Pub Date : 2024-11-22DOI: 10.1172/jci.insight.174836
Chenyu Xu, Jiahong Wei, Dan Song, Siyu Zhao, Mingmin Hou, Yuchen Fan, Li Guo, Hao Sun, Tao Guo
Accumulation of extracellular matrix (ECM) proteins in trabecular meshwork (TM), which leads to increased outflow resistance of aqueous humor and consequently high intraocular pressure, is a major cause of primary open-angle glaucoma (POAG). According to our preliminary research, the RapGAP protein superfamily member, signal-induced proliferation-associated 1-like 1 protein (SIPA1L1), which is involved in tissue fibrosis, may have an impact on POAG by influencing ECM metabolism of TM. This study aims to confirm these findings and identify effects and cellular mechanisms of SIPA1L1 on ECM changes and phagocytosis in human TM (HTM) cells. Our results showed that the expression of SIPA1L1 in HTM cells was significantly increased by TGF-β2 treatment in label-free quantitative proteomics. The aqueous humor and TM cell concentration of SIPA1L1 in POAG patients was higher than that of control. In HTM cells, TGF-β2 increased expression of SIPA1L1 along with accumulation of ECM, RhoA, and p-cofilin 1. The effects of TGF-β2 were reduced by si-SIPA1L1. TGF-β2 decreased HTM cell phagocytosis by polymerizing cytoskeletal actin filaments, while si-SIPA1L1 increased phagocytosis by disassembling actin filaments. Simultaneously, overexpressing SIPA1L1 alone exhibited comparable effects to that of TGF-β2. Our studies demonstrate that SIPA1L1 not only promotes the production of ECM, but also inhibits its removal by reducing phagocytosis. Targeting SIPA1L1 degradation may become a significant therapy for POAG.
{"title":"Effects of SIPA1L1 on trabecular meshwork extracellular matrix protein accumulation and cellular phagocytosis in POAG.","authors":"Chenyu Xu, Jiahong Wei, Dan Song, Siyu Zhao, Mingmin Hou, Yuchen Fan, Li Guo, Hao Sun, Tao Guo","doi":"10.1172/jci.insight.174836","DOIUrl":"10.1172/jci.insight.174836","url":null,"abstract":"<p><p>Accumulation of extracellular matrix (ECM) proteins in trabecular meshwork (TM), which leads to increased outflow resistance of aqueous humor and consequently high intraocular pressure, is a major cause of primary open-angle glaucoma (POAG). According to our preliminary research, the RapGAP protein superfamily member, signal-induced proliferation-associated 1-like 1 protein (SIPA1L1), which is involved in tissue fibrosis, may have an impact on POAG by influencing ECM metabolism of TM. This study aims to confirm these findings and identify effects and cellular mechanisms of SIPA1L1 on ECM changes and phagocytosis in human TM (HTM) cells. Our results showed that the expression of SIPA1L1 in HTM cells was significantly increased by TGF-β2 treatment in label-free quantitative proteomics. The aqueous humor and TM cell concentration of SIPA1L1 in POAG patients was higher than that of control. In HTM cells, TGF-β2 increased expression of SIPA1L1 along with accumulation of ECM, RhoA, and p-cofilin 1. The effects of TGF-β2 were reduced by si-SIPA1L1. TGF-β2 decreased HTM cell phagocytosis by polymerizing cytoskeletal actin filaments, while si-SIPA1L1 increased phagocytosis by disassembling actin filaments. Simultaneously, overexpressing SIPA1L1 alone exhibited comparable effects to that of TGF-β2. Our studies demonstrate that SIPA1L1 not only promotes the production of ECM, but also inhibits its removal by reducing phagocytosis. Targeting SIPA1L1 degradation may become a significant therapy for POAG.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142371903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-22DOI: 10.1172/jci.insight.181686
Xin Yu, Yujing Song, Tao Dong, Wenlu Ouyang, Liujiazi Shao, Chao Quan, Kyung Eun Lee, Tao Tan, Allan Tsung, Katsuo Kurabayashi, Hasan B Alam, Mao Zhang, Jianjie Ma, Yongqing Li
Sepsis-induced acute lung injury (ALI) is prevalent in patients with sepsis and has a high mortality rate. Peptidyl arginine deiminase 2 (PADI2) and PADI4 play crucial roles in mediating the host's immune response in sepsis, but their specific functions remain unclear. Our study shows that Padi2-/- Padi4-/- double KO (DKO) improved survival, reduced lung injury, and decreased bacterial load in Pseudomonas aeruginosa (PA) pneumonia-induced sepsis mice. Using single-cell RNA-Seq (scRNA-Seq), we found that the deletion of Padi2 and Padi4 reduced the Nlrp3+ proinflammatory macrophages and fostered Chil3+ myeloid cell differentiation into antiinflammatory macrophages. Additionally, we observed the regulatory role of the NLRP3/Ym1 axis upon DKO, confirmed by Chil3 knockdown and Nlrp3-KO experiments. Thus, eliminating Padi2 and Padi4 enhanced the polarization of Ym1+ M2 macrophages by suppressing NLRP3, aiding in inflammation resolution and lung tissue repair. This study unveils the PADIs/NLRP3/Ym1 pathway as a potential target in treatment of sepsis-induced ALI.
{"title":"Loss of PADI2 and PADI4 ameliorates sepsis-induced acute lung injury by suppressing NLRP3+ macrophages.","authors":"Xin Yu, Yujing Song, Tao Dong, Wenlu Ouyang, Liujiazi Shao, Chao Quan, Kyung Eun Lee, Tao Tan, Allan Tsung, Katsuo Kurabayashi, Hasan B Alam, Mao Zhang, Jianjie Ma, Yongqing Li","doi":"10.1172/jci.insight.181686","DOIUrl":"10.1172/jci.insight.181686","url":null,"abstract":"<p><p>Sepsis-induced acute lung injury (ALI) is prevalent in patients with sepsis and has a high mortality rate. Peptidyl arginine deiminase 2 (PADI2) and PADI4 play crucial roles in mediating the host's immune response in sepsis, but their specific functions remain unclear. Our study shows that Padi2-/- Padi4-/- double KO (DKO) improved survival, reduced lung injury, and decreased bacterial load in Pseudomonas aeruginosa (PA) pneumonia-induced sepsis mice. Using single-cell RNA-Seq (scRNA-Seq), we found that the deletion of Padi2 and Padi4 reduced the Nlrp3+ proinflammatory macrophages and fostered Chil3+ myeloid cell differentiation into antiinflammatory macrophages. Additionally, we observed the regulatory role of the NLRP3/Ym1 axis upon DKO, confirmed by Chil3 knockdown and Nlrp3-KO experiments. Thus, eliminating Padi2 and Padi4 enhanced the polarization of Ym1+ M2 macrophages by suppressing NLRP3, aiding in inflammation resolution and lung tissue repair. This study unveils the PADIs/NLRP3/Ym1 pathway as a potential target in treatment of sepsis-induced ALI.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142465870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-22DOI: 10.1172/jci.insight.173836
April H Nguyen, Truc T Tran, Diana Panesso, Kara S Hood, Vinathi Polamraju, Rutan Zhang, Ayesha Khan, William R Miller, Eugenia Mileykovskaya, Yousif Shamoo, Libin Xu, Heidi Vitrac, Cesar A Arias
Daptomycin is a last-resort lipopeptide antibiotic that disrupts cell membrane (CM) and peptidoglycan homeostasis. Enterococcus faecalis has developed a sophisticated mechanism to avoid daptomycin killing by redistributing CM anionic phospholipids away from the septum. The CM changes are orchestrated by a 3-component regulatory system, designated LiaFSR, with a possible contribution of cardiolipin synthase (Cls). However, the mechanism by which LiaFSR controls the CM response and the role of Cls are unknown. Here, we show that cardiolipin synthase activity is essential for anionic phospholipid redistribution and daptomycin resistance since deletion of the 2 genes (cls1 and cls2) encoding Cls abolished CM remodeling. We identified LiaY, a transmembrane protein regulated by LiaFSR, and Cls1 as important mediators of CM remodeling required for redistribution of anionic phospholipid microdomains. Together, our insights provide a mechanistic framework on the enterococcal response to cell envelope antibiotics that could be exploited therapeutically.
达托霉素是一种最后的脂肽抗生素,会破坏细胞膜(CM)和肽聚糖的平衡。粪肠球菌已经开发出一种复杂的机制,通过重新分配细胞膜阴离子磷脂,使其远离隔膜,从而避免被达托霉素杀死。CM 的变化由一个名为 LiaFSR 的三组份调控系统协调,心磷脂合成酶(Cls)也可能参与其中。然而,LiaFSR 控制 CM 响应的机制以及 Cls 的作用尚不清楚。在这里,我们发现心磷脂合成酶的活性对阴离子磷脂的重新分布和达托霉素的抗性至关重要,因为缺失编码 Cls 的两个基因(cls1 和 cls2)会导致 CM 重塑。我们发现受 LiaFSR 调节的跨膜蛋白 LiaY 和 Cls1 是阴离子磷脂微域重新分布所需的 CM 重塑的重要介质。总之,我们的见解为肠球菌对细胞包膜抗生素的反应提供了一个可用于治疗的机理框架。
{"title":"Molecular basis of cell membrane adaptation in daptomycin-resistant Enterococcus faecalis.","authors":"April H Nguyen, Truc T Tran, Diana Panesso, Kara S Hood, Vinathi Polamraju, Rutan Zhang, Ayesha Khan, William R Miller, Eugenia Mileykovskaya, Yousif Shamoo, Libin Xu, Heidi Vitrac, Cesar A Arias","doi":"10.1172/jci.insight.173836","DOIUrl":"10.1172/jci.insight.173836","url":null,"abstract":"<p><p>Daptomycin is a last-resort lipopeptide antibiotic that disrupts cell membrane (CM) and peptidoglycan homeostasis. Enterococcus faecalis has developed a sophisticated mechanism to avoid daptomycin killing by redistributing CM anionic phospholipids away from the septum. The CM changes are orchestrated by a 3-component regulatory system, designated LiaFSR, with a possible contribution of cardiolipin synthase (Cls). However, the mechanism by which LiaFSR controls the CM response and the role of Cls are unknown. Here, we show that cardiolipin synthase activity is essential for anionic phospholipid redistribution and daptomycin resistance since deletion of the 2 genes (cls1 and cls2) encoding Cls abolished CM remodeling. We identified LiaY, a transmembrane protein regulated by LiaFSR, and Cls1 as important mediators of CM remodeling required for redistribution of anionic phospholipid microdomains. Together, our insights provide a mechanistic framework on the enterococcal response to cell envelope antibiotics that could be exploited therapeutically.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142465871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brain arteriovenous malformations (bAVMs) are anomalies forming vascular tangles connecting the arteries and veins, which cause hemorrhagic stroke in young adults. Current surgical approaches are highly invasive, and alternative therapeutic methods are warranted. Recent genetic studies identified KRAS mutations in endothelial cells of bAVMs; however, the underlying process leading to malformation in the postnatal stage remains unknown. Here we established a mouse model of bAVM developing during the early postnatal stage. Among 4 methods tested, mutant KRAS specifically introduced in brain endothelial cells by brain endothelial cell-directed adeno-associated virus (AAV) and endothelial cell-specific Cdh5-CreERT2 mice successfully induced bAVMs in the postnatal period. Mutant KRAS led to the development of multiple vascular tangles and hemorrhage in the brain with increased MAPK/ERK signaling and growth in endothelial cells. Three-dimensional analyses in cleared tissue revealed dilated vascular networks connecting arteries and veins, similar to human bAVMs. Single-cell RNA-Seq revealed dysregulated gene expressions in endothelial cells and multiple cell types involved in the pathological process. Finally, we employed CRISPR/CasRx to knock down mutant KRAS expression, which efficiently suppressed bAVM development. The present model reveals pathological processes that lead to postnatal bAVMs and demonstrates the efficacy of therapeutic strategies with CRISPR/CasRx.
{"title":"CRISPR/CasRx suppresses KRAS-induced brain arteriovenous malformation developed in postnatal brain endothelial cells in mice.","authors":"Shoji Saito, Yuka Nakamura, Satoshi Miyashita, Tokiharu Sato, Kana Hoshina, Masayasu Okada, Hitoshi Hasegawa, Makoto Oishi, Yukihiko Fujii, Jakob Körbelin, Yoshiaki Kubota, Kazuki Tainaka, Manabu Natsumeda, Masaki Ueno","doi":"10.1172/jci.insight.179729","DOIUrl":"https://doi.org/10.1172/jci.insight.179729","url":null,"abstract":"<p><p>Brain arteriovenous malformations (bAVMs) are anomalies forming vascular tangles connecting the arteries and veins, which cause hemorrhagic stroke in young adults. Current surgical approaches are highly invasive, and alternative therapeutic methods are warranted. Recent genetic studies identified KRAS mutations in endothelial cells of bAVMs; however, the underlying process leading to malformation in the postnatal stage remains unknown. Here we established a mouse model of bAVM developing during the early postnatal stage. Among 4 methods tested, mutant KRAS specifically introduced in brain endothelial cells by brain endothelial cell-directed adeno-associated virus (AAV) and endothelial cell-specific Cdh5-CreERT2 mice successfully induced bAVMs in the postnatal period. Mutant KRAS led to the development of multiple vascular tangles and hemorrhage in the brain with increased MAPK/ERK signaling and growth in endothelial cells. Three-dimensional analyses in cleared tissue revealed dilated vascular networks connecting arteries and veins, similar to human bAVMs. Single-cell RNA-Seq revealed dysregulated gene expressions in endothelial cells and multiple cell types involved in the pathological process. Finally, we employed CRISPR/CasRx to knock down mutant KRAS expression, which efficiently suppressed bAVM development. The present model reveals pathological processes that lead to postnatal bAVMs and demonstrates the efficacy of therapeutic strategies with CRISPR/CasRx.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":"9 22","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142687039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-22DOI: 10.1172/jci.insight.182087
Joshua S Carty, Ryoichi Bessho, Yvonne Zuchowski, Jonathan B Trapani, Olena Davidoff, Hanako Kobayashi, Joseph T Roland, Jason A Watts, Andrew S Terker, Fabian Bock, Juan Pablo Arroyo, Volker H Haase
Urinary concentration is an energy-dependent process that minimizes body water loss by increasing aquaporin 2 (AQP2) expression in collecting duct (CD) principal cells. To investigate the role of mitochondrial (mt) ATP production in renal water clearance, we disrupted mt electron transport in CD cells by targeting ubiquinone (Q) binding protein QPC (UQCRQ), a subunit of mt complex III essential for oxidative phosphorylation. QPC-deficient mice produced less concentrated urine than controls, both at baseline and after type 2 vasopressin receptor stimulation with desmopressin. Impaired urinary concentration in QPC-deficient mice was associated with reduced total AQP2 protein levels in CD tubules, while AQP2 phosphorylation and membrane trafficking remained unaffected. In cultured inner medullary CD cells treated with mt complex III inhibitor antimycin A, the reduction in AQP2 abundance was associated with activation of 5' adenosine monophosphate-activated protein kinase (AMPK) and was reversed by treatment with AMPK inhibitor SBI-0206965. In summary, our studies demonstrated that the physiological regulation of AQP2 abundance in principal CD cells was dependent on mt electron transport. Furthermore, our data suggested that oxidative phosphorylation in CD cells was dispensable for maintaining water homeostasis under baseline conditions, but necessary for maximal stimulation of AQP2 expression and urinary concentration.
尿液浓缩是一个依赖能量的过程,它通过增加集合管(CD)主细胞中的水蒸发素-2(AQP2)的表达来最大限度地减少体内水分的流失。为了研究线粒体(mt)产生 ATP 在肾脏水清除中的作用,我们通过靶向泛醌(Q)结合蛋白 QPC(UQCRQ)破坏了 CD 细胞中的线粒体电子传递,QPC 是线粒体复合体 III 的一个亚基,对氧化磷酸化至关重要。与对照组相比,QPC缺陷小鼠在基线和去氨加压素刺激2型血管加压素受体后产生的尿液浓度都较低。QPC 缺陷小鼠尿液浓缩功能受损与 CD 小管中 AQP2 蛋白总含量降低有关,而 AQP2 磷酸化和膜转运仍未受到影响。在用mt复合体III抑制剂抗霉素A处理的CD内髓细胞中,AQP2丰度的降低与5'单磷酸腺苷激活蛋白激酶(AMPK)的激活有关,AMPK抑制剂SBI-0206965可逆转AQP2丰度的降低。总之,我们的研究表明,CD主细胞中AQP2丰度的生理调节依赖于mt电子传递。此外,我们的数据还表明,在基线条件下,CD细胞中的氧化磷酸化对于维持水稳态是不可或缺的,但对于最大程度地刺激AQP2的表达和尿液浓度则是必要的。
{"title":"Disruption of mitochondrial electron transport impairs urinary concentration via AMPK-dependent suppression of aquaporin 2.","authors":"Joshua S Carty, Ryoichi Bessho, Yvonne Zuchowski, Jonathan B Trapani, Olena Davidoff, Hanako Kobayashi, Joseph T Roland, Jason A Watts, Andrew S Terker, Fabian Bock, Juan Pablo Arroyo, Volker H Haase","doi":"10.1172/jci.insight.182087","DOIUrl":"10.1172/jci.insight.182087","url":null,"abstract":"<p><p>Urinary concentration is an energy-dependent process that minimizes body water loss by increasing aquaporin 2 (AQP2) expression in collecting duct (CD) principal cells. To investigate the role of mitochondrial (mt) ATP production in renal water clearance, we disrupted mt electron transport in CD cells by targeting ubiquinone (Q) binding protein QPC (UQCRQ), a subunit of mt complex III essential for oxidative phosphorylation. QPC-deficient mice produced less concentrated urine than controls, both at baseline and after type 2 vasopressin receptor stimulation with desmopressin. Impaired urinary concentration in QPC-deficient mice was associated with reduced total AQP2 protein levels in CD tubules, while AQP2 phosphorylation and membrane trafficking remained unaffected. In cultured inner medullary CD cells treated with mt complex III inhibitor antimycin A, the reduction in AQP2 abundance was associated with activation of 5' adenosine monophosphate-activated protein kinase (AMPK) and was reversed by treatment with AMPK inhibitor SBI-0206965. In summary, our studies demonstrated that the physiological regulation of AQP2 abundance in principal CD cells was dependent on mt electron transport. Furthermore, our data suggested that oxidative phosphorylation in CD cells was dispensable for maintaining water homeostasis under baseline conditions, but necessary for maximal stimulation of AQP2 expression and urinary concentration.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142371902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Graves' disease (GD) is an autoimmune condition that can progress to Graves' ophthalmopathy (GO), leading to irreversible damage to orbital tissues and potential blindness. The pathogenic mechanism is not fully understood. In this study, we conducted single-cell multi-omics analyses on healthy individuals, patients with GD without GO, newly diagnosed patients with GO, and treated patients with GO. Our findings revealed gradual systemic inflammation during GO progression, marked by overactivation of cytotoxic effector T cell subsets, and expansion of specific T cell receptor clones. Importantly, we observed a decline in the immunosuppressive function of activated Treg (aTreg) accompanied by a cytotoxic phenotypic transition. In vitro experiments revealed that dysfunction and transition of GO-autoreactive Treg were regulated by the yin yang 1 (YY1) upon secondary stimulation of thyroid stimulating hormone receptor (TSHR) under inflammatory conditions. Furthermore, adoptive transfer experiments of the GO mouse model confirmed infiltration of these cytotoxic Treg into the orbital lesion tissues. Notably, these cells were found to upregulate inflammation and promote pathogenic fibrosis of orbital fibroblasts (OFs). Our results reveal the dynamic changes in immune landscape during GO progression and provide direct insights into the instability and phenotypic transition of Treg, offering potential targets for therapeutic intervention and prevention of autoimmune diseases.
巴塞杜氏病(GD)是一种自身免疫性疾病,可发展为巴塞杜氏眼病(GO),导致眼眶组织不可逆转的损伤和潜在的失明。其致病机制尚不完全清楚。在这项研究中,我们对健康人、未患巴塞杜氏眼病的广东患者、新诊断的巴塞杜氏眼病患者和接受治疗的巴塞杜氏眼病患者进行了单细胞多组学分析。我们的研究结果表明,在 GO 进展过程中,全身炎症逐渐加重,细胞毒性效应 T 细胞亚群过度活化,特异性 T 细胞受体克隆扩大。重要的是,我们观察到活化调节性T细胞(aTreg)的免疫抑制功能下降,并伴有细胞毒性表型转变。体外实验显示,在炎症条件下,当促甲状腺激素受体(TSHR)二次刺激时,GO-自反应Treg的功能障碍和转变受阴阳1(YY1)的调控。此外,GO小鼠模型的收养转移实验证实了这些细胞毒性Treg渗入眼眶病变组织。值得注意的是,这些细胞会上调炎症反应,并促进眼眶成纤维细胞(OFs)的致病性纤维化。我们的研究结果揭示了GO进展过程中免疫格局的动态变化,并对Treg的不稳定性和表型转变提供了新的见解,为治疗干预和预防自身免疫性疾病提供了潜在靶点。
{"title":"Dynamic transition of Tregs to cytotoxic phenotype amid systemic inflammation in Graves' ophthalmopathy.","authors":"Zhong Liu, Shu-Rui Ke, Zhuo-Xing Shi, Ming Zhou, Li Sun, Qi-Hang Sun, Bing Xiao, Dong-Liang Wang, Yan-Jin Huang, Jin-Shan Lin, Hui-Shi Wang, Qi-Kai Zhang, Cai-Neng Pan, Xuan-Wei Liang, Rong-Xin Chen, Zhen Mao, Xian-Chai Lin","doi":"10.1172/jci.insight.181488","DOIUrl":"10.1172/jci.insight.181488","url":null,"abstract":"<p><p>Graves' disease (GD) is an autoimmune condition that can progress to Graves' ophthalmopathy (GO), leading to irreversible damage to orbital tissues and potential blindness. The pathogenic mechanism is not fully understood. In this study, we conducted single-cell multi-omics analyses on healthy individuals, patients with GD without GO, newly diagnosed patients with GO, and treated patients with GO. Our findings revealed gradual systemic inflammation during GO progression, marked by overactivation of cytotoxic effector T cell subsets, and expansion of specific T cell receptor clones. Importantly, we observed a decline in the immunosuppressive function of activated Treg (aTreg) accompanied by a cytotoxic phenotypic transition. In vitro experiments revealed that dysfunction and transition of GO-autoreactive Treg were regulated by the yin yang 1 (YY1) upon secondary stimulation of thyroid stimulating hormone receptor (TSHR) under inflammatory conditions. Furthermore, adoptive transfer experiments of the GO mouse model confirmed infiltration of these cytotoxic Treg into the orbital lesion tissues. Notably, these cells were found to upregulate inflammation and promote pathogenic fibrosis of orbital fibroblasts (OFs). Our results reveal the dynamic changes in immune landscape during GO progression and provide direct insights into the instability and phenotypic transition of Treg, offering potential targets for therapeutic intervention and prevention of autoimmune diseases.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142375477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-22DOI: 10.1172/jci.insight.173831
Youngjae Jeong, Lorenzo Deveza, Laura Ortinau, Kevin Lei, John R Dawson, Dongsu Park
Human periosteal skeletal stem cells (P-SSCs) are critical for cortical bone maintenance and repair. However, their in vivo identity, molecular characteristics, and specific markers remain unknown. Here, single-cell sequencing revealed human periosteum contains SSC clusters expressing known SSC markers, podoplanin (PDPN) and PDGFRA. Notably, human P-SSCs, but not bone marrow SSCs, selectively expressed identified markers low density lipoprotein receptor-related protein 1 (LRP1) and CD13. These LRP1+CD13+ human P-SSCs were perivascular cells with high osteochondrogenic but minimal adipogenic potential. Upon transplantation into bone injuries in mice, they preserved self-renewal capability in vivo. Single-cell analysis of mouse periosteum further supported the preferential expression of LRP1 and CD13 in Prx1+ P-SSCs. When Lrp1 was conditionally deleted in Prx1 lineage cells, it led to severe bone deformity, short stature, and periosteal defects. By contrast, local treatment with an LRP1 agonist at the injury sites induced early P-SSC proliferation and bone healing. Thus, human and mouse periosteum contains unique osteochondrogenic stem cell subsets, and these P-SSCs express specific markers, LRP1 and CD13, with a regulatory mechanism through LRP1 that enhances P-SSC function and bone repair.
{"title":"Identification of LRP1+CD13+ human periosteal stem cells that require LRP1 for bone repair.","authors":"Youngjae Jeong, Lorenzo Deveza, Laura Ortinau, Kevin Lei, John R Dawson, Dongsu Park","doi":"10.1172/jci.insight.173831","DOIUrl":"10.1172/jci.insight.173831","url":null,"abstract":"<p><p>Human periosteal skeletal stem cells (P-SSCs) are critical for cortical bone maintenance and repair. However, their in vivo identity, molecular characteristics, and specific markers remain unknown. Here, single-cell sequencing revealed human periosteum contains SSC clusters expressing known SSC markers, podoplanin (PDPN) and PDGFRA. Notably, human P-SSCs, but not bone marrow SSCs, selectively expressed identified markers low density lipoprotein receptor-related protein 1 (LRP1) and CD13. These LRP1+CD13+ human P-SSCs were perivascular cells with high osteochondrogenic but minimal adipogenic potential. Upon transplantation into bone injuries in mice, they preserved self-renewal capability in vivo. Single-cell analysis of mouse periosteum further supported the preferential expression of LRP1 and CD13 in Prx1+ P-SSCs. When Lrp1 was conditionally deleted in Prx1 lineage cells, it led to severe bone deformity, short stature, and periosteal defects. By contrast, local treatment with an LRP1 agonist at the injury sites induced early P-SSC proliferation and bone healing. Thus, human and mouse periosteum contains unique osteochondrogenic stem cell subsets, and these P-SSCs express specific markers, LRP1 and CD13, with a regulatory mechanism through LRP1 that enhances P-SSC function and bone repair.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142465866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-22DOI: 10.1172/jci.insight.181219
Lin Yuan, Qingwu Qin, Ye Yao, Long Chen, Huijun Liu, Xizi Du, Ming Ji, Xinyu Wu, Weijie Wang, Qiuyan Qin, Yang Xiang, Bei Qing, Xiangping Qu, Ming Yang, Xiaoqun Qin, Zhenkun Xia, Chi Liu
Airway remodeling is a critical factor determining the pathogenesis and treatment sensitivity of severe asthma (SA) or uncontrolled asthma (UA). The activation of epithelial-mesenchymal trophic units (EMTUs) regulated by airway epithelial cells (AECs) has been proven to induce airway remodeling directly. However, the triggers for EMTU activation and the underlying mechanism of airway remodeling are not fully elucidated. Here, we screened the differentially expressed gene cathepsin C (CTSC; also known as dipeptidyl peptidase 1 [DPP-1]) in epithelia of patients with SA and UA using RNA-sequencing data and further verified the increased expression of CTSC in induced sputum of patients with asthma, which was positively correlated with severity and airway remodeling. Moreover, direct instillation of exogenous CTSC induced airway remodeling. Genetic inhibition of CTSC suppressed EMTU activation and airway remodeling in two asthma models with airway remodeling. Mechanistically, increased secretion of CTSC from AECs induced EMTU activation through the p38-mediated pathway, further inducing airway remodeling. Meanwhile, inhibition of CTSC also reduced the infiltration of inflammatory cells and the production of inflammatory factors in the lungs of asthmatic mice. Consequently, targeting CTSC with compound AZD7986 protected against airway inflammation, EMTU activation, and remodeling in the asthma model. Based on the dual effects of CTSC on airway inflammation and remodeling, CTSC is a potential biomarker and therapeutic target for SA or UA.
气道重塑是决定重症哮喘(SA)或失控性哮喘(UA)发病机制和治疗敏感性的关键因素。由气道上皮细胞(AECs)调控的上皮-间质营养单位(EMTUs)的激活已被证实能直接诱导气道重塑。然而,EMTU 激活的诱因和气道重塑的内在机制尚未完全阐明。在此,我们利用 RNA 测序数据筛选了 SA 和 UA 患者上皮细胞中不同表达基因 Cathepsin C (CTSC)/dipeptidyl peptidase 1 (DPP-1),并进一步验证了 CTSC 在哮喘患者诱导痰中的表达增加,且与严重程度和气道重塑呈正相关。此外,直接灌注外源性 CTSC 可诱导气道重塑。在两种气道重塑的哮喘模型中,基因抑制 CTSC 可抑制 EMTU 的激活和气道重塑。从机理上讲,AECs分泌的CTSC增加会通过p38介导的途径诱导EMTU活化,从而进一步诱导气道重塑。同时,抑制 CTSC 还能减少哮喘小鼠肺部炎症细胞的浸润和炎症因子的产生。因此,用化合物 AZD7986 靶向 CTSC 能保护哮喘模型免受气道炎症、EMTU 激活和重塑的影响。基于 CTSC 对气道炎症和重塑的双重作用,CTSC 是 SA 或 UA 的潜在生物标记物和治疗靶点。
{"title":"Increased expression of cathepsin C in airway epithelia exacerbates airway remodeling in asthma.","authors":"Lin Yuan, Qingwu Qin, Ye Yao, Long Chen, Huijun Liu, Xizi Du, Ming Ji, Xinyu Wu, Weijie Wang, Qiuyan Qin, Yang Xiang, Bei Qing, Xiangping Qu, Ming Yang, Xiaoqun Qin, Zhenkun Xia, Chi Liu","doi":"10.1172/jci.insight.181219","DOIUrl":"10.1172/jci.insight.181219","url":null,"abstract":"<p><p>Airway remodeling is a critical factor determining the pathogenesis and treatment sensitivity of severe asthma (SA) or uncontrolled asthma (UA). The activation of epithelial-mesenchymal trophic units (EMTUs) regulated by airway epithelial cells (AECs) has been proven to induce airway remodeling directly. However, the triggers for EMTU activation and the underlying mechanism of airway remodeling are not fully elucidated. Here, we screened the differentially expressed gene cathepsin C (CTSC; also known as dipeptidyl peptidase 1 [DPP-1]) in epithelia of patients with SA and UA using RNA-sequencing data and further verified the increased expression of CTSC in induced sputum of patients with asthma, which was positively correlated with severity and airway remodeling. Moreover, direct instillation of exogenous CTSC induced airway remodeling. Genetic inhibition of CTSC suppressed EMTU activation and airway remodeling in two asthma models with airway remodeling. Mechanistically, increased secretion of CTSC from AECs induced EMTU activation through the p38-mediated pathway, further inducing airway remodeling. Meanwhile, inhibition of CTSC also reduced the infiltration of inflammatory cells and the production of inflammatory factors in the lungs of asthmatic mice. Consequently, targeting CTSC with compound AZD7986 protected against airway inflammation, EMTU activation, and remodeling in the asthma model. Based on the dual effects of CTSC on airway inflammation and remodeling, CTSC is a potential biomarker and therapeutic target for SA or UA.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142500738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-22DOI: 10.1172/jci.insight.184279
Andrew S Perry, Paolo Piaggi, Shi Huang, Matthew Nayor, Jane Freedman, Kari E North, Jennifer E Below, Clary B Clish, Venkatesh L Murthy, Jonathan Krakoff, Ravi V Shah
Human studies linking metabolism with organism-wide physiologic function have been challenged by confounding, adherence, and precisionHere, we united physiologic and molecular phenotypes of metabolism during controlled dietary intervention to understand integrated metabolic-physiologic responses to nutrition. In an inpatient study of individuals who underwent serial 24-hour metabolic chamber experiments (indirect calorimetry) and metabolite profiling, we mapped a human metabolome onto substrate oxidation rates and energy expenditure across up to 7 dietary conditions (energy balance, fasting, multiple 200% caloric excess overfeeding of varying fat, protein, and carbohydrate composition). Diets exhibiting greater fat oxidation (e.g., fasting, high-fat) were associated with changes in metabolites within pathways of mitochondrial β-oxidation, ketogenesis, adipose tissue fatty acid liberation, and/or multiple anapleurotic substrates for tricarboxylic acid cycle flux, with inverse associations for diets with greater carbohydrate availability. Changes in each of these metabolite classes were strongly related to 24-hour respiratory quotient (RQ) and substrate oxidation rates (e.g., acylcarnitines related to lower 24-hour RQ and higher 24-hour lipid oxidation), underscoring links between substrate availability, physiology, and metabolism in humans. Physiologic responses to diet determined by gold-standard human metabolic chambers are strongly coordinated with biologically consistent, interconnected metabolic pathways encoded in the metabolome.
{"title":"Human metabolic chambers reveal a coordinated metabolic-physiologic response to nutrition.","authors":"Andrew S Perry, Paolo Piaggi, Shi Huang, Matthew Nayor, Jane Freedman, Kari E North, Jennifer E Below, Clary B Clish, Venkatesh L Murthy, Jonathan Krakoff, Ravi V Shah","doi":"10.1172/jci.insight.184279","DOIUrl":"https://doi.org/10.1172/jci.insight.184279","url":null,"abstract":"<p><p>Human studies linking metabolism with organism-wide physiologic function have been challenged by confounding, adherence, and precisionHere, we united physiologic and molecular phenotypes of metabolism during controlled dietary intervention to understand integrated metabolic-physiologic responses to nutrition. In an inpatient study of individuals who underwent serial 24-hour metabolic chamber experiments (indirect calorimetry) and metabolite profiling, we mapped a human metabolome onto substrate oxidation rates and energy expenditure across up to 7 dietary conditions (energy balance, fasting, multiple 200% caloric excess overfeeding of varying fat, protein, and carbohydrate composition). Diets exhibiting greater fat oxidation (e.g., fasting, high-fat) were associated with changes in metabolites within pathways of mitochondrial β-oxidation, ketogenesis, adipose tissue fatty acid liberation, and/or multiple anapleurotic substrates for tricarboxylic acid cycle flux, with inverse associations for diets with greater carbohydrate availability. Changes in each of these metabolite classes were strongly related to 24-hour respiratory quotient (RQ) and substrate oxidation rates (e.g., acylcarnitines related to lower 24-hour RQ and higher 24-hour lipid oxidation), underscoring links between substrate availability, physiology, and metabolism in humans. Physiologic responses to diet determined by gold-standard human metabolic chambers are strongly coordinated with biologically consistent, interconnected metabolic pathways encoded in the metabolome.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":"9 22","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142686981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-22DOI: 10.1172/jci.insight.175998
Yogita Sharma, Robin Lo, Viktor N Tomilin, Kotdaji Ha, Holly Deremo, Aishwarya V Pareek, Wuxing Dong, Xiaohui Liao, Svetlana Lebedeva, Vivek Charu, Neeraja Kambham, Kerim Mutig, Oleh Pochynyuk, Vivek Bhalla
Mutations in the CLCNKB gene (1p36), encoding the basolateral chloride channel ClC-Kb, cause type 3 Bartter syndrome. We identified a family with a mixed Bartter/Gitelman phenotype and early-onset kidney failure and by employing a candidate gene approach, identified what we believe is a novel homozygous mutation (CLCNKB c.499G>T [p.Gly167Cys]) in exon 6 of CLCNKB in the index patient. We then validated these results with Sanger and whole-exome sequencing. Compared with wild-type ClC-Kb, the Gly167Cys mutant conducted less current and exhibited impaired complex N-linked glycosylation in vitro. We demonstrated that loss of Gly-167, rather than gain of a mutant Cys, impairs complex glycosylation, but that surface expression remains intact. Moreover, Asn-364 was necessary for channel function and complex glycosylation. Morphologic evaluation of human kidney biopsies revealed typical basolateral localization of mutant Gly167Cys ClC-Kb in cortical distal tubular epithelia. However, we detected attenuated expression of distal sodium transport proteins, changes in abundance of distal tubule segments, and hypokalemia-associated intracellular condensates from the index patient compared with control nephrectomy specimens. The present data establish what we believe are novel regulatory mechanisms of ClC-Kb activity and demonstrate nephron remodeling in humans, caused by mutant ClC-Kb, with implications for renal electrolyte handling, blood pressure control, and kidney disease.
{"title":"ClC-Kb pore mutation disrupts glycosylation and triggers distal tubular remodeling.","authors":"Yogita Sharma, Robin Lo, Viktor N Tomilin, Kotdaji Ha, Holly Deremo, Aishwarya V Pareek, Wuxing Dong, Xiaohui Liao, Svetlana Lebedeva, Vivek Charu, Neeraja Kambham, Kerim Mutig, Oleh Pochynyuk, Vivek Bhalla","doi":"10.1172/jci.insight.175998","DOIUrl":"10.1172/jci.insight.175998","url":null,"abstract":"<p><p>Mutations in the CLCNKB gene (1p36), encoding the basolateral chloride channel ClC-Kb, cause type 3 Bartter syndrome. We identified a family with a mixed Bartter/Gitelman phenotype and early-onset kidney failure and by employing a candidate gene approach, identified what we believe is a novel homozygous mutation (CLCNKB c.499G>T [p.Gly167Cys]) in exon 6 of CLCNKB in the index patient. We then validated these results with Sanger and whole-exome sequencing. Compared with wild-type ClC-Kb, the Gly167Cys mutant conducted less current and exhibited impaired complex N-linked glycosylation in vitro. We demonstrated that loss of Gly-167, rather than gain of a mutant Cys, impairs complex glycosylation, but that surface expression remains intact. Moreover, Asn-364 was necessary for channel function and complex glycosylation. Morphologic evaluation of human kidney biopsies revealed typical basolateral localization of mutant Gly167Cys ClC-Kb in cortical distal tubular epithelia. However, we detected attenuated expression of distal sodium transport proteins, changes in abundance of distal tubule segments, and hypokalemia-associated intracellular condensates from the index patient compared with control nephrectomy specimens. The present data establish what we believe are novel regulatory mechanisms of ClC-Kb activity and demonstrate nephron remodeling in humans, caused by mutant ClC-Kb, with implications for renal electrolyte handling, blood pressure control, and kidney disease.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142465864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}