Pub Date : 2019-03-14DOI: 10.5194/egusphere-egu2020-13485
Chao-Yen Chen, T. Liu
This paper investigates the plasmapause positions in the ionosphere by measurement of the whistler count probed by DEMETER (Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions) satellite in the daytime at 1030 LT (local time) and the nighttime at 2230 LT during 2005-2010. The whistler finds the plasmapause position which can be clearly allocated in both daytime and nighttime. We examine the nighttime/daytime plasmapause in various longitudes, solar activities, seasons, and geomagnetic actives. Results show that the daytime plasmapause appears in the equatorward side of the nighttime one. Both the daytime and nighttime plasmapause are sensitive to solar activity, which move equatorward form the low to high solar activity in the study period. The seasonal variation of the plasmapause are rather random and insignificant. During magnetic disturbed condition, the plasmapause tend to move equatorward.
{"title":"The Daytime and Nighttime Mapped Whistler Plasmapause Observed by DEMETER","authors":"Chao-Yen Chen, T. Liu","doi":"10.5194/egusphere-egu2020-13485","DOIUrl":"https://doi.org/10.5194/egusphere-egu2020-13485","url":null,"abstract":"This paper investigates the plasmapause positions in the ionosphere by measurement of the whistler count probed by DEMETER (Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions) satellite in the daytime at 1030 LT (local time) and the nighttime at 2230 LT during 2005-2010. The whistler finds the plasmapause position which can be clearly allocated in both daytime and nighttime. We examine the nighttime/daytime plasmapause in various longitudes, solar activities, seasons, and geomagnetic actives. Results show that the daytime plasmapause appears in the equatorward side of the nighttime one. Both the daytime and nighttime plasmapause are sensitive to solar activity, which move equatorward form the low to high solar activity in the study period. The seasonal variation of the plasmapause are rather random and insignificant. During magnetic disturbed condition, the plasmapause tend to move equatorward.","PeriodicalId":14836,"journal":{"name":"Japan Geoscience Union","volume":"32 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89444105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-03-14DOI: 10.1002/essoar.10504761.1
Takashi Ito, A. Higuchi
{"title":"Dynamical lifetime of the Oort Cloud new comets under planetary perturbation","authors":"Takashi Ito, A. Higuchi","doi":"10.1002/essoar.10504761.1","DOIUrl":"https://doi.org/10.1002/essoar.10504761.1","url":null,"abstract":"","PeriodicalId":14836,"journal":{"name":"Japan Geoscience Union","volume":"33 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77360488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hannah B. Tilley, G. Moore, M. Yamashita, S. Kodaira
Protothrust zones (PTZs) are assumed to control the development of new frontal thrusts at subduction zones. PTZs are areas of incipient thrust faulting between the deformation front and the frontal thrust. However, limited resolution of previous seismic studies has hindered the study of their role in subduction accretion. New high-resolution seismic reflection surveys enabled detailed analysis of the PTZ along the Nankai Trough, SE Japan. Seventeen multichannel seismic reflection lines were collected perpendicular to the trench axis between Cape Ashizuri and Cape Muroto using a 1200m long, 192 channel hydrophone cable and a 380 in (5.24L) cluster airgun array. These lines were processed using pre-stack depth migration. PTZs only existed where a turbidite sequence was present beneath the trench wedge. The PTZs consisted of closely spaced, sub-parallel protothrusts that decreased in spacing and increased in length landward. Where the turbidites were truncated by basement topography, there was a transitional PTZ heterogeneous protothrusts and small displacement thrust faults. We hypothesize that elevated pore pressures due to the low permeability hemipelagic sediment inhibit the formation of PTZs and favor small displacement thrusts in a narrow trench wedge. Conversely, turbidite layers within the hemipelagic sediment allow drainage and reduce the pore pressure. This increases the effective stress and shear strength on faults, resulting in strain localizing protothrusts. This implies that the changes in pore pressure imposed by differences in the sediment permeability control the style of deformation in the trench wedge and consequently, the geometry of the accretionary wedge.
{"title":"Along-strike variations in protothrust zone characteristics at the Nankai Trough subduction margin","authors":"Hannah B. Tilley, G. Moore, M. Yamashita, S. Kodaira","doi":"10.1130/GES02305.1","DOIUrl":"https://doi.org/10.1130/GES02305.1","url":null,"abstract":"Protothrust zones (PTZs) are assumed to control the development of new frontal thrusts at subduction zones. PTZs are areas of incipient thrust faulting between the deformation front and the frontal thrust. However, limited resolution of previous seismic studies has hindered the study of their role in subduction accretion. New high-resolution seismic reflection surveys enabled detailed analysis of the PTZ along the Nankai Trough, SE Japan. Seventeen multichannel seismic reflection lines were collected perpendicular to the trench axis between Cape Ashizuri and Cape Muroto using a 1200m long, 192 channel hydrophone cable and a 380 in (5.24L) cluster airgun array. These lines were processed using pre-stack depth migration. PTZs only existed where a turbidite sequence was present beneath the trench wedge. The PTZs consisted of closely spaced, sub-parallel protothrusts that decreased in spacing and increased in length landward. Where the turbidites were truncated by basement topography, there was a transitional PTZ heterogeneous protothrusts and small displacement thrust faults. We hypothesize that elevated pore pressures due to the low permeability hemipelagic sediment inhibit the formation of PTZs and favor small displacement thrusts in a narrow trench wedge. Conversely, turbidite layers within the hemipelagic sediment allow drainage and reduce the pore pressure. This increases the effective stress and shear strength on faults, resulting in strain localizing protothrusts. This implies that the changes in pore pressure imposed by differences in the sediment permeability control the style of deformation in the trench wedge and consequently, the geometry of the accretionary wedge.","PeriodicalId":14836,"journal":{"name":"Japan Geoscience Union","volume":"143 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86749805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Kawabata, Arito Sakguchi, Y. Hamada, T. Tsuji, Y. Kitamura, S. Saito
Sediment analysis and the thermal history of the Kumano forearc basin and slope basin sediments in the Nankai Trough were studied through chemical and mineral composition analyses and the vitrinite reflectance measurement of sediments from Integrated Ocean Drilling Program Sites C0004, C0007, and C0009. The immobile component ratio (TiO2/P2O5) suggests that the depositional source of sedimentary rock underlying the Kumano forearc basin (Unit IV of Site C0009) is different from those in the Kumano forearc basin (Unit III of Site C0009). The results support that Unit IV is not a basin sediment but a part of an old accretionary prism. The source of Unit IV is similar to that of the Shikoku basin sediment currently situated in the accretionary toe and subduction input, based on mineral composition analysis. The similarity is well explained by sediment transport from the East China Sea. In the Kumano forearc basin, a paleothermal anomaly was detected at Site C0009 using vitrinite reflectance measurement. The anomaly peak is 200 m wide with a maximum temperature of 79 oC. Estimation of reflectance increase through vitrinite reaction promotion suggests that 80–100 oC thermal fluid had passed with at least 100 ky, thus causing the anomaly. The thermal fluid upwelling might relate to ancient splay fault activity near Site C0009. The thermal anomaly zone in the Kumano forearc basin at Site C0009 coincides with the currently fluid conduit zone. These results indicate that massive fluid circulation occurs spatially and temporally through a large thrust in the subduction zone.
{"title":"Thermal fluid migration in the Kumano forearc basin, Nankai Trough, estimated via vitrinite reflectance measurement","authors":"K. Kawabata, Arito Sakguchi, Y. Hamada, T. Tsuji, Y. Kitamura, S. Saito","doi":"10.1130/2018.2534(09)","DOIUrl":"https://doi.org/10.1130/2018.2534(09)","url":null,"abstract":"Sediment analysis and the thermal history of the Kumano forearc basin and slope basin sediments in the Nankai Trough were studied through chemical and mineral composition analyses and the vitrinite reflectance measurement of sediments from Integrated Ocean Drilling Program Sites C0004, C0007, and C0009. The immobile component ratio (TiO2/P2O5) suggests that the depositional source of sedimentary rock underlying the Kumano forearc basin (Unit IV of Site C0009) is different from those in the Kumano forearc basin (Unit III of Site C0009). The results support that Unit IV is not a basin sediment but a part of an old accretionary prism. The source of Unit IV is similar to that of the Shikoku basin sediment currently situated in the accretionary toe and subduction input, based on mineral composition analysis. The similarity is well explained by sediment transport from the East China Sea. In the Kumano forearc basin, a paleothermal anomaly was detected at Site C0009 using vitrinite reflectance measurement. The anomaly peak is 200 m wide with a maximum temperature of 79 oC. Estimation of reflectance increase through vitrinite reaction promotion suggests that 80–100 oC thermal fluid had passed with at least 100 ky, thus causing the anomaly. The thermal fluid upwelling might relate to ancient splay fault activity near Site C0009. The thermal anomaly zone in the Kumano forearc basin at Site C0009 coincides with the currently fluid conduit zone. These results indicate that massive fluid circulation occurs spatially and temporally through a large thrust in the subduction zone.","PeriodicalId":14836,"journal":{"name":"Japan Geoscience Union","volume":"27 1","pages":"141-154"},"PeriodicalIF":0.0,"publicationDate":"2018-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86762843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-05-24DOI: 10.3997/2352-8265.20140236
Yusuke Watanabe, H. Mikada, J. Takekawa
A novel scheme we proposed for analyzing S-wave azimuthal anisotropic angle in the subsurface below the seafloor has been applied to a tilted transversally isotropic medium of horizontal axis of symmetry (HTI). The proposed method utilizes the virtual source method to acquired data set with single ocean bottom seismometer and an air-gun array. To evaluate the effectiveness of our scheme, we conducted the numerical experiments for 3D model with a tilted anisotropic target. We applied this method to the synthetic data to make the virtual cross-dipole data at each shot location. Finally we applied the Alford rotation to estimate an azimuthal angle of the anisotropy of the target layer. Our numerical results show the limitations of the Alford rotation. Especially, the Alford rotation assumes that a dipole signal in one direction has an amplitude equivalent to the other dipole to the other normal direction in the cross dipole measurements. Since our approach could not assume the equality of the amplitudes for each of the cross dipole signals, we conclude that a strategy using full waveforms needs to be taken into consideration for estimating azimuthal angle of tilted targets.
{"title":"Estimation of azimuthal angle of S-wave anisotropy using virtual cross-dipole data generated by the Virtual Source Method","authors":"Yusuke Watanabe, H. Mikada, J. Takekawa","doi":"10.3997/2352-8265.20140236","DOIUrl":"https://doi.org/10.3997/2352-8265.20140236","url":null,"abstract":"A novel scheme we proposed for analyzing S-wave azimuthal anisotropic angle in the subsurface below the seafloor has been applied to a tilted transversally isotropic medium of horizontal axis of symmetry (HTI). The proposed method utilizes the virtual source method to acquired data set with single ocean bottom seismometer and an air-gun array. To evaluate the effectiveness of our scheme, we conducted the numerical experiments for 3D model with a tilted anisotropic target. We applied this method to the synthetic data to make the virtual cross-dipole data at each shot location. Finally we applied the Alford rotation to estimate an azimuthal angle of the anisotropy of the target layer. Our numerical results show the limitations of the Alford rotation. Especially, the Alford rotation assumes that a dipole signal in one direction has an amplitude equivalent to the other dipole to the other normal direction in the cross dipole measurements. Since our approach could not assume the equality of the amplitudes for each of the cross dipole signals, we conclude that a strategy using full waveforms needs to be taken into consideration for estimating azimuthal angle of tilted targets.","PeriodicalId":14836,"journal":{"name":"Japan Geoscience Union","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83663861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-05-24DOI: 10.3997/2352-8265.20140234
N. Tanimoto, H. Mikada, J. Takekawa
The sanding is recognized as one of the main problems in producing hydrocarbon resources. Although it is important to predict the occurrence of the sanding during production, the prediction or countermeasure still remains to be established. In this study, we conduct numerical simulation of fluid-solid multi-phase flow in order to investigate the factors which affect the occurrence of the sanding. Our numerical model is a fluid path consists of a set of planar plates of a finite length filled by fluid and a mound of small solid grains. A fluid flow is produced by the pressure gradient with different magnitudes between the both end of the path. We found that a few small grains leave the mound with a high pressure gradient whereas no floating grains were observed with a low pressure gradient. We also observed a reasonable change in the flow velocity and relative permeability when the floating of small grains occurs. This result indicates that the sanding can be detected by observing the time variation of flow rate during production.
{"title":"Numerical study on the interaction of solid grains with fluid in the production of natural resources","authors":"N. Tanimoto, H. Mikada, J. Takekawa","doi":"10.3997/2352-8265.20140234","DOIUrl":"https://doi.org/10.3997/2352-8265.20140234","url":null,"abstract":"The sanding is recognized as one of the main problems in producing hydrocarbon resources. Although it is important to predict the occurrence of the sanding during production, the prediction or countermeasure still remains to be established. In this study, we conduct numerical simulation of fluid-solid multi-phase flow in order to investigate the factors which affect the occurrence of the sanding. Our numerical model is a fluid path consists of a set of planar plates of a finite length filled by fluid and a mound of small solid grains. A fluid flow is produced by the pressure gradient with different magnitudes between the both end of the path. We found that a few small grains leave the mound with a high pressure gradient whereas no floating grains were observed with a low pressure gradient. We also observed a reasonable change in the flow velocity and relative permeability when the floating of small grains occurs. This result indicates that the sanding can be detected by observing the time variation of flow rate during production.","PeriodicalId":14836,"journal":{"name":"Japan Geoscience Union","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89318378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-05-24DOI: 10.3997/2352-8265.20140230
Kentaro Omori, Y. Oda
In natural earthquake tomography targeting a single volcano, temporary seismic observation is carried out in order to improve resolution in general. However, since the number of observation points and observation period are limited, it is important to grasp the presumable resolution in advance. Therefore, we conducted to examine how much resolution we can estimate the underground velocity structure by performing temporary seismic observation with how many observation points and observation period (the number of earthquakes), when carrying out natural seismic tomography on Hachijojima, Kozushima and Niijima of volcanic islands in Tokyo by using numerical experiments, a checkerboard resolution test (CRT). CRT is one of the reasonable tests to show the resolution of the natural earthquake tomography and to evaluate the influence of parameters with good resolution (a pair of grid point spacing, observation points and number of earthquakes) on the resolution. As the results of parametric study using CRT, we have found that in every island I have researched, when setting a pair of some grid point spacing, some number of observation points and some number of earthquakes, they were possible to image with a resolution of some degree. Considering that temporary seismic observation will be carried out in volcanic islands, Tokyo, in the future, the data obtained in this study will be very important for establishing the observation plan.
{"title":"Checkerboard resolution test for natural earthquake tomography of volcanic islands in Tokyo","authors":"Kentaro Omori, Y. Oda","doi":"10.3997/2352-8265.20140230","DOIUrl":"https://doi.org/10.3997/2352-8265.20140230","url":null,"abstract":"In natural earthquake tomography targeting a single volcano, temporary seismic observation is carried out in order to improve resolution in general. However, since the number of observation points and observation period are limited, it is important to grasp the presumable resolution in advance. Therefore, we conducted to examine how much resolution we can estimate the underground velocity structure by performing temporary seismic observation with how many observation points and observation period (the number of earthquakes), when carrying out natural seismic tomography on Hachijojima, Kozushima and Niijima of volcanic islands in Tokyo by using numerical experiments, a checkerboard resolution test (CRT). CRT is one of the reasonable tests to show the resolution of the natural earthquake tomography and to evaluate the influence of parameters with good resolution (a pair of grid point spacing, observation points and number of earthquakes) on the resolution. As the results of parametric study using CRT, we have found that in every island I have researched, when setting a pair of some grid point spacing, some number of observation points and some number of earthquakes, they were possible to image with a resolution of some degree. Considering that temporary seismic observation will be carried out in volcanic islands, Tokyo, in the future, the data obtained in this study will be very important for establishing the observation plan.","PeriodicalId":14836,"journal":{"name":"Japan Geoscience Union","volume":"39 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2018-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87213101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In a series of papers, Kawakatsu et al. (2015) and Kawakatsu (2016a, b, 2017) introduced and discussed a new parameter, ηκ, that characterizes the incidence angle dependence (relative to the symmetry axis) of seismic body wave velocities in a transverse isotropy (TI) system. With the properly defined new set of parameters, Kawakatsu (2016b) further demonstrated that sensitivities of those parameters to Rayleigh wave phase velocity made much more sense and thus they were useful for long-period seismology. More recently, Kawakatsu (2017) showed how the reflection and transmission coefficients behaved in terms of ηκ. During the course of these exercises, several nontrivial consequences of transverse isotropy are realized and summarized as follow: (1) a trade-off exists between ηκ and Vp/Vs-ratio if assumed for isotropy; (2) P-wave velocity (anisotropy) strongly influences the conversion efficiency of P-to-S and S-to-P, as much as S-wave velocity perturbation does; (3) Rayleigh wave phase velocity has substantially sensitivity to P-wave anisotropy near the surface. These findings, especially the last two, might deserve careful attention in interpretation of results of popular seismic analysis methods, such as receiver function analyses and ambient noise Rayleigh wave dispersion measurements. Especially, the strong influence of P-wave anisotropy to P-to-S and S-to-P conversion may be essential to the receiver function analysis, because, for isotropic media, we typically attribute the primary receiver function signals to S-wave velocity changes. Considering that the receiver function analysis has become a popular and powerful tool to investigate the crustal and upper mantle structures, it seems important to fully investigate to what extent and under what circumstances the effect might be significant.
{"title":"Unexpected Consequences of Transverse Isotropy","authors":"H. Kawakatsu","doi":"10.1785/0120200205","DOIUrl":"https://doi.org/10.1785/0120200205","url":null,"abstract":"In a series of papers, Kawakatsu et al. (2015) and Kawakatsu (2016a, b, 2017) introduced and discussed a new parameter, ηκ, that characterizes the incidence angle dependence (relative to the symmetry axis) of seismic body wave velocities in a transverse isotropy (TI) system. With the properly defined new set of parameters, Kawakatsu (2016b) further demonstrated that sensitivities of those parameters to Rayleigh wave phase velocity made much more sense and thus they were useful for long-period seismology. More recently, Kawakatsu (2017) showed how the reflection and transmission coefficients behaved in terms of ηκ. During the course of these exercises, several nontrivial consequences of transverse isotropy are realized and summarized as follow: (1) a trade-off exists between ηκ and Vp/Vs-ratio if assumed for isotropy; (2) P-wave velocity (anisotropy) strongly influences the conversion efficiency of P-to-S and S-to-P, as much as S-wave velocity perturbation does; (3) Rayleigh wave phase velocity has substantially sensitivity to P-wave anisotropy near the surface. These findings, especially the last two, might deserve careful attention in interpretation of results of popular seismic analysis methods, such as receiver function analyses and ambient noise Rayleigh wave dispersion measurements. Especially, the strong influence of P-wave anisotropy to P-to-S and S-to-P conversion may be essential to the receiver function analysis, because, for isotropic media, we typically attribute the primary receiver function signals to S-wave velocity changes. Considering that the receiver function analysis has become a popular and powerful tool to investigate the crustal and upper mantle structures, it seems important to fully investigate to what extent and under what circumstances the effect might be significant.","PeriodicalId":14836,"journal":{"name":"Japan Geoscience Union","volume":"19 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81953035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-03-14DOI: 10.5194/egusphere-egu2020-7844
S. Sherriff-Tadano, A. Abe‐Ouchi
Paleo reconstructions such as ice cores have revealed that the glacial period experienced frequent climate shifts between warm interstadials and cold stadials. The duration of these climate modes varied during glacial periods, and that both the interstadials and stadials were shorter during mid-glacial compared with early glacial period. Recent studies showed that the duration of the interstdials was controlled by the Antarctic temperature through its impact on the Atlantic Meridional Overturning Circulation (AMOC). However, similar relation was not found for the stadials, suggesting that other climate factors (e.g., differences in ice sheet size, greenhouse gases and insolation) might have played a role. In this study, we investigate the role of glacial ice sheets on the duration of stadials. For this purpose, freshwater hosing experiments are conducted with an atmosphere-ocean general circulation model MIROC4m under early-glacial and mid-glacial conditions. Then, a sensitivity experiment is conducted modifying only the configuration of the ice sheets. The impact of mid-glacial ice sheets on the duration of the stadials is evaluated by comparing the recovery time of the AMOC after the cessation of the freshwater forcing. We find that the expansion of glacial ice sheets during mid-glacial shortens the recovery time of the AMOC. Partially coupled experiments, which switch the surface winds between the two experiments, show that the differences in the surface wind cause the shorter recovery time under mid-glacial ice sheet. The wind shortens the recovery time by increasing the surface salinity and decreasing the sea ice at the deepwater formation region. Thus the results suggest that differences in the surface wind between mid-glacial and early glacial ice sheets play an important role in causing shorter stadials during mid-glacial period.