Pub Date : 2023-06-16DOI: 10.1080/00218464.2023.2223475
J. Freund, M. Löbbecke, A. Delp, F. Walther, Shuang Wu, T. Tröster, J. Haubrich
{"title":"Relationship between laser-generated micro- and nanostructures and the long-term stability of bonded epoxy-aluminum joints","authors":"J. Freund, M. Löbbecke, A. Delp, F. Walther, Shuang Wu, T. Tröster, J. Haubrich","doi":"10.1080/00218464.2023.2223475","DOIUrl":"https://doi.org/10.1080/00218464.2023.2223475","url":null,"abstract":"","PeriodicalId":14778,"journal":{"name":"Journal of Adhesion","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47179073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1080/00218464.2023.2218811
Qian Liu, Mengna Tao, Jingyan Yu, Y. Zou, Zhemin Jia
{"title":"Effect of graphene nanoplatelets on mode I fracture Toughness of epoxy adhesives under water aging conditions","authors":"Qian Liu, Mengna Tao, Jingyan Yu, Y. Zou, Zhemin Jia","doi":"10.1080/00218464.2023.2218811","DOIUrl":"https://doi.org/10.1080/00218464.2023.2218811","url":null,"abstract":"","PeriodicalId":14778,"journal":{"name":"Journal of Adhesion","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43457160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-25DOI: 10.1080/00218464.2023.2214084
Pedro Henrique Evangelista Fernandes, C. Nagel, A. Wulf, V. C. Beber
{"title":"Mean stress correction and fatigue failure criteria for hyperelastic adhesive joints","authors":"Pedro Henrique Evangelista Fernandes, C. Nagel, A. Wulf, V. C. Beber","doi":"10.1080/00218464.2023.2214084","DOIUrl":"https://doi.org/10.1080/00218464.2023.2214084","url":null,"abstract":"","PeriodicalId":14778,"journal":{"name":"Journal of Adhesion","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43517060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-23DOI: 10.1080/00218464.2023.2216640
Zhefu Ji, Tingshu He, Yongqi Da, Yuhao Sun
{"title":"Study on the effects of multiple primers on the pull-off strength of gypsum plaster and its mechanism","authors":"Zhefu Ji, Tingshu He, Yongqi Da, Yuhao Sun","doi":"10.1080/00218464.2023.2216640","DOIUrl":"https://doi.org/10.1080/00218464.2023.2216640","url":null,"abstract":"","PeriodicalId":14778,"journal":{"name":"Journal of Adhesion","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44005915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-19DOI: 10.1080/00218464.2022.2094257
Tianchun Zou, Jinbao Fu, Yuezhang Ju
ABSTRACT This paper presents the influence of impact energy and impact surface on the impact damage characteristics and residual tensile performances of carbon fibre reinforced plastics (CFRP)-to-aluminium single-lap adhesive joints. Experimentally, the internal damage morphologies of joints after pre-impact were inspected with X-ray micro-computed tomography (X-CT). The failure processes and detailed fracture surfaces were obtained by the digital image correlation (DIC) system and scanning electron microscopy (SEM). The results show that the joints impacted on aluminium surfaces exhibit superior impact resistance to the CFRP pre-impact surface under the out-of-plane impact load. The joints pre-impacted on different surfaces have similar failure processes during the tensile process. Firstly, the delamination damage propagates from the impact location to the edge of overlap region. Subsequently, the delamination damage reaches the CFRP end, where the local stiffness of CFRP adherend is significantly reduced, and cracks appear in the adhesive layer. Finally, the cracks propagate from the CFRP end to the overlap area centre with further increased tensile load, and the joint rapid fracture occurs after the tensile load reaching its peak. The delamination damage of CFRP adherends caused by out-of-plane impact load is the dominant factor to affect the bearing capacity of CFRP-to-aluminium single-lap adhesive joints.
{"title":"Experimental study on failure mechanism of CFRP-to-aluminium single-lap adhesive joints under tension after out-of-plane pre-impact","authors":"Tianchun Zou, Jinbao Fu, Yuezhang Ju","doi":"10.1080/00218464.2022.2094257","DOIUrl":"https://doi.org/10.1080/00218464.2022.2094257","url":null,"abstract":"ABSTRACT This paper presents the influence of impact energy and impact surface on the impact damage characteristics and residual tensile performances of carbon fibre reinforced plastics (CFRP)-to-aluminium single-lap adhesive joints. Experimentally, the internal damage morphologies of joints after pre-impact were inspected with X-ray micro-computed tomography (X-CT). The failure processes and detailed fracture surfaces were obtained by the digital image correlation (DIC) system and scanning electron microscopy (SEM). The results show that the joints impacted on aluminium surfaces exhibit superior impact resistance to the CFRP pre-impact surface under the out-of-plane impact load. The joints pre-impacted on different surfaces have similar failure processes during the tensile process. Firstly, the delamination damage propagates from the impact location to the edge of overlap region. Subsequently, the delamination damage reaches the CFRP end, where the local stiffness of CFRP adherend is significantly reduced, and cracks appear in the adhesive layer. Finally, the cracks propagate from the CFRP end to the overlap area centre with further increased tensile load, and the joint rapid fracture occurs after the tensile load reaching its peak. The delamination damage of CFRP adherends caused by out-of-plane impact load is the dominant factor to affect the bearing capacity of CFRP-to-aluminium single-lap adhesive joints.","PeriodicalId":14778,"journal":{"name":"Journal of Adhesion","volume":"99 1","pages":"1205 - 1226"},"PeriodicalIF":2.2,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47218121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-16DOI: 10.1080/00218464.2023.2211011
Touhid Bin Anwar, Taylor N. Lewis, Adam J. Berges, T. J. Gately, C. Bardeen
{"title":"Nanosecond laser debonding of strong adhesives","authors":"Touhid Bin Anwar, Taylor N. Lewis, Adam J. Berges, T. J. Gately, C. Bardeen","doi":"10.1080/00218464.2023.2211011","DOIUrl":"https://doi.org/10.1080/00218464.2023.2211011","url":null,"abstract":"","PeriodicalId":14778,"journal":{"name":"Journal of Adhesion","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48574455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-04DOI: 10.1080/00218464.2023.2210092
Yao Wang, Fan Xu, Yiqiang Fan
{"title":"Thermoplastic-based microfluidic chip bonding with PES hot melt adhesive film","authors":"Yao Wang, Fan Xu, Yiqiang Fan","doi":"10.1080/00218464.2023.2210092","DOIUrl":"https://doi.org/10.1080/00218464.2023.2210092","url":null,"abstract":"","PeriodicalId":14778,"journal":{"name":"Journal of Adhesion","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47275524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-03DOI: 10.1080/00218464.2023.2206960
R. Grangeat, M. Girard, S. De Barros, F. Jacquemin
{"title":"An overview of interphase’s formation and participation on water diffusion in epoxy/metal bonded assemblies","authors":"R. Grangeat, M. Girard, S. De Barros, F. Jacquemin","doi":"10.1080/00218464.2023.2206960","DOIUrl":"https://doi.org/10.1080/00218464.2023.2206960","url":null,"abstract":"","PeriodicalId":14778,"journal":{"name":"Journal of Adhesion","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42596775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-11DOI: 10.1080/00218464.2023.2201443
ABSTRACT Practical adhesion of pressure-sensitive adhesives (PSAs) is strongly dependent on their viscoelastic properties. The use of biobased materials emerged as an effective approach to modify the rheological, mechanical, and adhesive properties of PSAs. The biopolymer kraft lignin (KL), a by-product of pulp and paper manufacturing, appeared as a potential candidate for modifying the adhesive behavior of PSAs. In this study, we developed a block copolymer-based PSA by incorporating a hydrocarbon resin (HCR) and kraft lignin into the block copolymer polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene (SEBS). “Viscoelastic windows”, which describe the potential application of a PSA based on its viscoelastic behavior, were constructed for PSAs with the addition of KL. These results demonstrate the potential for application as a high-shear PSA due to the increased energy dissipation of the samples. Practical adhesion was evaluated using probe tack tests and lap shear strength measurements, which effectively demonstrated an increase in the cohesive strength of the PSA with an optimized concentration of 5 wt% KL.
{"title":"Viscoelastic behavior of pressure-sensitive adhesive based on block copolymer and kraft lignin","authors":"","doi":"10.1080/00218464.2023.2201443","DOIUrl":"https://doi.org/10.1080/00218464.2023.2201443","url":null,"abstract":"ABSTRACT Practical adhesion of pressure-sensitive adhesives (PSAs) is strongly dependent on their viscoelastic properties. The use of biobased materials emerged as an effective approach to modify the rheological, mechanical, and adhesive properties of PSAs. The biopolymer kraft lignin (KL), a by-product of pulp and paper manufacturing, appeared as a potential candidate for modifying the adhesive behavior of PSAs. In this study, we developed a block copolymer-based PSA by incorporating a hydrocarbon resin (HCR) and kraft lignin into the block copolymer polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene (SEBS). “Viscoelastic windows”, which describe the potential application of a PSA based on its viscoelastic behavior, were constructed for PSAs with the addition of KL. These results demonstrate the potential for application as a high-shear PSA due to the increased energy dissipation of the samples. Practical adhesion was evaluated using probe tack tests and lap shear strength measurements, which effectively demonstrated an increase in the cohesive strength of the PSA with an optimized concentration of 5 wt% KL.","PeriodicalId":14778,"journal":{"name":"Journal of Adhesion","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48958381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}