首页 > 最新文献

JACC. Cardiovascular imaging最新文献

英文 中文
A Deep Learning Model to Identify Mitral Valve Prolapse From the Echocardiogram 从超声心动图识别二尖瓣脱垂的深度学习模型。
IF 15.2 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2026-01-01 DOI: 10.1016/j.jcmg.2025.08.011
Mostafa A. Al-Alusi MD, MS , Emily S. Lau MD, MPH , Aeron M. Small MD, MTR , Christopher Reeder PhD , Tal Shnitzer PhD , Carl T. Andrews MS , Shinwan Kany MD , Joel T. Rämö MD , Julian S. Haimovich MD , Shaan Khurshid MD, MPH , Danita Y. Sanborn MD, MMSc , Michael H. Picard MD , Jennifer E. Ho MD , Mahnaz Maddah PhD , Patrick T. Ellinor MD, PhD

Background

Mitral valve prolapse (MVP) has a prevalence of 2% to 3% and increases risk of heart failure and sudden death, but diagnosis by transthoracic echocardiography requires time and expertise.

Objectives

This study aims to develop a deep learning model DROID-MVP (Dimensional Reconstruction of Imaging Data–Mitral Valve Prolapse) to classify MVP from digital echocardiogram videos.

Methods

DROID-MVP was trained and validated using 1,043,893 echocardiogram videos (48,829 studies) from 16,902 cardiology patients at MGH (Massachusetts General Hospital), and externally validated in 8,888 MGH primary care patients and 257 primary care patients at BWH (Brigham and Women’s Hospital). The authors tested associations among DROID-MVP predictions (range: 0-1), mitral regurgitation (MR) severity, and mitral valve repair or replacement (MVR).

Results

Of 16,902 patients (6,391 [38%] women; age 61 ± 16 years) in the derivation sample, 783 (4.6%) had MVP. DROID-MVP accurately identified MVP across the MGH cardiology internal validation set (area under the receiver-operating characteristic curve [AUROC]: 0.947 [95% CI: 0.910-0.984]; average precision [AP]: 0.682 [95% CI: 0.565-0.784]; prevalence: 0.036), MGH primary care external validation set (AUROC: 0.964 [95% CI: 0.951-0.977]; AP: 0.651 [95% CI: 0.578-0.716]; prevalence: 0.022), and BWH primary care external validation set (AUROC: 0.968 [95% CI: 0.946-0.989]; AP: 0.774 [95% CI: 0.666-0.797]; prevalence: 0.113). A high (>0.67) vs low (<0.33) DROID-MVP score was associated with moderate or severe MR (adjusted OR: 2.0 [95% CI: 1.1-3.8]; P = 0.030) and future MVR (adjusted HR: 3.7 [95% CI: 1.5-8.9]; P = 0.004).

Conclusions

A deep learning model identifies MVP from echocardiogram videos, and model predictions are associated with clinical endpoints including MR and future MVR. Deep learning can automate MVP diagnosis and potentially generate digital markers of clinically significant MVP.
背景:二尖瓣脱垂(MVP)的患病率为2%至3%,并增加心力衰竭和猝死的风险,但经胸超声心动图诊断需要时间和专业知识。目的建立深度学习模型DROID-MVP (Dimensional Reconstruction of Imaging data -二尖瓣脱垂),对数字超声心动图视频中的二尖瓣脱垂进行分类。方法sdroid - mvp通过来自麻省总医院(MGH) 16902名心脏病患者的1,043,893个超声心动图视频(48,829项研究)进行培训和验证,并在8888名MGH初级保健患者和257名BWH (Brigham and Women Hospital)初级保健患者中进行外部验证。作者测试了DROID-MVP预测(范围:0-1)、二尖瓣反流(MR)严重程度和二尖瓣修复或置换(MVR)之间的关系。结果在衍生样本的16902例患者中(6391例(38%)女性,年龄61±16岁),783例(4.6%)有MVP。DROID-MVP准确识别了MGH心内科内部验证集(患者工作特征曲线下面积[AUROC]: 0.947 [95% CI: 0.910-0.984],平均精度[AP]: 0.682 [95% CI: 0.565-0.784],患病率:0.036),MGH初级保健外部验证集(AUROC: 0.964 [95% CI: 0.951-0.977], AP: 0.651 [95% CI: 0.578-0.716],患病率:0.022),BWH初级保健外部验证集(AUROC: 0.968 [95% CI: 0.946-0.989], AP: 0.774 [95% CI: 0.666-0.797];流行:0.113)。高(>0.67)vs低(<0.33)DROID-MVP评分与中度或重度MR(校正or: 2.0 [95% CI: 1.1-3.8]; P = 0.030)和未来MVR(校正HR: 3.7 [95% CI: 1.5-8.9]; P = 0.004)相关。结论深度学习模型从超声心动图视频中识别MVP,模型预测与临床终点相关,包括MR和未来MVR。深度学习可以自动诊断MVP,并可能生成具有临床意义的MVP的数字标记。
{"title":"A Deep Learning Model to Identify Mitral Valve Prolapse From the Echocardiogram","authors":"Mostafa A. Al-Alusi MD, MS ,&nbsp;Emily S. Lau MD, MPH ,&nbsp;Aeron M. Small MD, MTR ,&nbsp;Christopher Reeder PhD ,&nbsp;Tal Shnitzer PhD ,&nbsp;Carl T. Andrews MS ,&nbsp;Shinwan Kany MD ,&nbsp;Joel T. Rämö MD ,&nbsp;Julian S. Haimovich MD ,&nbsp;Shaan Khurshid MD, MPH ,&nbsp;Danita Y. Sanborn MD, MMSc ,&nbsp;Michael H. Picard MD ,&nbsp;Jennifer E. Ho MD ,&nbsp;Mahnaz Maddah PhD ,&nbsp;Patrick T. Ellinor MD, PhD","doi":"10.1016/j.jcmg.2025.08.011","DOIUrl":"10.1016/j.jcmg.2025.08.011","url":null,"abstract":"<div><h3>Background</h3><div>Mitral valve prolapse (MVP) has a prevalence of 2% to 3% and increases risk of heart failure and sudden death, but diagnosis by transthoracic echocardiography requires time and expertise.</div></div><div><h3>Objectives</h3><div>This study aims to develop a deep learning model DROID-MVP (Dimensional Reconstruction of Imaging Data–Mitral Valve Prolapse) to classify MVP from digital echocardiogram videos.</div></div><div><h3>Methods</h3><div>DROID-MVP was trained and validated using 1,043,893 echocardiogram videos (48,829 studies) from 16,902 cardiology patients at MGH (Massachusetts General Hospital), and externally validated in 8,888 MGH primary care patients and 257 primary care patients at BWH (Brigham and Women’s Hospital). The authors tested associations among DROID-MVP predictions (range: 0-1), mitral regurgitation (MR) severity, and mitral valve repair or replacement (MVR).</div></div><div><h3>Results</h3><div>Of 16,902 patients (6,391 [38%] women; age 61 ± 16 years) in the derivation sample, 783 (4.6%) had MVP. DROID-MVP accurately identified MVP across the MGH cardiology internal validation set (area under the receiver-operating characteristic curve [AUROC]: 0.947 [95% CI: 0.910-0.984]; average precision [AP]: 0.682 [95% CI: 0.565-0.784]; prevalence: 0.036), MGH primary care external validation set (AUROC: 0.964 [95% CI: 0.951-0.977]; AP: 0.651 [95% CI: 0.578-0.716]; prevalence: 0.022), and BWH primary care external validation set (AUROC: 0.968 [95% CI: 0.946-0.989]; AP: 0.774 [95% CI: 0.666-0.797]; prevalence: 0.113). A high (&gt;0.67) vs low (&lt;0.33) DROID-MVP score was associated with moderate or severe MR (adjusted OR: 2.0 [95% CI: 1.1-3.8]; <em>P =</em> 0.030) and future MVR (adjusted HR: 3.7 [95% CI: 1.5-8.9]; <em>P =</em> 0.004).</div></div><div><h3>Conclusions</h3><div>A deep learning model identifies MVP from echocardiogram videos, and model predictions are associated with clinical endpoints including MR and future MVR. Deep learning can automate MVP diagnosis and potentially generate digital markers of clinically significant MVP.</div></div>","PeriodicalId":14767,"journal":{"name":"JACC. Cardiovascular imaging","volume":"19 1","pages":"Pages 18-29"},"PeriodicalIF":15.2,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145194449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Imaging Abnormalities in HFpEF: Do They Truly Reflect Pathophysiology? HFpEF的影像学异常是否真实反映病理生理?
IF 15.2 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2026-01-01 DOI: 10.1016/j.jcmg.2025.12.001
Thomas H. Marwick MBBS, PhD, MPH (Executive Editor, JACC: Cardiovascular Imaging), Y. Chandrashekhar MD, DM (Editor-in-Chief, JACC: Cardiovascular Imaging)
{"title":"Imaging Abnormalities in HFpEF: Do They Truly Reflect Pathophysiology?","authors":"Thomas H. Marwick MBBS, PhD, MPH (Executive Editor, JACC: Cardiovascular Imaging),&nbsp;Y. Chandrashekhar MD, DM (Editor-in-Chief, JACC: Cardiovascular Imaging)","doi":"10.1016/j.jcmg.2025.12.001","DOIUrl":"10.1016/j.jcmg.2025.12.001","url":null,"abstract":"","PeriodicalId":14767,"journal":{"name":"JACC. Cardiovascular imaging","volume":"19 1","pages":"Pages 145-147"},"PeriodicalIF":15.2,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145898108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predictors and Prognostic Implications of Progressive Systemic Ventricular Dysfunction in Adults With Fontan Palliation Fontan姑息治疗成人进行性全身性心室功能障碍的预测因素和预后意义。
IF 15.2 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2026-01-01 DOI: 10.1016/j.jcmg.2025.08.008
Ali Ali MD, William R. Miranda MD, Christopher Francois MD, Sara ElZalabany MBBCh, Amr Moustafa MBBCh, Heidi M. Connolly MD, Alexander C. Egbe MD, MPH, MS
{"title":"Predictors and Prognostic Implications of Progressive Systemic Ventricular Dysfunction in Adults With Fontan Palliation","authors":"Ali Ali MD,&nbsp;William R. Miranda MD,&nbsp;Christopher Francois MD,&nbsp;Sara ElZalabany MBBCh,&nbsp;Amr Moustafa MBBCh,&nbsp;Heidi M. Connolly MD,&nbsp;Alexander C. Egbe MD, MPH, MS","doi":"10.1016/j.jcmg.2025.08.008","DOIUrl":"10.1016/j.jcmg.2025.08.008","url":null,"abstract":"","PeriodicalId":14767,"journal":{"name":"JACC. Cardiovascular imaging","volume":"19 1","pages":"Pages 139-141"},"PeriodicalIF":15.2,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145068393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Histology-Validated Comparison of Ultra-High-Resolution Photon-Counting Detector CT and Energy-Integrating Detector CT for Coronary Plaque Assessment 超高分辨率光子计数检测器CT和能量积分检测器CT在冠状动脉斑块评估中的组织学验证比较。
IF 15.2 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2026-01-01 DOI: 10.1016/j.jcmg.2025.09.015
Yue Sun BS , Cheng Xu MD , Jiayue Huang PhD , Xi Zhao MS , Xianbo Yu MS , Mengzhe Lyu PhD , Li Li PhD , Zhen Chen BS , Naili Wang BS , Christianne Leidecker PhD , Rozemarijn Vliegenthart MD, PhD , Shengxian Tu PhD , Yining Wang MD
{"title":"Histology-Validated Comparison of Ultra-High-Resolution Photon-Counting Detector CT and Energy-Integrating Detector CT for Coronary Plaque Assessment","authors":"Yue Sun BS ,&nbsp;Cheng Xu MD ,&nbsp;Jiayue Huang PhD ,&nbsp;Xi Zhao MS ,&nbsp;Xianbo Yu MS ,&nbsp;Mengzhe Lyu PhD ,&nbsp;Li Li PhD ,&nbsp;Zhen Chen BS ,&nbsp;Naili Wang BS ,&nbsp;Christianne Leidecker PhD ,&nbsp;Rozemarijn Vliegenthart MD, PhD ,&nbsp;Shengxian Tu PhD ,&nbsp;Yining Wang MD","doi":"10.1016/j.jcmg.2025.09.015","DOIUrl":"10.1016/j.jcmg.2025.09.015","url":null,"abstract":"","PeriodicalId":14767,"journal":{"name":"JACC. Cardiovascular imaging","volume":"19 1","pages":"Pages 118-125"},"PeriodicalIF":15.2,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145373889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrasomics in AMI AMI的超声组学
IF 15.2 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2026-01-01 DOI: 10.1016/j.jcmg.2025.09.024
Can Xu MD, PhD, Xingyue Feng MD, Huaping Hu MD, Dongjin Wang MD, PhD
{"title":"Ultrasomics in AMI","authors":"Can Xu MD, PhD,&nbsp;Xingyue Feng MD,&nbsp;Huaping Hu MD,&nbsp;Dongjin Wang MD, PhD","doi":"10.1016/j.jcmg.2025.09.024","DOIUrl":"10.1016/j.jcmg.2025.09.024","url":null,"abstract":"","PeriodicalId":14767,"journal":{"name":"JACC. Cardiovascular imaging","volume":"19 1","pages":"Pages 142-143"},"PeriodicalIF":15.2,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145898106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coronary CTA vs Stress Testing in Stable Angina With Moderate Renal Dysfunction 稳定型心绞痛伴中度肾功能不全的冠状动脉CTA与压力测试:来自PROMISE试验的见解
IF 15.2 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2026-01-01 DOI: 10.1016/j.jcmg.2025.08.002
Vignesh Chidambaram MD, MPH, Amudha Kumar MD, Munthir Mansour MD, Ryan Pohlkamp MD, Marie Gilbert Majella MD, Joshua Mueller MD, Jawahar L. Mehta MD, PhD, Mark G. Rabbat MD, Armin Arbab-Zadeh MD, PhD, MPH, Ron Blankstein MD, Roger S. Blumenthal MD, Pamela S. Douglas MD, Subhi J. Al’Aref MD
{"title":"Coronary CTA vs Stress Testing in Stable Angina With Moderate Renal Dysfunction","authors":"Vignesh Chidambaram MD, MPH,&nbsp;Amudha Kumar MD,&nbsp;Munthir Mansour MD,&nbsp;Ryan Pohlkamp MD,&nbsp;Marie Gilbert Majella MD,&nbsp;Joshua Mueller MD,&nbsp;Jawahar L. Mehta MD, PhD,&nbsp;Mark G. Rabbat MD,&nbsp;Armin Arbab-Zadeh MD, PhD, MPH,&nbsp;Ron Blankstein MD,&nbsp;Roger S. Blumenthal MD,&nbsp;Pamela S. Douglas MD,&nbsp;Subhi J. Al’Aref MD","doi":"10.1016/j.jcmg.2025.08.002","DOIUrl":"10.1016/j.jcmg.2025.08.002","url":null,"abstract":"","PeriodicalId":14767,"journal":{"name":"JACC. Cardiovascular imaging","volume":"19 1","pages":"Pages 136-138"},"PeriodicalIF":15.2,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145032099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prevalence and Prognostic Value of Incidentally Detected Coronary Artery Calcium Using Artificial Intelligence Among Individuals With Immune-Mediated Inflammatory Diseases 人工智能辅助检测冠状动脉钙在免疫介导性炎症性疾病患者中的患病率及预后价值
IF 15.2 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2026-01-01 DOI: 10.1016/j.jcmg.2025.08.020
Brittany N. Weber MD, PhD , David W. Biery AB , Milena Petranovic MD , Stephanie A. Besser MSAS, MSPA , Daniel M. Huck MD, MPH , Arthur Shiyovich MD , Rhanderson Cardoso MD , Adam N. Berman MD, MPH , Camila V. Blair MD , Nayruti Trivedi MS , Micheal S. Garshick MD , Joseph Merola MD , Karen Costenbader MD , Leslee J. Shaw PhD , Khurram Nasir MD, MPH , Katherine P. Liao MD , Marcelo F. Di Carli MD , Ron Blankstein MD

Background

Coronary artery calcium (CAC) scoring is strongly associated with cardiovascular (CV) events among the general population; however, its prognostic value among individuals with immune-mediated inflammatory diseases (IMIDs) is not well characterized.

Objectives

This study aims to assess the prevalence of CAC derived from routine chest computed tomography (CT) using a validated artificial intelligence (AI) algorithm and its association with adverse CV events among those with IMIDs.

Methods

The authors studied a retrospective cohort of all patients 40 to 70 years of age with a diagnosis of systemic lupus erythematosus, rheumatoid arthritis, or psoriatic disease, and no prior atherosclerotic cardiovascular disease who underwent chest CT at 2 medical centers in Boston, Massachusetts, USA, from 2000 to 2023 as part of routine care. The presence and severity of CAC was determined using a validated AI methodology. Cox proportional hazards modeling was used to assess the association of CAC-AI categories (CAC-AI = 0, CAC-AI = 1-99, and CAC-AI ≥100) with all-cause mortality and major adverse cardiovascular events (MACE) (nonfatal myocardial infarction, coronary revascularization, nonfatal stroke, or CV mortality). All models were adjusted for age, sex, and traditional CV risk factors.

Results

In total, 2,546 individuals with IMIDs (median age: 59 years [Q1-Q3: 53-65 years]; 1,694 [66.5%] women) were included with a median follow-up of 8.1 years. Among this cohort, 53% had CAC-AI >0 while only 6.0% were on a statin. A low burden of CAC (CAC-AI = 1-99) was associated with an increased risk of all-cause mortality (adjusted HR: 1.41; P = 0.010) and MACE (adjusted HR: 2.05; P < 0.001) with even greater risk observed among individuals with CAC-AI ≥100 (adjusted HR: 2.45; P < 0.001) and MACE (adjusted HR: 3.24; P < 0.001).

Conclusions

Among those with IMIDs, incidental CAC-AI was highly prevalent and significantly associated with both all-cause mortality and MACE. These findings suggest that CAC-AI may provide important prognostic information, allowing for improved risk stratification and treatment within an already high-risk and undertreated population.
背景:在普通人群中,冠状动脉钙(CAC)评分与心血管(CV)事件密切相关;然而,其在免疫介导性炎症性疾病(IMIDs)患者中的预后价值尚未得到很好的表征。目的:本研究旨在利用一种经过验证的人工智能(AI)算法评估常规胸部计算机断层扫描(CT)中CAC的患病率及其与IMIDs患者不良CV事件的关系。方法:作者研究了一项回顾性队列研究,研究对象为年龄在40 - 70岁之间,诊断为系统性红斑狼疮、类风湿性关节炎或银屑病,且既往无动脉粥样硬化性心血管疾病的患者,这些患者于2000年至2023年在美国马萨诸塞州波士顿的2个医疗中心接受了胸部CT检查,作为常规护理的一部分。使用经过验证的人工智能方法确定CAC的存在和严重程度。采用Cox比例风险模型评估CAC-AI类别(CAC-AI = 0、CAC-AI = 1-99和CAC-AI≥100)与全因死亡率和主要不良心血管事件(MACE)(非致死性心肌梗死、冠状动脉血运重建术、非致死性卒中或CV死亡率)的相关性。所有模型都根据年龄、性别和传统的心血管危险因素进行了调整。结果共纳入2546例IMIDs患者(中位年龄59岁[Q1-Q3: 53-65岁],女性1694例[66.5%]),中位随访8.1年。在该队列中,53%的患者患有CAC-AI,而只有6.0%的患者服用他汀类药物。低CAC负担(CAC- ai = 1-99)与全因死亡(校正HR: 1.41, P = 0.010)和MACE(校正HR: 2.05, P < 0.001)的风险增加相关,且CAC- ai≥100(校正HR: 2.45, P < 0.001)和MACE(校正HR: 3.24, P < 0.001)的风险更大。结论在IMIDs患者中,偶发CAC-AI非常普遍,并与全因死亡率和MACE显著相关。这些发现表明,CAC-AI可能提供重要的预后信息,允许在已经高风险和治疗不足的人群中改进风险分层和治疗。
{"title":"Prevalence and Prognostic Value of Incidentally Detected Coronary Artery Calcium Using Artificial Intelligence Among Individuals With Immune-Mediated Inflammatory Diseases","authors":"Brittany N. Weber MD, PhD ,&nbsp;David W. Biery AB ,&nbsp;Milena Petranovic MD ,&nbsp;Stephanie A. Besser MSAS, MSPA ,&nbsp;Daniel M. Huck MD, MPH ,&nbsp;Arthur Shiyovich MD ,&nbsp;Rhanderson Cardoso MD ,&nbsp;Adam N. Berman MD, MPH ,&nbsp;Camila V. Blair MD ,&nbsp;Nayruti Trivedi MS ,&nbsp;Micheal S. Garshick MD ,&nbsp;Joseph Merola MD ,&nbsp;Karen Costenbader MD ,&nbsp;Leslee J. Shaw PhD ,&nbsp;Khurram Nasir MD, MPH ,&nbsp;Katherine P. Liao MD ,&nbsp;Marcelo F. Di Carli MD ,&nbsp;Ron Blankstein MD","doi":"10.1016/j.jcmg.2025.08.020","DOIUrl":"10.1016/j.jcmg.2025.08.020","url":null,"abstract":"<div><h3>Background</h3><div>Coronary artery calcium (CAC) scoring is strongly associated with cardiovascular (CV) events among the general population; however, its prognostic value among individuals with immune-mediated inflammatory diseases (IMIDs) is not well characterized.</div></div><div><h3>Objectives</h3><div>This study aims to assess the prevalence of CAC derived from routine chest computed tomography (CT) using a validated artificial intelligence (AI) algorithm and its association with adverse CV events among those with IMIDs.</div></div><div><h3>Methods</h3><div>The authors studied a retrospective cohort of all patients 40 to 70 years of age with a diagnosis of systemic lupus erythematosus, rheumatoid arthritis, or psoriatic disease, and no prior atherosclerotic cardiovascular disease who underwent chest CT at 2 medical centers in Boston, Massachusetts, USA, from 2000 to 2023 as part of routine care. The presence and severity of CAC was determined using a validated AI methodology. Cox proportional hazards modeling was used to assess the association of CAC-AI categories (CAC-AI = 0, CAC-AI = 1-99, and CAC-AI ≥100) with all-cause mortality and major adverse cardiovascular events (MACE) (nonfatal myocardial infarction, coronary revascularization, nonfatal stroke, or CV mortality). All models were adjusted for age, sex, and traditional CV risk factors.</div></div><div><h3>Results</h3><div>In total, 2,546 individuals with IMIDs (median age: 59 years [Q1-Q3: 53-65 years]; 1,694 [66.5%] women) were included with a median follow-up of 8.1 years. Among this cohort, 53% had CAC-AI &gt;0 while only 6.0% were on a statin. A low burden of CAC (CAC-AI = 1-99) was associated with an increased risk of all-cause mortality (adjusted HR: 1.41; <em>P =</em> 0.010) and MACE (adjusted HR: 2.05; <em>P &lt;</em> 0.001) with even greater risk observed among individuals with CAC-AI ≥100 (adjusted HR: 2.45; <em>P &lt;</em> 0.001) and MACE (adjusted HR: 3.24; <em>P &lt;</em> 0.001).</div></div><div><h3>Conclusions</h3><div>Among those with IMIDs, incidental CAC-AI was highly prevalent and significantly associated with both all-cause mortality and MACE. These findings suggest that CAC-AI may provide important prognostic information, allowing for improved risk stratification and treatment within an already high-risk and undertreated population.</div></div>","PeriodicalId":14767,"journal":{"name":"JACC. Cardiovascular imaging","volume":"19 1","pages":"Pages 64-75"},"PeriodicalIF":15.2,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145373948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diagnosis of Mitral Valve Prolapse Using Artificial Intelligence 用人工智能诊断二尖瓣脱垂:准备好了吗?
IF 15.2 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2026-01-01 DOI: 10.1016/j.jcmg.2025.09.002
David Messika-Zeitoun MD, PhD , Pascal Theriault-Lauzier MD, PhD , Ian G. Burwash MD
{"title":"Diagnosis of Mitral Valve Prolapse Using Artificial Intelligence","authors":"David Messika-Zeitoun MD, PhD ,&nbsp;Pascal Theriault-Lauzier MD, PhD ,&nbsp;Ian G. Burwash MD","doi":"10.1016/j.jcmg.2025.09.002","DOIUrl":"10.1016/j.jcmg.2025.09.002","url":null,"abstract":"","PeriodicalId":14767,"journal":{"name":"JACC. Cardiovascular imaging","volume":"19 1","pages":"Pages 30-32"},"PeriodicalIF":15.2,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145194450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Straining the Limits of Sudden Death Risk Stratification 突发性死亡风险分层的极限:HCM的特征跟踪。
IF 15.2 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2026-01-01 DOI: 10.1016/j.jcmg.2025.09.017
Milind Y. Desai MD, MBA, Susan K. Keen MD
{"title":"Straining the Limits of Sudden Death Risk Stratification","authors":"Milind Y. Desai MD, MBA,&nbsp;Susan K. Keen MD","doi":"10.1016/j.jcmg.2025.09.017","DOIUrl":"10.1016/j.jcmg.2025.09.017","url":null,"abstract":"","PeriodicalId":14767,"journal":{"name":"JACC. Cardiovascular imaging","volume":"19 1","pages":"Pages 46-48"},"PeriodicalIF":15.2,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145373890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Opportunistic Screening for Subclinical CAD in Immune-Inflammatory Diseases 在免疫炎性疾病中进行亚临床CAD的机会性筛查:没有时间浪费了。
IF 15.2 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2026-01-01 DOI: 10.1016/j.jcmg.2025.10.007
Leandro Slipczuk MD, PhD , Deepak L. Bhatt MD, MPH, MBA
{"title":"Opportunistic Screening for Subclinical CAD in Immune-Inflammatory Diseases","authors":"Leandro Slipczuk MD, PhD ,&nbsp;Deepak L. Bhatt MD, MPH, MBA","doi":"10.1016/j.jcmg.2025.10.007","DOIUrl":"10.1016/j.jcmg.2025.10.007","url":null,"abstract":"","PeriodicalId":14767,"journal":{"name":"JACC. Cardiovascular imaging","volume":"19 1","pages":"Pages 76-78"},"PeriodicalIF":15.2,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145411609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
JACC. Cardiovascular imaging
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1