Yang Yang, Fengming Huang, Xiangyu Qiao, Sheng Chen, Cong Zhang, Xingyu Deng, Wentao Gu, Ling Peng, Mengli Cao, Jingmei Jiang, George F. Gao, Yingxia Liu, Chengyu Jiang
To date, SARS-CoV-2 has caused millions of deaths, but the choice of treatment is limited. We previously established a platform for identifying Food and Drug Administration (FDA)-approved repurposed drugs for avian influenza A virus infections that could be used for coronavirus disease 2019 (COVID-19) treatment. In this study, we analyzed blood samples from two cohorts of 63 COVID-19 patients, including 19 patients with severe disease. Among the 39 FDA-approved drugs we identified for COVID-19 therapy in both cohorts, 23 drugs were confirmed by literature mining data, including 14 drugs already under COVID-19 clinical trials and 9 drugs reported for COVID-19 treatments, suggesting the remaining 16 FDA-approved drugs may be candidates for COVID-19 therapy. Additionally, we previously reported that herbal small RNAs (sRNAs) could be effective components in traditional Chinese medicine (TCM) for treating COVID-19. Based on the abundance of sRNAs, we screened the 245 TCMs in the Bencao (herbal) sRNA Atlas that we had previously established, and we found that the top 12 TCMs for COVID-19 treatment was consistent across both cohorts. We validated the efficiency of the top 30 sRNAs from each of the top 3 TCMs for COVID-19 treatment in poly(I:C)-stimulated human non-small cell lung cancer cells (A549 cells). In conclusion, our study recommends potential COVID-19 remedies using FDA-approved repurposed drugs and herbal sRNAs from TCMs.
{"title":"Potential COVID-19 remedies from repurposed drugs and herbal small RNAs","authors":"Yang Yang, Fengming Huang, Xiangyu Qiao, Sheng Chen, Cong Zhang, Xingyu Deng, Wentao Gu, Ling Peng, Mengli Cao, Jingmei Jiang, George F. Gao, Yingxia Liu, Chengyu Jiang","doi":"10.1002/iub.2860","DOIUrl":"10.1002/iub.2860","url":null,"abstract":"<p>To date, SARS-CoV-2 has caused millions of deaths, but the choice of treatment is limited. We previously established a platform for identifying Food and Drug Administration (FDA)-approved repurposed drugs for avian influenza A virus infections that could be used for coronavirus disease 2019 (COVID-19) treatment. In this study, we analyzed blood samples from two cohorts of 63 COVID-19 patients, including 19 patients with severe disease. Among the 39 FDA-approved drugs we identified for COVID-19 therapy in both cohorts, 23 drugs were confirmed by literature mining data, including 14 drugs already under COVID-19 clinical trials and 9 drugs reported for COVID-19 treatments, suggesting the remaining 16 FDA-approved drugs may be candidates for COVID-19 therapy. Additionally, we previously reported that herbal small RNAs (sRNAs) could be effective components in traditional Chinese medicine (TCM) for treating COVID-19. Based on the abundance of sRNAs, we screened the 245 TCMs in the Bencao (herbal) sRNA Atlas that we had previously established, and we found that the top 12 TCMs for COVID-19 treatment was consistent across both cohorts. We validated the efficiency of the top 30 sRNAs from each of the top 3 TCMs for COVID-19 treatment in poly(I:C)-stimulated human non-small cell lung cancer cells (A549 cells). In conclusion, our study recommends potential COVID-19 remedies using FDA-approved repurposed drugs and herbal sRNAs from TCMs.</p>","PeriodicalId":14728,"journal":{"name":"IUBMB Life","volume":"76 11","pages":"960-971"},"PeriodicalIF":3.7,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141456984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Li Tian, YuQi Huang, Yan Liu, JiangWei Liu, Yan Liu
Parecoxib, a well-recognized nonsteroidal anti-inflammatory drug, has been reported to possess anticancer properties in various tumor types. In this work, we aimed to investigate the potential anticancer effects of parecoxib on hepatocellular carcinoma (HCC) cells. To assess the impact of parecoxib on HCC cell proliferation, we employed Cell Counting Kit-8, colony formation, and 5-ethynyl-2′-deoxyuridine assays. Hoechst/propidium iodide (PI) double staining and flow cytometry were performed to evaluate apoptosis and cell cycle analysis. Wound healing and transwell assays were utilized to assess cell migration and invasion. Tube formation assay was employed to analyze angiogenesis. Protein levels were determined using western blotting, and mRNA expression levels were assessed using quantitative real-time polymerase chain reaction (PCR). A xenograft mouse model was used to confirm the antitumor effects of parecoxib on HCC tumors in vivo. Our data demonstrated that parecoxib effectively inhibited the proliferation of HCC cells in a dose- and time-dependent manner. In addition, parecoxib induced cell cycle arrest in the G2 phase and promoted apoptosis. Moreover, parecoxib hindered tumor migration and invasion by impeding the epithelial–mesenchymal transition process. Further investigation showed that parecoxib could significantly suppress angiogenesis through the inhibition of extracellular signal-regulated kinase (ERK)–vascular endothelial growth factor (VEGF) axis. Notably, treatment with the ERK activator phorbol myristate acetate upregulated the expression of matrix metalloproteinase (MMP)-2, MMP-9, and VEGF and reversed the function of parecoxib in HCC cells. Besides, parecoxib displayed its antitumor efficacy in vivo. Collectively, our results suggest that parecoxib ameliorates HCC progression by regulating proliferation, cell cycle, apoptosis, migration, invasion, and angiogenesis through the ERK–VEGF/MMPs signaling pathway.
{"title":"Parecoxib inhibits tumorigenesis and angiogenesis in hepatocellular carcinoma through ERK–VEGF/MMPs signaling pathway","authors":"Li Tian, YuQi Huang, Yan Liu, JiangWei Liu, Yan Liu","doi":"10.1002/iub.2861","DOIUrl":"10.1002/iub.2861","url":null,"abstract":"<p>Parecoxib, a well-recognized nonsteroidal anti-inflammatory drug, has been reported to possess anticancer properties in various tumor types. In this work, we aimed to investigate the potential anticancer effects of parecoxib on hepatocellular carcinoma (HCC) cells. To assess the impact of parecoxib on HCC cell proliferation, we employed Cell Counting Kit-8, colony formation, and 5-ethynyl-2′-deoxyuridine assays. Hoechst/propidium iodide (PI) double staining and flow cytometry were performed to evaluate apoptosis and cell cycle analysis. Wound healing and transwell assays were utilized to assess cell migration and invasion. Tube formation assay was employed to analyze angiogenesis. Protein levels were determined using western blotting, and mRNA expression levels were assessed using quantitative real-time polymerase chain reaction (PCR). A xenograft mouse model was used to confirm the antitumor effects of parecoxib on HCC tumors in vivo. Our data demonstrated that parecoxib effectively inhibited the proliferation of HCC cells in a dose- and time-dependent manner. In addition, parecoxib induced cell cycle arrest in the G2 phase and promoted apoptosis. Moreover, parecoxib hindered tumor migration and invasion by impeding the epithelial–mesenchymal transition process. Further investigation showed that parecoxib could significantly suppress angiogenesis through the inhibition of extracellular signal-regulated kinase (ERK)–vascular endothelial growth factor (VEGF) axis. Notably, treatment with the ERK activator phorbol myristate acetate upregulated the expression of matrix metalloproteinase (MMP)-2, MMP-9, and VEGF and reversed the function of parecoxib in HCC cells. Besides, parecoxib displayed its antitumor efficacy in vivo. Collectively, our results suggest that parecoxib ameliorates HCC progression by regulating proliferation, cell cycle, apoptosis, migration, invasion, and angiogenesis through the ERK–VEGF/MMPs signaling pathway.</p>","PeriodicalId":14728,"journal":{"name":"IUBMB Life","volume":"76 11","pages":"972-986"},"PeriodicalIF":3.7,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141317313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dongsheng Guan, Yingxia Li, Xu Zhao, Kun Wang, Yanke Guo, Ning Dong, Yinglin Cui, Yinghe Gao, Mengmeng Wang, Jing Wang, Yihan Ren, Penghui Shang, Yuxuan Liu
Multiple sclerosis (MS) is a common autoimmune illness that is difficult to treat. The upregulation of Th17 cells is critical in the pathological process of MS. Hederagenol (Hed) has been shown to lower IL-17 levels, although its role in MS pathophysiology is uncertain. In this study, we explore whether Hed could ameliorate MS by modulating Th17 cell differentiation, with the goal of identifying new treatment targets for MS. The experimental autoimmune encephalomyelitis (EAE) mouse model was conducted and Hed was intraperitoneally injected into mice. The weight was recorded and the clinical symptom grade was assessed. Hematoxylin-eosin staining was carried out to determine the extent of inflammation in the spinal cord and liver. The luxol Fast Blue staining was performed to detect the pathological changes in the myelin sheath. Nerve damage was detected using NeuN immunofluorescence staining and terminal deoxynucleotidyl transferase dUTP nick-end labeling staining. Immunohistology approaches were used to study alterations in immune cells in the spinal cord. The proportions of T cell subsets in the spleens were analyzed by flow cytometry. RORγt levels were measured using quantitative real-time PCR or Western blot. The activity of the RORγt promoter was analyzed by Chromatin immunoprecipitation. Hed administration reduced the clinical symptom grade of EAE mice, as well as the inflammatory infiltration, demyelination, and cell disorder of the spinal cord, while having no discernible effect on the mouse weight. In addition, Hed treatment significantly reduced the number of T cells, particularly Th17 cells in the spinal cord and spleen-isolated CD4+ T cells. Hed lowered the RORγt levels in spleens and CD4+ T cells and overexpression of RORγt reversed the inhibitory effect of Hed on Th17 differentiation. Hed decreased nerve injury by modulating Th17 differentiation through the RORγt promoter. Hed regulates Th17 differentiation by reducing RORγt promoter activity, which reduces nerve injury and alleviates EAE.
{"title":"Hederagenol improves multiple sclerosis by modulating Th17 cell differentiation","authors":"Dongsheng Guan, Yingxia Li, Xu Zhao, Kun Wang, Yanke Guo, Ning Dong, Yinglin Cui, Yinghe Gao, Mengmeng Wang, Jing Wang, Yihan Ren, Penghui Shang, Yuxuan Liu","doi":"10.1002/iub.2863","DOIUrl":"10.1002/iub.2863","url":null,"abstract":"<p>Multiple sclerosis (MS) is a common autoimmune illness that is difficult to treat. The upregulation of Th17 cells is critical in the pathological process of MS. Hederagenol (Hed) has been shown to lower IL-17 levels, although its role in MS pathophysiology is uncertain. In this study, we explore whether Hed could ameliorate MS by modulating Th17 cell differentiation, with the goal of identifying new treatment targets for MS. The experimental autoimmune encephalomyelitis (EAE) mouse model was conducted and Hed was intraperitoneally injected into mice. The weight was recorded and the clinical symptom grade was assessed. Hematoxylin-eosin staining was carried out to determine the extent of inflammation in the spinal cord and liver. The luxol Fast Blue staining was performed to detect the pathological changes in the myelin sheath. Nerve damage was detected using NeuN immunofluorescence staining and terminal deoxynucleotidyl transferase dUTP nick-end labeling staining. Immunohistology approaches were used to study alterations in immune cells in the spinal cord. The proportions of T cell subsets in the spleens were analyzed by flow cytometry. RORγt levels were measured using quantitative real-time PCR or Western blot. The activity of the RORγt promoter was analyzed by Chromatin immunoprecipitation. Hed administration reduced the clinical symptom grade of EAE mice, as well as the inflammatory infiltration, demyelination, and cell disorder of the spinal cord, while having no discernible effect on the mouse weight. In addition, Hed treatment significantly reduced the number of T cells, particularly Th17 cells in the spinal cord and spleen-isolated CD4<sup>+</sup> T cells. Hed lowered the RORγt levels in spleens and CD4<sup>+</sup> T cells and overexpression of RORγt reversed the inhibitory effect of Hed on Th17 differentiation. Hed decreased nerve injury by modulating Th17 differentiation through the RORγt promoter. Hed regulates Th17 differentiation by reducing RORγt promoter activity, which reduces nerve injury and alleviates EAE.</p>","PeriodicalId":14728,"journal":{"name":"IUBMB Life","volume":"76 10","pages":"845-857"},"PeriodicalIF":3.7,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141262159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Li Zhou, Feilong Tan, Xue Zhang, Yanhua Li, Wenjie Yin
Ginsenosides are the primary component discernible from ginseng, including Rb1, Rb2, Rd, Rg1, Rg2, and compound K, and so forth. They have been shown to have multiple pharmacological activities. In recent years, more and more studies have been devoted to the neuroprotection of various ginsenosides against neurological diseases and their potential mechanisms. This paper comprehensively summarizes and reviews the neuroprotective effects of various ginsenosides on neurological diseases, especially acute and chronic neurodegenerative diseases, and their mechanisms, as well as their potential therapeutic applications to promote neuroprotection in disease prevention, treatment, and prognosis. Briefly, ginsenosides exert effective neuroprotective effects on neurological conditions, including stroke, Alzheimer's disease, Parkinson's disease, and brain/spinal cord injuries through a variety of molecular mechanisms, including anti-inflammatory, antioxidant, and anti-apoptotic. Among them, some signaling pathways play important roles in related processes, such as PI3K/Akt, TLR4/NF-κB, ROS/TXNIP/NLRP3, HO-1/Nrf2, Wnt/β-catenin, and Ca2+ pathway. In conclusion, the present study reviews the research progress on the neuroprotective effects of ginsenosides in the last decade, with the aim of furnishing essential theoretical underpinning and effective references for further research and exploration of the multiple medicinal values of Chinese herbal medicines and their small molecule compounds, including ginseng and panax ginseng. Because there is less evidence in the existing clinical studies, future research should be focused on clinical trials in order to truly reflect the clinical value of various ginsenosides for the benefit of patients.
人参皂甙是人参的主要成分,包括 Rb1、Rb2、Rd、Rg1、Rg2 和化合物 K 等。它们已被证明具有多种药理活性。近年来,越来越多的研究致力于探讨各种人参皂甙对神经系统疾病的神经保护作用及其潜在机制。本文全面总结和综述了各种人参皂甙对神经系统疾病,尤其是急慢性神经退行性疾病的神经保护作用及其机制,以及在疾病预防、治疗和预后中促进神经保护的潜在治疗应用。简而言之,人参皂苷通过抗炎、抗氧化和抗细胞凋亡等多种分子机制,对中风、阿尔茨海默病、帕金森病、脑/脊髓损伤等神经系统疾病具有有效的神经保护作用。其中,一些信号通路在相关过程中发挥着重要作用,如 PI3K/Akt、TLR4/NF-κB、ROS/TXNIP/NLRP3、HO-1/Nrf2、Wnt/β-catenin 和 Ca2+ 通路。总之,本研究回顾了近十年来人参皂苷神经保护作用的研究进展,旨在为进一步研究和探索包括人参和三七在内的中药材及其小分子化合物的多种药用价值提供必要的理论依据和有效参考。由于现有的临床研究证据较少,未来的研究应侧重于临床试验,以真正反映各种人参皂苷的临床价值,造福患者。
{"title":"Neuroprotection and mechanisms of ginsenosides in nervous system diseases: Progress and perspectives","authors":"Li Zhou, Feilong Tan, Xue Zhang, Yanhua Li, Wenjie Yin","doi":"10.1002/iub.2862","DOIUrl":"10.1002/iub.2862","url":null,"abstract":"<p>Ginsenosides are the primary component discernible from ginseng, including Rb1, Rb2, Rd, Rg1, Rg2, and compound K, and so forth. They have been shown to have multiple pharmacological activities. In recent years, more and more studies have been devoted to the neuroprotection of various ginsenosides against neurological diseases and their potential mechanisms. This paper comprehensively summarizes and reviews the neuroprotective effects of various ginsenosides on neurological diseases, especially acute and chronic neurodegenerative diseases, and their mechanisms, as well as their potential therapeutic applications to promote neuroprotection in disease prevention, treatment, and prognosis. Briefly, ginsenosides exert effective neuroprotective effects on neurological conditions, including stroke, Alzheimer's disease, Parkinson's disease, and brain/spinal cord injuries through a variety of molecular mechanisms, including anti-inflammatory, antioxidant, and anti-apoptotic. Among them, some signaling pathways play important roles in related processes, such as PI3K/Akt, TLR4/NF-κB, ROS/TXNIP/NLRP3, HO-1/Nrf2, Wnt/β-catenin, and Ca<sup>2+</sup> pathway. In conclusion, the present study reviews the research progress on the neuroprotective effects of ginsenosides in the last decade, with the aim of furnishing essential theoretical underpinning and effective references for further research and exploration of the multiple medicinal values of Chinese herbal medicines and their small molecule compounds, including ginseng and panax ginseng. Because there is less evidence in the existing clinical studies, future research should be focused on clinical trials in order to truly reflect the clinical value of various ginsenosides for the benefit of patients.</p>","PeriodicalId":14728,"journal":{"name":"IUBMB Life","volume":"76 11","pages":"862-882"},"PeriodicalIF":3.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/iub.2862","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141185848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shengde Liu, Zizhen Zhang, Zhenghang Wang, Jian Li, Lin Shen
Colorectal cancer (CRC), a pervasive and lethal malignancy of gastrointestinal cancer, imposes significant challenges due to the occurrence of distant metastasis in advanced stages. Understanding the intricate regulatory mechanisms driving CRC distant metastasis is of paramount importance. CRISPR-Cas9 screening has emerged as a powerful tool for investigating tumor initiation and progression. However, its application in studying CRC distant metastasis remains largely unexplored. To establish a model that faithfully recapitulates CRC liver metastasis in patients, we developed an in vivo genome-wide CRISPR-Cas9 screening approach using a spleen-injected liver metastasis mouse model. Through comprehensive screening of a whole-genome sgRNA library, we identified ANKRD42 as a pivotal regulatory gene facilitating CRC liver metastasis. Analysis of the TCGA database and our clinical cohorts unveiled heightened ANKRD42 expression in metastases. At the cellular level, the attenuation of ANKRD42 impaired the migration and invasion processes of tumor cells. In vivo experiments further validated these observations, highlighting the diminished liver metastatic capacity of tumor cells upon ANKRD42 knockdown. To unravel the specific mechanisms by which ANKRD42 regulates CRC distant metastasis, we leveraged patient-derived organoid (PDO) models. Depleting ANKRD42 in PDOs sourced from liver metastases precipitated the downregulation of pivotal genes linked to epithelial-mesenchymal transition (EMT), including CDH2 and SNAI2, thereby effectively suppressing tumor metastasis. This study not only establishes a conceptual framework but also identifies potential therapeutic avenues for advanced-stage distant metastasis in CRC patients.
{"title":"Genome-wide CRISPR screening identifies the pivotal role of ANKRD42 in colorectal cancer metastasis through EMT regulation","authors":"Shengde Liu, Zizhen Zhang, Zhenghang Wang, Jian Li, Lin Shen","doi":"10.1002/iub.2855","DOIUrl":"10.1002/iub.2855","url":null,"abstract":"<p>Colorectal cancer (CRC), a pervasive and lethal malignancy of gastrointestinal cancer, imposes significant challenges due to the occurrence of distant metastasis in advanced stages. Understanding the intricate regulatory mechanisms driving CRC distant metastasis is of paramount importance. CRISPR-Cas9 screening has emerged as a powerful tool for investigating tumor initiation and progression. However, its application in studying CRC distant metastasis remains largely unexplored. To establish a model that faithfully recapitulates CRC liver metastasis in patients, we developed an in vivo genome-wide CRISPR-Cas9 screening approach using a spleen-injected liver metastasis mouse model. Through comprehensive screening of a whole-genome sgRNA library, we identified ANKRD42 as a pivotal regulatory gene facilitating CRC liver metastasis. Analysis of the TCGA database and our clinical cohorts unveiled heightened ANKRD42 expression in metastases. At the cellular level, the attenuation of ANKRD42 impaired the migration and invasion processes of tumor cells. In vivo experiments further validated these observations, highlighting the diminished liver metastatic capacity of tumor cells upon ANKRD42 knockdown. To unravel the specific mechanisms by which ANKRD42 regulates CRC distant metastasis, we leveraged patient-derived organoid (PDO) models. Depleting ANKRD42 in PDOs sourced from liver metastases precipitated the downregulation of pivotal genes linked to epithelial-mesenchymal transition (EMT), including CDH2 and SNAI2, thereby effectively suppressing tumor metastasis. This study not only establishes a conceptual framework but also identifies potential therapeutic avenues for advanced-stage distant metastasis in CRC patients.</p>","PeriodicalId":14728,"journal":{"name":"IUBMB Life","volume":"76 10","pages":"803-819"},"PeriodicalIF":3.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141185738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jie Tang, Song Li, Zixiao Zhou, Yongqiang Wang, DeSheng Ni, Shaobo Zhou
MicroRNAs (miRNAs) are small non-coding RNAs that can actively participate in post-transcriptional regulation of genes. A number of studies have shown that miRNAs can serve as important regulators of cancer cell growth, differentiation, and apoptosis. They can also act as markers for the diagnosis and prognosis of certain cancers. To explore the potential prognosis-related miRNAs in liver cancer patients, to provide theoretical basis for early diagnosis and prognosis of liver cancer, as well as to provide a new direction for the targeted therapy of liver cancer. The miRNA expression profiles of liver cancer patients in the the Cancer Genome Atlas database were comprehensively analyzed and various prognostic-related miRNAs of liver cancer were screened out. The data was further subjected to survival analysis, prognostic analysis, gene ontology and kyoto encyclopedia of genes and genomes enrichment analysis, microenvironment analysis, and drug sensitivity analysis by R Language version 4.2.0. Finally, the screened miRNAs were further validated by different experiments. Thus, miNRAs involved in liver cancer diagnosis and prognosis were identified. MiRNA-3680-3p was found to be significantly different in 10 different cancers, including liver cancer, and was significantly associated with the microenvironment, survival, and prognosis of liver cancer patients. In addition, drug sensitivity analysis revealed that miRNA-3680-3p can provide a useful reference for drug selection in targeted therapy for liver cancer. MiRNA-3680-3p can serve as a biomarker for the diagnosis and prognosis of liver cancer patients and down-regulation of miRNA-3680-3p could significantly inhibit both the proliferation and migration of liver cancer cells.
{"title":"MiR-3680-3p is a novel biomarker for the diagnosis and prognosis of liver cancer and is involved in regulating the progression of liver cancer","authors":"Jie Tang, Song Li, Zixiao Zhou, Yongqiang Wang, DeSheng Ni, Shaobo Zhou","doi":"10.1002/iub.2856","DOIUrl":"10.1002/iub.2856","url":null,"abstract":"<p>MicroRNAs (miRNAs) are small non-coding RNAs that can actively participate in post-transcriptional regulation of genes. A number of studies have shown that miRNAs can serve as important regulators of cancer cell growth, differentiation, and apoptosis. They can also act as markers for the diagnosis and prognosis of certain cancers. To explore the potential prognosis-related miRNAs in liver cancer patients, to provide theoretical basis for early diagnosis and prognosis of liver cancer, as well as to provide a new direction for the targeted therapy of liver cancer. The miRNA expression profiles of liver cancer patients in the the Cancer Genome Atlas database were comprehensively analyzed and various prognostic-related miRNAs of liver cancer were screened out. The data was further subjected to survival analysis, prognostic analysis, gene ontology and kyoto encyclopedia of genes and genomes enrichment analysis, microenvironment analysis, and drug sensitivity analysis by R Language version 4.2.0. Finally, the screened miRNAs were further validated by different experiments. Thus, miNRAs involved in liver cancer diagnosis and prognosis were identified. MiRNA-3680-3p was found to be significantly different in 10 different cancers, including liver cancer, and was significantly associated with the microenvironment, survival, and prognosis of liver cancer patients. In addition, drug sensitivity analysis revealed that miRNA-3680-3p can provide a useful reference for drug selection in targeted therapy for liver cancer. MiRNA-3680-3p can serve as a biomarker for the diagnosis and prognosis of liver cancer patients and down-regulation of miRNA-3680-3p could significantly inhibit both the proliferation and migration of liver cancer cells.</p>","PeriodicalId":14728,"journal":{"name":"IUBMB Life","volume":"76 10","pages":"820-831"},"PeriodicalIF":3.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141185767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sharmin Q. Bonny, Xiaotian Zhou, Mohammad F. Khan, Mohammad M. Rahman, Yue Xin, Naveen Vankadari, Alexandra Tikhomirova, Jihane Homman-Ludiye, Anna Roujeinikova
Helicobacter pylori encodes homologues of PilM, PilN and PilO from bacteria with Type IV pili, where these proteins form a pilus alignment complex. Inactivation of pilO changes H. pylori motility in semi-solid media, suggesting a link to the chemosensory pathways or flagellar motor. Here, we showed that mutation of the pilO or pilN gene in H. pylori strain SS1 reduced the mean linear swimming speed in liquid media, implicating PilO and PilN in the function, or regulation of, the flagellar motor. We also demonstrated that the soluble variants of H. pylori PilN and PilO share common biochemical properties with their Type IV pili counterparts which suggests their adapted function in the bacterial flagellar motor may be similar to that in the Type IV pili.
幽门螺杆菌编码来自具有 IV 型纤毛的细菌的 PilM、PilN 和 PilO 的同源物,这些蛋白在这些细菌中形成纤毛排列复合物。PilO 失活会改变幽门螺杆菌在半固体培养基中的运动能力,这表明它与化学感觉途径或鞭毛运动有关。在这里,我们发现幽门螺杆菌 SS1 株的 pilO 或 pilN 基因突变会降低其在液体培养基中的平均线性游动速度,这表明 PilO 和 PilN 与鞭毛运动的功能或调控有关。我们还证明幽门螺杆菌 PilN 和 PilO 的可溶性变体与 IV 型纤毛虫具有共同的生化特性,这表明它们在细菌鞭毛马达中的适应功能可能与 IV 型纤毛虫类似。
{"title":"Functional and biochemical characterisation of remote homologues of type IV pili proteins PilN and PilO in Helicobacter pylori","authors":"Sharmin Q. Bonny, Xiaotian Zhou, Mohammad F. Khan, Mohammad M. Rahman, Yue Xin, Naveen Vankadari, Alexandra Tikhomirova, Jihane Homman-Ludiye, Anna Roujeinikova","doi":"10.1002/iub.2828","DOIUrl":"10.1002/iub.2828","url":null,"abstract":"<p><i>Helicobacter pylori</i> encodes homologues of PilM, PilN and PilO from bacteria with Type IV pili, where these proteins form a pilus alignment complex. Inactivation of <i>pilO</i> changes <i>H. pylori</i> motility in semi-solid media, suggesting a link to the chemosensory pathways or flagellar motor. Here, we showed that mutation of the <i>pilO</i> or <i>pilN</i> gene in <i>H. pylori</i> strain SS1 reduced the mean linear swimming speed in liquid media, implicating PilO and PilN in the function, or regulation of, the flagellar motor. We also demonstrated that the soluble variants of <i>H. pylori</i> PilN and PilO share common biochemical properties with their Type IV pili counterparts which suggests their adapted function in the bacterial flagellar motor may be similar to that in the Type IV pili.</p>","PeriodicalId":14728,"journal":{"name":"IUBMB Life","volume":"76 10","pages":"780-787"},"PeriodicalIF":3.7,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/iub.2828","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140922223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This research delves into the exploration of the potential of tocopherol-based nanoemulsion as a therapeutic agent for cardiovascular diseases (CVD) through an in-depth molecular docking analysis. The study focuses on elucidating the molecular interactions between tocopherol and seven key proteins (1O8a, 4YAY, 4DLI, 1HW9, 2YCW, 1BO9 and 1CX2) that play pivotal roles in CVD development. Through rigorous in silico docking investigations, assessment was conducted on the binding affinities, inhibitory potentials and interaction patterns of tocopherol with these target proteins. The findings revealed significant interactions, particularly with 4YAY, displaying a robust binding energy of −6.39 kcal/mol and a promising Ki value of 20.84 μM. Notable interactions were also observed with 1HW9, 4DLI, 2YCW and 1CX2, further indicating tocopherol's potential therapeutic relevance. In contrast, no interaction was observed with 1BO9. Furthermore, an examination of the common residues of 4YAY bound to tocopherol was carried out, highlighting key intermolecular hydrophobic bonds that contribute to the interaction's stability. Tocopherol complies with pharmacokinetics (Lipinski's and Veber's) rules for oral bioavailability and proves safety non-toxic and non-carcinogenic. Thus, deep learning-based protein language models ESM1-b and ProtT5 were leveraged for input encodings to predict interaction sites between the 4YAY protein and tocopherol. Hence, highly accurate predictions of these critical protein–ligand interactions were achieved. This study not only advances the understanding of these interactions but also highlights deep learning's immense potential in molecular biology and drug discovery. It underscores tocopherol's promise as a cardiovascular disease management candidate, shedding light on its molecular interactions and compatibility with biomolecule-like characteristics.
{"title":"Synergistic integration of deep learning with protein docking in cardiovascular disease treatment strategies","authors":"Sana Yakoubi","doi":"10.1002/iub.2819","DOIUrl":"10.1002/iub.2819","url":null,"abstract":"<p>This research delves into the exploration of the potential of tocopherol-based nanoemulsion as a therapeutic agent for cardiovascular diseases (CVD) through an in-depth molecular docking analysis. The study focuses on elucidating the molecular interactions between tocopherol and seven key proteins (1O8a, 4YAY, 4DLI, 1HW9, 2YCW, 1BO9 and 1CX2) that play pivotal roles in CVD development. Through rigorous in silico docking investigations, assessment was conducted on the binding affinities, inhibitory potentials and interaction patterns of tocopherol with these target proteins. The findings revealed significant interactions, particularly with 4YAY, displaying a robust binding energy of −6.39 kcal/mol and a promising Ki value of 20.84 μM. Notable interactions were also observed with 1HW9, 4DLI, 2YCW and 1CX2, further indicating tocopherol's potential therapeutic relevance. In contrast, no interaction was observed with 1BO9. Furthermore, an examination of the common residues of 4YAY bound to tocopherol was carried out, highlighting key intermolecular hydrophobic bonds that contribute to the interaction's stability. Tocopherol complies with pharmacokinetics (Lipinski's and Veber's) rules for oral bioavailability and proves safety non-toxic and non-carcinogenic. Thus, deep learning-based protein language models ESM1-b and ProtT5 were leveraged for input encodings to predict interaction sites between the 4YAY protein and tocopherol. Hence, highly accurate predictions of these critical protein–ligand interactions were achieved. This study not only advances the understanding of these interactions but also highlights deep learning's immense potential in molecular biology and drug discovery. It underscores tocopherol's promise as a cardiovascular disease management candidate, shedding light on its molecular interactions and compatibility with biomolecule-like characteristics.</p>","PeriodicalId":14728,"journal":{"name":"IUBMB Life","volume":"76 9","pages":"666-696"},"PeriodicalIF":3.7,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140945084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tarana Siddika, Richard Shao, Ilka U. Heinemann, Patrick O'Donoghue
Protein kinase B (AKT1) is a serine/threonine kinase that regulates fundamental cellular processes, including cell survival, proliferation, and metabolism. AKT1 activity is controlled by two regulatory phosphorylation sites (Thr308, Ser473) that stimulate a downstream signaling cascade through phosphorylation of many target proteins. At either or both regulatory sites, hyperphosphorylation is associated with poor survival outcomes in many human cancers. Our previous biochemical and chemoproteomic studies showed that the phosphorylated forms of AKT1 have differential selectivity toward peptide substrates. Here, we investigated AKT1-dependent activity in human cells, using a cell-penetrating peptide (transactivator of transcription, TAT) to deliver inactive AKT1 or active phospho-variants to cells. We used enzyme engineering and genetic code expansion relying on a phosphoseryl-transfer RNA (tRNA) synthetase (SepRS) and tRNASep pair to produce TAT-tagged AKT1 with programmed phosphorylation at one or both key regulatory sites. We found that all TAT-tagged AKT1 variants were efficiently delivered into human embryonic kidney (HEK 293T) cells and that only the phosphorylated AKT1 (pAKT1) variants stimulated downstream signaling. All TAT-pAKT1 variants induced glycogen synthase kinase (GSK)-3α phosphorylation, as well as phosphorylation of ribosomal protein S6 at Ser240/244, demonstrating stimulation of downstream AKT1 signaling. Fascinatingly, only the AKT1 variants phosphorylated at S473 (TAT-pAKT1S473 or TAT-pAKT1T308,S473) were able to increase phospho-GSK-3β levels. Although each TAT-pAKT1 variant significantly stimulated cell proliferation, cells transduced with TAT-pAKT1T308 grew significantly faster than with the other pAKT1 variants. The data demonstrate differential activity of the AKT1 phospho-forms in modulating downstream signaling and proliferation in human cells.
{"title":"Delivery of AKT1 phospho-forms to human cells reveals differential substrate selectivity","authors":"Tarana Siddika, Richard Shao, Ilka U. Heinemann, Patrick O'Donoghue","doi":"10.1002/iub.2826","DOIUrl":"10.1002/iub.2826","url":null,"abstract":"<p>Protein kinase B (AKT1) is a serine/threonine kinase that regulates fundamental cellular processes, including cell survival, proliferation, and metabolism. AKT1 activity is controlled by two regulatory phosphorylation sites (Thr308, Ser473) that stimulate a downstream signaling cascade through phosphorylation of many target proteins. At either or both regulatory sites, hyperphosphorylation is associated with poor survival outcomes in many human cancers. Our previous biochemical and chemoproteomic studies showed that the phosphorylated forms of AKT1 have differential selectivity toward peptide substrates. Here, we investigated AKT1-dependent activity in human cells, using a cell-penetrating peptide (transactivator of transcription, TAT) to deliver inactive AKT1 or active phospho-variants to cells. We used enzyme engineering and genetic code expansion relying on a phosphoseryl-transfer RNA (tRNA) synthetase (SepRS) and tRNA<sup>Sep</sup> pair to produce TAT-tagged AKT1 with programmed phosphorylation at one or both key regulatory sites. We found that all TAT-tagged AKT1 variants were efficiently delivered into human embryonic kidney (HEK 293T) cells and that only the phosphorylated AKT1 (pAKT1) variants stimulated downstream signaling. All TAT-pAKT1 variants induced glycogen synthase kinase (GSK)-3α phosphorylation, as well as phosphorylation of ribosomal protein S6 at Ser240/244, demonstrating stimulation of downstream AKT1 signaling. Fascinatingly, only the AKT1 variants phosphorylated at S473 (TAT-pAKT1<sup>S473</sup> or TAT-pAKT1<sup>T308,S473</sup>) were able to increase phospho-GSK-3β levels. Although each TAT-pAKT1 variant significantly stimulated cell proliferation, cells transduced with TAT-pAKT1<sup>T308</sup> grew significantly faster than with the other pAKT1 variants. The data demonstrate differential activity of the AKT1 phospho-forms in modulating downstream signaling and proliferation in human cells.</p>","PeriodicalId":14728,"journal":{"name":"IUBMB Life","volume":"76 9","pages":"632-646"},"PeriodicalIF":3.7,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/iub.2826","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140911808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The cholesterogenic phenotype, encompassing de novo biosynthesis and accumulation of cholesterol, aids cancer cell proliferation and survival. Previously, the role of cholesteryl ester (CE) transfer protein (CETP) has been implicated in breast cancer aggressiveness, but the molecular basis of this observation is not clearly understood, which this study aims to elucidate. CETP knock-down resulted in a >50% decrease in cell proliferation in both ‘estrogen receptor-positive’ (ER+; Michigan Cancer Foundation-7 (MCF7) breast cancer cells) and ‘triple-negative’ breast cancer (TNBC; MDA-MB-231) cell lines. Intriguingly, the abrogation of CETP together with the combination treatment of tamoxifen (5 μM) and acetyl plumbagin (a cholesterol-depleting agent) (5 μM) resulted in twofold to threefold increase in apoptosis in both cell lines. CETP knockdown also showed decreased intracellular CE levels, lipid raft and lipid droplets in both cell lines. In addition, RT2 Profiler PCR array (Qiagen, Germany)-based gene expression analysis revealed an overall downregulation of genes associated in cholesterol biosynthesis, lipid signalling and drug resistance in MCF7 cells post-CETP knock-down. On the contrary, resistance in MDA-MB-231 cells was reduced through increased expression in cholesterol efflux genes and the expression of targetable surface receptors by endocrine therapy. The pilot xenograft mice study substantiated CETP's role as a cancer survival gene as knock-down of CETP stunted the growth of TNBC tumour by 86%. The principal findings of this study potentiate CETP as a driver in breast cancer growth and aggressiveness and thus targeting CETP could limit drug resistance via the reduction in cholesterol accumulation in breast cancer cells, thereby reducing cancer aggressiveness.
{"title":"Cholesteryl ester transfer protein knock-down in conjunction with a cholesterol-depleting agent decreases tamoxifen resistance in breast cancer cells","authors":"Liang Gu, Ruvesh Pascal Pillay, Ruth Aronson, Mandeep Kaur","doi":"10.1002/iub.2823","DOIUrl":"10.1002/iub.2823","url":null,"abstract":"<p>The cholesterogenic phenotype, encompassing de novo biosynthesis and accumulation of cholesterol, aids cancer cell proliferation and survival. Previously, the role of cholesteryl ester (CE) transfer protein (CETP) has been implicated in breast cancer aggressiveness, but the molecular basis of this observation is not clearly understood, which this study aims to elucidate. <i>CETP</i> knock-down resulted in a >50% decrease in cell proliferation in both ‘estrogen receptor-positive’ (ER+; Michigan Cancer Foundation-7 (MCF7) breast cancer cells) and ‘triple-negative’ breast cancer (TNBC; MDA-MB-231) cell lines. Intriguingly, the abrogation of <i>CETP</i> together with the combination treatment of tamoxifen (5 μM) and acetyl plumbagin (a cholesterol-depleting agent) (5 μM) resulted in twofold to threefold increase in apoptosis in both cell lines. <i>CETP</i> knockdown also showed decreased intracellular CE levels, lipid raft and lipid droplets in both cell lines. In addition, RT<sup>2</sup> Profiler PCR array (Qiagen, Germany)-based gene expression analysis revealed an overall downregulation of genes associated in cholesterol biosynthesis, lipid signalling and drug resistance in MCF7 cells post-<i>CETP</i> knock-down. On the contrary, resistance in MDA-MB-231 cells was reduced through increased expression in cholesterol efflux genes and the expression of targetable surface receptors by endocrine therapy. The pilot xenograft mice study substantiated <i>CETP</i>'s role as a cancer survival gene as knock-down of <i>CETP</i> stunted the growth of TNBC tumour by 86%. The principal findings of this study potentiate CETP as a driver in breast cancer growth and aggressiveness and thus targeting CETP could limit drug resistance via the reduction in cholesterol accumulation in breast cancer cells, thereby reducing cancer aggressiveness.</p>","PeriodicalId":14728,"journal":{"name":"IUBMB Life","volume":"76 9","pages":"712-730"},"PeriodicalIF":3.7,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/iub.2823","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140908593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}