Muhammad Naveed, Urmil Bansal, Brent Norman Kaiser
Chickpeas are well adapted to rainfed conditions, but a lack of moisture during the reproductive phase can result in lower pod setting and ultimately reduced grain yield. The exact reasons for this reduction are not fully understood, partly because of the lack of information on soil moisture content (SMC) and water use during podding. This study aimed to address this knowledge gap by quantifying the impact of gradual drought on various yield components of desi-type genotypes using the fraction of transpirable soil water (FTSW) method. Two water treatments were applied at the start of anthesis: well-watered (WW) and drought-stressed (DS). The WW was maintained at 24% SMC, whereas the DS was dried to 3% SMC. The results showed that DS caused early podding (3.3 days less), with reductions in plant height (11.4 cm), leaf area (1249.5 cm2), flowers (18.6), pods (27.4), seeds (37.0), grain yield (0.2 g), aboveground dry biomass (11.4 g) and harvest index (0.2 g), while increasing flower abortion (14.6) and seed biomass (1.5 g). However, diverse genotypic responses were observed to treatments, as well as water usage, FTSW and SMC that triggered pods which ranged from 1.12 to 1.89 L, 0.05 to 0.43 and 4.0% to 12.2%, respectively. A positive association between days taken and the amount of water used to terminate pods indicated that quicker-triggering genotypes, such as Rupali and Genesis 836, consumed less water to develop pods than Flipper, ICCV_06109 and PBA Slasher did. Conversely, the negative association between the amount of water used and the number of pods triggered, seeds and grain yield explained the superior performance of Rupali and Genesis 836. These genotypes extracted less water (FTSW = 0.36 and 0.43; SMC = 10.3% and 12.2%, respectively) to develop pods and maintained favourable photosynthesis at lower transpiration rates for longer periods, allowing them to use residual moisture more efficiently. Our research offers crucial insights that can be beneficial to breeders and physiologists, paving the way for future studies aimed at developing drought-tolerant genotypes.
{"title":"Impact of Soil Moisture Depletion on Various Yield Components and Water Usage to Trigger Pods in Chickpea (Cicer arietinum L.) Desi Genotypes","authors":"Muhammad Naveed, Urmil Bansal, Brent Norman Kaiser","doi":"10.1111/jac.12734","DOIUrl":"https://doi.org/10.1111/jac.12734","url":null,"abstract":"<p>Chickpeas are well adapted to rainfed conditions, but a lack of moisture during the reproductive phase can result in lower pod setting and ultimately reduced grain yield. The exact reasons for this reduction are not fully understood, partly because of the lack of information on soil moisture content (SMC) and water use during podding. This study aimed to address this knowledge gap by quantifying the impact of gradual drought on various yield components of desi-type genotypes using the fraction of transpirable soil water (FTSW) method. Two water treatments were applied at the start of anthesis: well-watered (WW) and drought-stressed (DS). The WW was maintained at 24% SMC, whereas the DS was dried to 3% SMC. The results showed that DS caused early podding (3.3 days less), with reductions in plant height (11.4 cm), leaf area (1249.5 cm<sup>2</sup>), flowers (18.6), pods (27.4), seeds (37.0), grain yield (0.2 g), aboveground dry biomass (11.4 g) and harvest index (0.2 g), while increasing flower abortion (14.6) and seed biomass (1.5 g). However, diverse genotypic responses were observed to treatments, as well as water usage, FTSW and SMC that triggered pods which ranged from 1.12 to 1.89 L, 0.05 to 0.43 and 4.0% to 12.2%, respectively. A positive association between days taken and the amount of water used to terminate pods indicated that quicker-triggering genotypes, such as Rupali and Genesis 836, consumed less water to develop pods than Flipper, ICCV_06109 and PBA Slasher did. Conversely, the negative association between the amount of water used and the number of pods triggered, seeds and grain yield explained the superior performance of Rupali and Genesis 836. These genotypes extracted less water (FTSW = 0.36 and 0.43; SMC = 10.3% and 12.2%, respectively) to develop pods and maintained favourable photosynthesis at lower transpiration rates for longer periods, allowing them to use residual moisture more efficiently. Our research offers crucial insights that can be beneficial to breeders and physiologists, paving the way for future studies aimed at developing drought-tolerant genotypes.</p>","PeriodicalId":14864,"journal":{"name":"Journal of Agronomy and Crop Science","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jac.12734","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141639622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}