首页 > 最新文献

JACC. Cardiovascular imaging最新文献

英文 中文
Photon-Counting Computed Tomography in Cardiac Imaging 心脏成像中的光子计数计算机断层扫描。
IF 15.2 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2026-01-01 DOI: 10.1016/j.jcmg.2025.07.022
Arthur Shiyovich MD , Avinainder Singh MBBS , Camila V. Blair MD , Rhanderson Cardoso MD , Daniel Huck MD, MPH , Gary Peng MD, PhD , Leslee J. Shaw PhD , Jonathon A. Leipsic MD , Christoph Gräni MD , Charalambos Antoniades MD, PhD , Pál Maurovich-Horvat MD, PhD, MPH , Eric E. Williamson MD , Filippo Cademartiri MD, PhD , Stephan Achenbach MD , Ron Blankstein MD
Coronary computed tomography angiography plays a pivotal role in the diagnosis, risk stratification, and treatment of patients with known or suspected coronary artery disease. However, conventional computed tomography (CT) technologies are limited by spatial resolution, artifact susceptibility, and radiation exposure. Photon-counting computed tomography (PCCT) introduces substantial technological improvements over conventional CT. This includes improved spatial and contrast resolution, energy discrimination, and reduction of various artifacts. As a result, PCCT enables superior coronary lumen and plaque evaluation, even in complex cases with severe calcification or smaller coronary stents. Beyond the coronary arteries, PCCT offers improved visualization of cardiac anatomy and myocardial tissue characterization with the potential to reduce downstream testing, improve diagnosis and treatment, and ultimately improve clinical outcomes. PCCT is poised to become the dominant technology for cardiovascular CT; however, challenges such as high costs, increased data demands, and a need for more validation, standardized image acquisition, and post-processing protocols remain. This review explores the technical principles of PCCT, its advantages over conventional CT, and its current and potential future applications in cardiac imaging, highlighting opportunities for future research.
冠状动脉CT血管造影在已知或疑似冠状动脉疾病患者的诊断、危险分层和治疗中起着关键作用。然而,传统的CT技术受到空间分辨率、伪影敏感性和辐射暴露的限制。光子计数计算机断层扫描(PCCT)引入了传统CT的实质性技术改进。这包括提高空间和对比度分辨率,能量辨别和减少各种伪影。因此,即使在严重钙化或冠脉支架较小的复杂病例中,PCCT也能更好地评估冠状动脉管腔和斑块。除了冠状动脉外,PCCT还提供了更好的心脏解剖和心肌组织特征的可视化,有可能减少下游检测,改善诊断和治疗,并最终改善临床结果。PCCT有望成为心血管CT的主导技术;然而,诸如高成本、增加的数据需求以及对更多验证、标准化图像采集和后处理协议的需求等挑战仍然存在。本文探讨了PCCT的技术原理,它相对于传统CT的优势,以及它在心脏成像中的当前和潜在的未来应用,强调了未来研究的机会。
{"title":"Photon-Counting Computed Tomography in Cardiac Imaging","authors":"Arthur Shiyovich MD ,&nbsp;Avinainder Singh MBBS ,&nbsp;Camila V. Blair MD ,&nbsp;Rhanderson Cardoso MD ,&nbsp;Daniel Huck MD, MPH ,&nbsp;Gary Peng MD, PhD ,&nbsp;Leslee J. Shaw PhD ,&nbsp;Jonathon A. Leipsic MD ,&nbsp;Christoph Gräni MD ,&nbsp;Charalambos Antoniades MD, PhD ,&nbsp;Pál Maurovich-Horvat MD, PhD, MPH ,&nbsp;Eric E. Williamson MD ,&nbsp;Filippo Cademartiri MD, PhD ,&nbsp;Stephan Achenbach MD ,&nbsp;Ron Blankstein MD","doi":"10.1016/j.jcmg.2025.07.022","DOIUrl":"10.1016/j.jcmg.2025.07.022","url":null,"abstract":"<div><div>Coronary computed tomography angiography plays a pivotal role in the diagnosis, risk stratification, and treatment of patients with known or suspected coronary artery disease. However, conventional computed tomography (CT) technologies are limited by spatial resolution, artifact susceptibility, and radiation exposure. Photon-counting computed tomography (PCCT) introduces substantial technological improvements over conventional CT. This includes improved spatial and contrast resolution, energy discrimination, and reduction of various artifacts. As a result, PCCT enables superior coronary lumen and plaque evaluation, even in complex cases with severe calcification or smaller coronary stents. Beyond the coronary arteries, PCCT offers improved visualization of cardiac anatomy and myocardial tissue characterization with the potential to reduce downstream testing, improve diagnosis and treatment, and ultimately improve clinical outcomes. PCCT is poised to become the dominant technology for cardiovascular CT; however, challenges such as high costs, increased data demands, and a need for more validation, standardized image acquisition, and post-processing protocols remain. This review explores the technical principles of PCCT, its advantages over conventional CT, and its current and potential future applications in cardiac imaging, highlighting opportunities for future research.</div></div>","PeriodicalId":14767,"journal":{"name":"JACC. Cardiovascular imaging","volume":"19 1","pages":"Pages 94-117"},"PeriodicalIF":15.2,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145246912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial Board/Officers 编辑委员会/人员
IF 15.2 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2026-01-01 DOI: 10.1016/S1936-878X(25)00658-8
{"title":"Editorial Board/Officers","authors":"","doi":"10.1016/S1936-878X(25)00658-8","DOIUrl":"10.1016/S1936-878X(25)00658-8","url":null,"abstract":"","PeriodicalId":14767,"journal":{"name":"JACC. Cardiovascular imaging","volume":"19 1","pages":"Pages i-iv"},"PeriodicalIF":15.2,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145898062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Left Atrial Reservoir Strain Predicts Atrial Fibrillation in Hypertrophic Cardiomyopathy 左房储层应变预测肥厚性心肌病的心房颤动:来自NHLBI HCM登记的见解。
IF 15.2 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2026-01-01 DOI: 10.1016/j.jcmg.2025.07.008
Niklas Beyhoff MD, Owen P. Agnel MSc, Maximilian Fenski MD, Christina Botrous MBBS, MSc, Yi Jie Gifford Tan BA, BM BCh, Robert W. Smillie BA, BM BCh, Zakariye Ashkir MD, Lucy E.M. Finnigan PhD, Sarahfaye F. Dolman MPH, Paul Kolm PhD, William S. Weintraub MD, Raymond Y. Kwong MD, MPH, Michael Jerosch-Herold PhD, Milind Y. Desai MD, Carolyn Y. Ho MD, Patrice Desvigne-Nickens MD, John P. DiMarco MD, Barbara Casadei MD, DPhil, Hugh C. Watkins MD, PhD, Christopher M. Kramer MD, Betty Raman MBBS, DPhil
{"title":"Left Atrial Reservoir Strain Predicts Atrial Fibrillation in Hypertrophic Cardiomyopathy","authors":"Niklas Beyhoff MD,&nbsp;Owen P. Agnel MSc,&nbsp;Maximilian Fenski MD,&nbsp;Christina Botrous MBBS, MSc,&nbsp;Yi Jie Gifford Tan BA, BM BCh,&nbsp;Robert W. Smillie BA, BM BCh,&nbsp;Zakariye Ashkir MD,&nbsp;Lucy E.M. Finnigan PhD,&nbsp;Sarahfaye F. Dolman MPH,&nbsp;Paul Kolm PhD,&nbsp;William S. Weintraub MD,&nbsp;Raymond Y. Kwong MD, MPH,&nbsp;Michael Jerosch-Herold PhD,&nbsp;Milind Y. Desai MD,&nbsp;Carolyn Y. Ho MD,&nbsp;Patrice Desvigne-Nickens MD,&nbsp;John P. DiMarco MD,&nbsp;Barbara Casadei MD, DPhil,&nbsp;Hugh C. Watkins MD, PhD,&nbsp;Christopher M. Kramer MD,&nbsp;Betty Raman MBBS, DPhil","doi":"10.1016/j.jcmg.2025.07.008","DOIUrl":"10.1016/j.jcmg.2025.07.008","url":null,"abstract":"","PeriodicalId":14767,"journal":{"name":"JACC. Cardiovascular imaging","volume":"19 1","pages":"Pages 133-135"},"PeriodicalIF":15.2,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144955006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Peripulmonary Vein Adipose Tissue Attenuation as a Novel Marker of Atrial Fibrillation Risk 肺周静脉脂肪组织衰减作为房颤风险的新标志。
IF 15.2 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2026-01-01 DOI: 10.1016/j.jcmg.2025.07.020
Michael W. Lim MBBS, Rahul G. Muthalaly MBBS, MPH, Geoffrey R. Wong MBBS, PhD, Ahmed M. Al-Kaisey MBChB, PhD, Damini Dey PhD, Thomas H. Marwick MBBS, MPH, PhD, Peter M. Kistler MBBS, PhD, Jonathan M. Kalman MBBS, PhD, Nitesh Nerlekar MBBS, MPH, PhD
{"title":"Peripulmonary Vein Adipose Tissue Attenuation as a Novel Marker of Atrial Fibrillation Risk","authors":"Michael W. Lim MBBS,&nbsp;Rahul G. Muthalaly MBBS, MPH,&nbsp;Geoffrey R. Wong MBBS, PhD,&nbsp;Ahmed M. Al-Kaisey MBChB, PhD,&nbsp;Damini Dey PhD,&nbsp;Thomas H. Marwick MBBS, MPH, PhD,&nbsp;Peter M. Kistler MBBS, PhD,&nbsp;Jonathan M. Kalman MBBS, PhD,&nbsp;Nitesh Nerlekar MBBS, MPH, PhD","doi":"10.1016/j.jcmg.2025.07.020","DOIUrl":"10.1016/j.jcmg.2025.07.020","url":null,"abstract":"","PeriodicalId":14767,"journal":{"name":"JACC. Cardiovascular imaging","volume":"19 1","pages":"Pages 130-132"},"PeriodicalIF":15.2,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145017868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clinical Integration of AI-Enabled Plaque Quantification to Improve Cardiovascular Risk Stratification 临床整合人工智能斑块量化改善心血管风险分层。
IF 15.2 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2026-01-01 DOI: 10.1016/j.jcmg.2025.09.001
Leslee J. Shaw PhD , Ron Blankstein MD , Jonathon A. Leipsic MD , Partho P. Sengupta MD , Koen Nieman MD , Jeroen J. Bax MD, PhD , William A. Zoghbi MD , Y. Chandrashekhar MD
{"title":"Clinical Integration of AI-Enabled Plaque Quantification to Improve Cardiovascular Risk Stratification","authors":"Leslee J. Shaw PhD ,&nbsp;Ron Blankstein MD ,&nbsp;Jonathon A. Leipsic MD ,&nbsp;Partho P. Sengupta MD ,&nbsp;Koen Nieman MD ,&nbsp;Jeroen J. Bax MD, PhD ,&nbsp;William A. Zoghbi MD ,&nbsp;Y. Chandrashekhar MD","doi":"10.1016/j.jcmg.2025.09.001","DOIUrl":"10.1016/j.jcmg.2025.09.001","url":null,"abstract":"","PeriodicalId":14767,"journal":{"name":"JACC. Cardiovascular imaging","volume":"19 1","pages":"Pages 61-63"},"PeriodicalIF":15.2,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145032152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Deep Learning Model to Identify Mitral Valve Prolapse From the Echocardiogram 从超声心动图识别二尖瓣脱垂的深度学习模型。
IF 15.2 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2026-01-01 DOI: 10.1016/j.jcmg.2025.08.011
Mostafa A. Al-Alusi MD, MS , Emily S. Lau MD, MPH , Aeron M. Small MD, MTR , Christopher Reeder PhD , Tal Shnitzer PhD , Carl T. Andrews MS , Shinwan Kany MD , Joel T. Rämö MD , Julian S. Haimovich MD , Shaan Khurshid MD, MPH , Danita Y. Sanborn MD, MMSc , Michael H. Picard MD , Jennifer E. Ho MD , Mahnaz Maddah PhD , Patrick T. Ellinor MD, PhD

Background

Mitral valve prolapse (MVP) has a prevalence of 2% to 3% and increases risk of heart failure and sudden death, but diagnosis by transthoracic echocardiography requires time and expertise.

Objectives

This study aims to develop a deep learning model DROID-MVP (Dimensional Reconstruction of Imaging Data–Mitral Valve Prolapse) to classify MVP from digital echocardiogram videos.

Methods

DROID-MVP was trained and validated using 1,043,893 echocardiogram videos (48,829 studies) from 16,902 cardiology patients at MGH (Massachusetts General Hospital), and externally validated in 8,888 MGH primary care patients and 257 primary care patients at BWH (Brigham and Women’s Hospital). The authors tested associations among DROID-MVP predictions (range: 0-1), mitral regurgitation (MR) severity, and mitral valve repair or replacement (MVR).

Results

Of 16,902 patients (6,391 [38%] women; age 61 ± 16 years) in the derivation sample, 783 (4.6%) had MVP. DROID-MVP accurately identified MVP across the MGH cardiology internal validation set (area under the receiver-operating characteristic curve [AUROC]: 0.947 [95% CI: 0.910-0.984]; average precision [AP]: 0.682 [95% CI: 0.565-0.784]; prevalence: 0.036), MGH primary care external validation set (AUROC: 0.964 [95% CI: 0.951-0.977]; AP: 0.651 [95% CI: 0.578-0.716]; prevalence: 0.022), and BWH primary care external validation set (AUROC: 0.968 [95% CI: 0.946-0.989]; AP: 0.774 [95% CI: 0.666-0.797]; prevalence: 0.113). A high (>0.67) vs low (<0.33) DROID-MVP score was associated with moderate or severe MR (adjusted OR: 2.0 [95% CI: 1.1-3.8]; P = 0.030) and future MVR (adjusted HR: 3.7 [95% CI: 1.5-8.9]; P = 0.004).

Conclusions

A deep learning model identifies MVP from echocardiogram videos, and model predictions are associated with clinical endpoints including MR and future MVR. Deep learning can automate MVP diagnosis and potentially generate digital markers of clinically significant MVP.
背景:二尖瓣脱垂(MVP)的患病率为2%至3%,并增加心力衰竭和猝死的风险,但经胸超声心动图诊断需要时间和专业知识。目的建立深度学习模型DROID-MVP (Dimensional Reconstruction of Imaging data -二尖瓣脱垂),对数字超声心动图视频中的二尖瓣脱垂进行分类。方法sdroid - mvp通过来自麻省总医院(MGH) 16902名心脏病患者的1,043,893个超声心动图视频(48,829项研究)进行培训和验证,并在8888名MGH初级保健患者和257名BWH (Brigham and Women Hospital)初级保健患者中进行外部验证。作者测试了DROID-MVP预测(范围:0-1)、二尖瓣反流(MR)严重程度和二尖瓣修复或置换(MVR)之间的关系。结果在衍生样本的16902例患者中(6391例(38%)女性,年龄61±16岁),783例(4.6%)有MVP。DROID-MVP准确识别了MGH心内科内部验证集(患者工作特征曲线下面积[AUROC]: 0.947 [95% CI: 0.910-0.984],平均精度[AP]: 0.682 [95% CI: 0.565-0.784],患病率:0.036),MGH初级保健外部验证集(AUROC: 0.964 [95% CI: 0.951-0.977], AP: 0.651 [95% CI: 0.578-0.716],患病率:0.022),BWH初级保健外部验证集(AUROC: 0.968 [95% CI: 0.946-0.989], AP: 0.774 [95% CI: 0.666-0.797];流行:0.113)。高(>0.67)vs低(<0.33)DROID-MVP评分与中度或重度MR(校正or: 2.0 [95% CI: 1.1-3.8]; P = 0.030)和未来MVR(校正HR: 3.7 [95% CI: 1.5-8.9]; P = 0.004)相关。结论深度学习模型从超声心动图视频中识别MVP,模型预测与临床终点相关,包括MR和未来MVR。深度学习可以自动诊断MVP,并可能生成具有临床意义的MVP的数字标记。
{"title":"A Deep Learning Model to Identify Mitral Valve Prolapse From the Echocardiogram","authors":"Mostafa A. Al-Alusi MD, MS ,&nbsp;Emily S. Lau MD, MPH ,&nbsp;Aeron M. Small MD, MTR ,&nbsp;Christopher Reeder PhD ,&nbsp;Tal Shnitzer PhD ,&nbsp;Carl T. Andrews MS ,&nbsp;Shinwan Kany MD ,&nbsp;Joel T. Rämö MD ,&nbsp;Julian S. Haimovich MD ,&nbsp;Shaan Khurshid MD, MPH ,&nbsp;Danita Y. Sanborn MD, MMSc ,&nbsp;Michael H. Picard MD ,&nbsp;Jennifer E. Ho MD ,&nbsp;Mahnaz Maddah PhD ,&nbsp;Patrick T. Ellinor MD, PhD","doi":"10.1016/j.jcmg.2025.08.011","DOIUrl":"10.1016/j.jcmg.2025.08.011","url":null,"abstract":"<div><h3>Background</h3><div>Mitral valve prolapse (MVP) has a prevalence of 2% to 3% and increases risk of heart failure and sudden death, but diagnosis by transthoracic echocardiography requires time and expertise.</div></div><div><h3>Objectives</h3><div>This study aims to develop a deep learning model DROID-MVP (Dimensional Reconstruction of Imaging Data–Mitral Valve Prolapse) to classify MVP from digital echocardiogram videos.</div></div><div><h3>Methods</h3><div>DROID-MVP was trained and validated using 1,043,893 echocardiogram videos (48,829 studies) from 16,902 cardiology patients at MGH (Massachusetts General Hospital), and externally validated in 8,888 MGH primary care patients and 257 primary care patients at BWH (Brigham and Women’s Hospital). The authors tested associations among DROID-MVP predictions (range: 0-1), mitral regurgitation (MR) severity, and mitral valve repair or replacement (MVR).</div></div><div><h3>Results</h3><div>Of 16,902 patients (6,391 [38%] women; age 61 ± 16 years) in the derivation sample, 783 (4.6%) had MVP. DROID-MVP accurately identified MVP across the MGH cardiology internal validation set (area under the receiver-operating characteristic curve [AUROC]: 0.947 [95% CI: 0.910-0.984]; average precision [AP]: 0.682 [95% CI: 0.565-0.784]; prevalence: 0.036), MGH primary care external validation set (AUROC: 0.964 [95% CI: 0.951-0.977]; AP: 0.651 [95% CI: 0.578-0.716]; prevalence: 0.022), and BWH primary care external validation set (AUROC: 0.968 [95% CI: 0.946-0.989]; AP: 0.774 [95% CI: 0.666-0.797]; prevalence: 0.113). A high (&gt;0.67) vs low (&lt;0.33) DROID-MVP score was associated with moderate or severe MR (adjusted OR: 2.0 [95% CI: 1.1-3.8]; <em>P =</em> 0.030) and future MVR (adjusted HR: 3.7 [95% CI: 1.5-8.9]; <em>P =</em> 0.004).</div></div><div><h3>Conclusions</h3><div>A deep learning model identifies MVP from echocardiogram videos, and model predictions are associated with clinical endpoints including MR and future MVR. Deep learning can automate MVP diagnosis and potentially generate digital markers of clinically significant MVP.</div></div>","PeriodicalId":14767,"journal":{"name":"JACC. Cardiovascular imaging","volume":"19 1","pages":"Pages 18-29"},"PeriodicalIF":15.2,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145194449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Imaging Abnormalities in HFpEF: Do They Truly Reflect Pathophysiology? HFpEF的影像学异常是否真实反映病理生理?
IF 15.2 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2026-01-01 DOI: 10.1016/j.jcmg.2025.12.001
Thomas H. Marwick MBBS, PhD, MPH (Executive Editor, JACC: Cardiovascular Imaging), Y. Chandrashekhar MD, DM (Editor-in-Chief, JACC: Cardiovascular Imaging)
{"title":"Imaging Abnormalities in HFpEF: Do They Truly Reflect Pathophysiology?","authors":"Thomas H. Marwick MBBS, PhD, MPH (Executive Editor, JACC: Cardiovascular Imaging),&nbsp;Y. Chandrashekhar MD, DM (Editor-in-Chief, JACC: Cardiovascular Imaging)","doi":"10.1016/j.jcmg.2025.12.001","DOIUrl":"10.1016/j.jcmg.2025.12.001","url":null,"abstract":"","PeriodicalId":14767,"journal":{"name":"JACC. Cardiovascular imaging","volume":"19 1","pages":"Pages 145-147"},"PeriodicalIF":15.2,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145898108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predictors and Prognostic Implications of Progressive Systemic Ventricular Dysfunction in Adults With Fontan Palliation Fontan姑息治疗成人进行性全身性心室功能障碍的预测因素和预后意义。
IF 15.2 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2026-01-01 DOI: 10.1016/j.jcmg.2025.08.008
Ali Ali MD, William R. Miranda MD, Christopher Francois MD, Sara ElZalabany MBBCh, Amr Moustafa MBBCh, Heidi M. Connolly MD, Alexander C. Egbe MD, MPH, MS
{"title":"Predictors and Prognostic Implications of Progressive Systemic Ventricular Dysfunction in Adults With Fontan Palliation","authors":"Ali Ali MD,&nbsp;William R. Miranda MD,&nbsp;Christopher Francois MD,&nbsp;Sara ElZalabany MBBCh,&nbsp;Amr Moustafa MBBCh,&nbsp;Heidi M. Connolly MD,&nbsp;Alexander C. Egbe MD, MPH, MS","doi":"10.1016/j.jcmg.2025.08.008","DOIUrl":"10.1016/j.jcmg.2025.08.008","url":null,"abstract":"","PeriodicalId":14767,"journal":{"name":"JACC. Cardiovascular imaging","volume":"19 1","pages":"Pages 139-141"},"PeriodicalIF":15.2,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145068393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Histology-Validated Comparison of Ultra-High-Resolution Photon-Counting Detector CT and Energy-Integrating Detector CT for Coronary Plaque Assessment 超高分辨率光子计数检测器CT和能量积分检测器CT在冠状动脉斑块评估中的组织学验证比较。
IF 15.2 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2026-01-01 DOI: 10.1016/j.jcmg.2025.09.015
Yue Sun BS , Cheng Xu MD , Jiayue Huang PhD , Xi Zhao MS , Xianbo Yu MS , Mengzhe Lyu PhD , Li Li PhD , Zhen Chen BS , Naili Wang BS , Christianne Leidecker PhD , Rozemarijn Vliegenthart MD, PhD , Shengxian Tu PhD , Yining Wang MD
{"title":"Histology-Validated Comparison of Ultra-High-Resolution Photon-Counting Detector CT and Energy-Integrating Detector CT for Coronary Plaque Assessment","authors":"Yue Sun BS ,&nbsp;Cheng Xu MD ,&nbsp;Jiayue Huang PhD ,&nbsp;Xi Zhao MS ,&nbsp;Xianbo Yu MS ,&nbsp;Mengzhe Lyu PhD ,&nbsp;Li Li PhD ,&nbsp;Zhen Chen BS ,&nbsp;Naili Wang BS ,&nbsp;Christianne Leidecker PhD ,&nbsp;Rozemarijn Vliegenthart MD, PhD ,&nbsp;Shengxian Tu PhD ,&nbsp;Yining Wang MD","doi":"10.1016/j.jcmg.2025.09.015","DOIUrl":"10.1016/j.jcmg.2025.09.015","url":null,"abstract":"","PeriodicalId":14767,"journal":{"name":"JACC. Cardiovascular imaging","volume":"19 1","pages":"Pages 118-125"},"PeriodicalIF":15.2,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145373889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrasomics in AMI AMI的超声组学
IF 15.2 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2026-01-01 DOI: 10.1016/j.jcmg.2025.09.024
Can Xu MD, PhD, Xingyue Feng MD, Huaping Hu MD, Dongjin Wang MD, PhD
{"title":"Ultrasomics in AMI","authors":"Can Xu MD, PhD,&nbsp;Xingyue Feng MD,&nbsp;Huaping Hu MD,&nbsp;Dongjin Wang MD, PhD","doi":"10.1016/j.jcmg.2025.09.024","DOIUrl":"10.1016/j.jcmg.2025.09.024","url":null,"abstract":"","PeriodicalId":14767,"journal":{"name":"JACC. Cardiovascular imaging","volume":"19 1","pages":"Pages 142-143"},"PeriodicalIF":15.2,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145898106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
JACC. Cardiovascular imaging
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1