: 10.1172/jci.insight.186096
Sarah E Steane, Christopher Edwards, Erika Cavanagh, Chelsea Vanderpeet, Jade M Kubler, Lisa K Akison, James Sm Cuffe, Linda A Gallo, Karen M Moritz, Vicki L Clifton

BACKGROUNDPrenatal alcohol exposure (PAE) around conception in preclinical models results in placental insufficiency, likely contributing to offspring abnormalities. Altered placental DNA methylation (DNAm) and gene expression suggest epigenetic mechanisms, perhaps involving impacts on methyl donor levels. PAE around conception in women is common but placental effects are rarely examined. This cohort study investigated associations between PAE around conception and intake/plasma measures of the methyl donors folate and choline, feto-placental blood flow, and placental growth measures, gene expression, and DNAm.METHODSPregnant participants delivered at Mater Mothers' Hospital, Brisbane, Queensland, Australia (n = 411). Dietary intake of choline and folate were calculated and plasma concentrations measured using mass spectrometry (MS) and clinical immunoanalyzer, respectively. Cerebroplacental ratio (CPR) was calculated using Doppler measurements. Placentas were weighed/measured at delivery and samples used to quantify methyl donors (MS), global DNAm (ELISA), and gene expression (quantitative PCR). Data were compared between control/abstinent and PAE groups, by fetal sex.RESULTSA CPR <5th-centile, indicating fetal brain sparing because of placental insufficiency, was found in 2% of controls and 18% of the PAE group, mostly male fetuses (63%). Compared with controls, male PAE placentas had reduced mean thickness and placental growth factor mRNA and DNAm, whereas female PAE placentas had increased S-adenosylmethionine and a trend toward increased DNAm.CONCLUSIONPAE around conception is associated with reduced CPR and altered placental growth measures, particularly in males, with potential implications for future health.FUNDINGNational Health and Medical Research Council (APP1191217) and Mary McConnel Career Boost Program for Women in Paediatric Research (WIS132020).

{"title":"Prenatal alcohol exposure is associated with altered feto-placental blood flow and sex-specific placental changes.","authors":"Sarah E Steane, Christopher Edwards, Erika Cavanagh, Chelsea Vanderpeet, Jade M Kubler, Lisa K Akison, James Sm Cuffe, Linda A Gallo, Karen M Moritz, Vicki L Clifton","doi":"10.1172/jci.insight.186096","DOIUrl":"https://doi.org/10.1172/jci.insight.186096","url":null,"abstract":"<p><p>BACKGROUNDPrenatal alcohol exposure (PAE) around conception in preclinical models results in placental insufficiency, likely contributing to offspring abnormalities. Altered placental DNA methylation (DNAm) and gene expression suggest epigenetic mechanisms, perhaps involving impacts on methyl donor levels. PAE around conception in women is common but placental effects are rarely examined. This cohort study investigated associations between PAE around conception and intake/plasma measures of the methyl donors folate and choline, feto-placental blood flow, and placental growth measures, gene expression, and DNAm.METHODSPregnant participants delivered at Mater Mothers' Hospital, Brisbane, Queensland, Australia (n = 411). Dietary intake of choline and folate were calculated and plasma concentrations measured using mass spectrometry (MS) and clinical immunoanalyzer, respectively. Cerebroplacental ratio (CPR) was calculated using Doppler measurements. Placentas were weighed/measured at delivery and samples used to quantify methyl donors (MS), global DNAm (ELISA), and gene expression (quantitative PCR). Data were compared between control/abstinent and PAE groups, by fetal sex.RESULTSA CPR <5th-centile, indicating fetal brain sparing because of placental insufficiency, was found in 2% of controls and 18% of the PAE group, mostly male fetuses (63%). Compared with controls, male PAE placentas had reduced mean thickness and placental growth factor mRNA and DNAm, whereas female PAE placentas had increased S-adenosylmethionine and a trend toward increased DNAm.CONCLUSIONPAE around conception is associated with reduced CPR and altered placental growth measures, particularly in males, with potential implications for future health.FUNDINGNational Health and Medical Research Council (APP1191217) and Mary McConnel Career Boost Program for Women in Paediatric Research (WIS132020).</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":"10 3","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143382012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endothelial GSDMD underlies LPS-induced systemic vascular injury and lethality.
IF 6.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-02-10 DOI: 10.1172/jci.insight.182398
Enyong Su, Xiaoyue Song, Lili Wei, Junqiang Xue, Xuelin Cheng, Shiyao Xie, Hong Jiang, Ming Liu

Endothelial injury destroys endothelial barrier integrity, triggering organ dysfunction and ultimately resulting in sepsis-related death. Considerable attention has been focused on identifying effective targets for inhibiting damage to endothelial cells to treat endotoxemia-induced septic shock. Global gasdermin D (Gsdmd) deletion reportedly prevents death caused by endotoxemia. However, the role of endothelial GSDMD in endothelial injury and lethality in lipopolysaccharide-induced (LPS-induced) endotoxemia and the underlying regulatory mechanisms are unknown. Here, we show that LPS increases endothelial GSDMD level in aortas and lung microvessels. We demonstrated that endothelial Gsdmd deficiency, but not myeloid cell Gsdmd deletion, protects against endothelial injury and death in mice with endotoxemia or sepsis. In vivo experiments suggested that hepatocyte GSDMD mediated the release of high-mobility group box 1, which subsequently binds to the receptor for advanced glycation end products in endothelial cells to cause systemic vascular injury, ultimately resulting in acute lung injury and lethality in shock driven by endotoxemia or sepsis. Additionally, inhibiting endothelial GSDMD activation via a polypeptide inhibitor alleviated endothelial damage and improved survival in a mouse model of endotoxemia or sepsis. These data suggest that endothelial GSDMD is a viable pharmaceutical target for treating endotoxemia and endotoxemia-induced sepsis.

{"title":"Endothelial GSDMD underlies LPS-induced systemic vascular injury and lethality.","authors":"Enyong Su, Xiaoyue Song, Lili Wei, Junqiang Xue, Xuelin Cheng, Shiyao Xie, Hong Jiang, Ming Liu","doi":"10.1172/jci.insight.182398","DOIUrl":"https://doi.org/10.1172/jci.insight.182398","url":null,"abstract":"<p><p>Endothelial injury destroys endothelial barrier integrity, triggering organ dysfunction and ultimately resulting in sepsis-related death. Considerable attention has been focused on identifying effective targets for inhibiting damage to endothelial cells to treat endotoxemia-induced septic shock. Global gasdermin D (Gsdmd) deletion reportedly prevents death caused by endotoxemia. However, the role of endothelial GSDMD in endothelial injury and lethality in lipopolysaccharide-induced (LPS-induced) endotoxemia and the underlying regulatory mechanisms are unknown. Here, we show that LPS increases endothelial GSDMD level in aortas and lung microvessels. We demonstrated that endothelial Gsdmd deficiency, but not myeloid cell Gsdmd deletion, protects against endothelial injury and death in mice with endotoxemia or sepsis. In vivo experiments suggested that hepatocyte GSDMD mediated the release of high-mobility group box 1, which subsequently binds to the receptor for advanced glycation end products in endothelial cells to cause systemic vascular injury, ultimately resulting in acute lung injury and lethality in shock driven by endotoxemia or sepsis. Additionally, inhibiting endothelial GSDMD activation via a polypeptide inhibitor alleviated endothelial damage and improved survival in a mouse model of endotoxemia or sepsis. These data suggest that endothelial GSDMD is a viable pharmaceutical target for treating endotoxemia and endotoxemia-induced sepsis.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":"10 3","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143382577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
JCI insight
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1