首页 > 最新文献

Journal of Agronomy and Crop Science最新文献

英文 中文
Critical Periods for Waterlogging Effects on Yield and Grain Components in Sunflower (Helianthus annuus), Soybean (Glycine max) and Sorghum (Sorghum bicolor): A Comparative Study 水涝对向日葵(Helianthus annuus)、大豆(Glycine max)和高粱(Sorghum bicolor)产量和籽粒成分影响的临界期:比较研究
IF 3.7 2区 农林科学 Q1 AGRONOMY Pub Date : 2024-09-20 DOI: 10.1111/jac.12765
Miqueas N. Sandoval, Alfredo G. Cirilo, Marcelo J. Paytas, Sebastián G. Zuil, Natalia G. Izquierdo

Waterlogging affects a high proportion of cultivated land worldwide. Sunflower, soybean and sorghum growth and yield can be affected differently depending on the moment and duration of waterlogging stress. If stress conditions occur during the critical period for yield potential definition (flowering in, sunflower and sorghum and end of pod formation in soybean) they directly reduce grain number, but if the stress occurs during the grain-filling period, grain weight would be affected. The aim of this study focuses on determining the effects of the moment and duration of waterlogging stress on the yield and its components in sunflower, soybean and sorghum. This information will be useful to understand the effects of waterlogging on yield and to choose a suitable crop or sowing date based on predicted weather conditions for a certain place. To achieve this objective, four experiments were conducted at the Experimental Station of INTA (Reconquista, Santa Fe, Argentina). The effect of the waterlogging in terms of moment (vegetative, critical and grain-filling periods) and duration (3, 7 and 10 days) on the three crops was evaluated. Sunflower expressed the most negative impact of waterlogging during the vegetative stages (26, 78 and 98% of yield losses with 3, 7 and 10 days, respectively) while soybean suffered major reductions when the stress occurred during the critical period (5%–17% of yield loses). Sorghum did not express any negative responses for the moments and durations tested. This study suggests that the critical period for a waterlogging event differs, according to crops, from the critical period cited for other stresses. Moreover, the magnitude of the damage will mainly depend on the duration of the event. Further studies are needed to elucidate different physiological responses of the species during waterlogging stress.

涝害影响着全球很大一部分耕地。向日葵、大豆和高粱的生长和产量会因渍水胁迫的时刻和持续时间而受到不同的影响。如果胁迫条件发生在确定产量潜力的关键时期(向日葵和高粱的开花期以及大豆的豆荚形成末期),则会直接减少籽粒数,但如果胁迫发生在籽粒充实期,则会影响籽粒重量。本研究的目的是确定渍水胁迫的时刻和持续时间对向日葵、大豆和高粱产量及其组成部分的影响。这些信息将有助于了解渍水对产量的影响,并根据预测的某地天气条件选择合适的作物或播种日期。为实现这一目标,在 INTA 实验站(阿根廷圣菲省雷孔奎斯塔)进行了四项实验。实验评估了积水对三种作物的影响,包括积水时间(植株期、关键期和籽粒饱满期)和持续时间(3 天、7 天和 10 天)。向日葵在无性期受涝害的负面影响最大(3、7 和 10 天的产量损失分别为 26%、78% 和 98%),而大豆在临界期受涝害的影响最大(5%-17% 的产量损失)。高粱在测试的时刻和持续时间内没有表现出任何负面反应。这项研究表明,不同作物的涝害临界期与其他胁迫的临界期不同。此外,损害的程度主要取决于事件的持续时间。还需要进一步研究,以阐明物种在涝害胁迫期间的不同生理反应。
{"title":"Critical Periods for Waterlogging Effects on Yield and Grain Components in Sunflower (Helianthus annuus), Soybean (Glycine max) and Sorghum (Sorghum bicolor): A Comparative Study","authors":"Miqueas N. Sandoval,&nbsp;Alfredo G. Cirilo,&nbsp;Marcelo J. Paytas,&nbsp;Sebastián G. Zuil,&nbsp;Natalia G. Izquierdo","doi":"10.1111/jac.12765","DOIUrl":"https://doi.org/10.1111/jac.12765","url":null,"abstract":"<div>\u0000 \u0000 <p>Waterlogging affects a high proportion of cultivated land worldwide. Sunflower, soybean and sorghum growth and yield can be affected differently depending on the moment and duration of waterlogging stress. If stress conditions occur during the critical period for yield potential definition (flowering in, sunflower and sorghum and end of pod formation in soybean) they directly reduce grain number, but if the stress occurs during the grain-filling period, grain weight would be affected. The aim of this study focuses on determining the effects of the moment and duration of waterlogging stress on the yield and its components in sunflower, soybean and sorghum. This information will be useful to understand the effects of waterlogging on yield and to choose a suitable crop or sowing date based on predicted weather conditions for a certain place. To achieve this objective, four experiments were conducted at the Experimental Station of INTA (Reconquista, Santa Fe, Argentina). The effect of the waterlogging in terms of moment (vegetative, critical and grain-filling periods) and duration (3, 7 and 10 days) on the three crops was evaluated. Sunflower expressed the most negative impact of waterlogging during the vegetative stages (26, 78 and 98% of yield losses with 3, 7 and 10 days, respectively) while soybean suffered major reductions when the stress occurred during the critical period (5%–17% of yield loses). Sorghum did not express any negative responses for the moments and durations tested. This study suggests that the critical period for a waterlogging event differs, according to crops, from the critical period cited for other stresses. Moreover, the magnitude of the damage will mainly depend on the duration of the event. Further studies are needed to elucidate different physiological responses of the species during waterlogging stress.</p>\u0000 </div>","PeriodicalId":14864,"journal":{"name":"Journal of Agronomy and Crop Science","volume":"210 5","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142273285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-Environment Analysis of Nutritional and Grain Quality Traits in Relation to Grain Yield Under Drought and Terminal Heat Stress in Bread Wheat and Durum Wheat 面包小麦和杜伦小麦在干旱和末期热胁迫下营养和谷粒品质性状与谷粒产量关系的多环境分析
IF 3.7 2区 农林科学 Q1 AGRONOMY Pub Date : 2024-09-18 DOI: 10.1111/jac.12763
Yashavanthakumar Kakanur Jagadeesha, Sudhir Navathe, Gopalareddy Krishnappa, Divya Ambati, Vijendra Baviskar, Suma Biradar, Nilesh Magar, Chandra Nath Mishra, Harohalli Masthigowda Mamrutha, Velu Govindan, Gyanendra Pratap Singh, Gyanendra Singh

Heat and drought are two important constraints to global wheat productivity; understanding the genotypic responses for quality parameters under harsh production conditions (drought and heat) is very important for developing nutrient-dense wheat varieties. A set of 15 modern bread wheat (Triticum aestivum L. subsp. aestivum) and durum wheat (Triticum turgidum subsp. durum) cultivars were tested in nine environments, including three different production conditions (normal, heat and drought) during 2020–21. Genotype stability performance for yield, nutrition and quality parameters is assessed using multienvironment trials through AMMI and GGE Biplot analysis. We discovered intriguing stress dynamics in grain zinc content (Zn) and grain iron content (Fe). Under heat stress, zinc concentration increases but decreases under drought stress, while iron does the opposite. Selecting zinc, starch and kernel weight under terminal heat stress can boost yield. Protein content and yield are inversely related, making it difficult for breeders to optimise both traits. G × E interactions and stability indices across all environments have found genotypes with high-yielding stable genotypes, G12 (MP1358) (42.09 ppm) and G5 (HI1544) (42.41 ppm) have high Fe content. G12 (MP1358) (14.98%) ranked highest in protein concentration. Meanwhile, for Zn content, G11 (MACS 4058) (45.23 ppm) and G15 (WH730) (42.44 ppm) were top performers across environments. G7 (HI 1636) and G12 (MP1358) stand out as a win-win genotype for their high potential and stability in yield, protein, Zn and Fe content. Our study shows the complex relationships and possible suggestions for targeted breeding programmes under heat and drought stress conditions to improve wheat grain quality and micronutrient profiles without yield loss.

高温和干旱是全球小麦生产力的两个重要制约因素;了解在苛刻的生产条件(干旱和高温)下小麦品质参数的基因型反应对于开发营养丰富的小麦品种非常重要。在 2020-21 年期间,对 15 个现代面包小麦(Triticum aestivum L. subsp.通过 AMMI 和 GGE Biplot 分析,利用多环境试验评估了基因型在产量、营养和品质参数方面的稳定性能。我们发现了谷物锌含量(Zn)和铁含量(Fe)的有趣胁迫动态。在热胁迫下,锌含量会增加,但在干旱胁迫下会减少,而铁含量则相反。在终期热胁迫下选择锌、淀粉和籽粒重量可提高产量。蛋白质含量与产量成反比,因此育种者很难优化这两个性状。在所有环境中的 G × E 相互作用和稳定性指数发现,高产稳产基因型 G12(MP1358)(42.09 ppm)和 G5(HI1544)(42.41 ppm)的铁含量较高。G12(MP1358)(14.98%)的蛋白质含量最高。同时,在锌含量方面,G11(MACS 4058)(45.23 ppm)和 G15(WH730)(42.44 ppm)在各种环境中表现最佳。G7(HI 1636)和 G12(MP1358)因其在产量、蛋白质、锌和铁含量方面的高潜力和稳定性而成为双赢基因型。我们的研究表明,在高温和干旱胁迫条件下,小麦籽粒品质和微量营养元素含量之间存在复杂的关系,并可能为有针对性的育种计划提供建议,从而在不造成产量损失的情况下改善小麦籽粒品质和微量营养元素含量。
{"title":"Multi-Environment Analysis of Nutritional and Grain Quality Traits in Relation to Grain Yield Under Drought and Terminal Heat Stress in Bread Wheat and Durum Wheat","authors":"Yashavanthakumar Kakanur Jagadeesha,&nbsp;Sudhir Navathe,&nbsp;Gopalareddy Krishnappa,&nbsp;Divya Ambati,&nbsp;Vijendra Baviskar,&nbsp;Suma Biradar,&nbsp;Nilesh Magar,&nbsp;Chandra Nath Mishra,&nbsp;Harohalli Masthigowda Mamrutha,&nbsp;Velu Govindan,&nbsp;Gyanendra Pratap Singh,&nbsp;Gyanendra Singh","doi":"10.1111/jac.12763","DOIUrl":"https://doi.org/10.1111/jac.12763","url":null,"abstract":"<div>\u0000 \u0000 <p>Heat and drought are two important constraints to global wheat productivity; understanding the genotypic responses for quality parameters under harsh production conditions (drought and heat) is very important for developing nutrient-dense wheat varieties. A set of 15 modern bread wheat (<i>Triticum aestivum</i> L. subsp. <i>aestivum</i>) and durum wheat (<i>Triticum turgidum</i> subsp. <i>durum</i>) cultivars were tested in nine environments, including three different production conditions (normal, heat and drought) during 2020–21. Genotype stability performance for yield, nutrition and quality parameters is assessed using multienvironment trials through AMMI and GGE Biplot analysis. We discovered intriguing stress dynamics in grain zinc content (Zn) and grain iron content (Fe). Under heat stress, zinc concentration increases but decreases under drought stress, while iron does the opposite. Selecting zinc, starch and kernel weight under terminal heat stress can boost yield. Protein content and yield are inversely related, making it difficult for breeders to optimise both traits. G × E interactions and stability indices across all environments have found genotypes with high-yielding stable genotypes, G12 (MP1358) (42.09 ppm) and G5 (HI1544) (42.41 ppm) have high Fe content. G12 (MP1358) (14.98%) ranked highest in protein concentration. Meanwhile, for Zn content, G11 (MACS 4058) (45.23 ppm) and G15 (WH730) (42.44 ppm) were top performers across environments. G7 (HI 1636) and G12 (MP1358) stand out as a win-win genotype for their high potential and stability in yield, protein, Zn and Fe content. Our study shows the complex relationships and possible suggestions for targeted breeding programmes under heat and drought stress conditions to improve wheat grain quality and micronutrient profiles without yield loss.</p>\u0000 </div>","PeriodicalId":14864,"journal":{"name":"Journal of Agronomy and Crop Science","volume":"210 5","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142244850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the Effects of Irrigation Schedules on Evapotranspiration Partitioning and Crop Water Productivity of Winter Wheat (Triticum aestivum L.) in North China Plain Using RZWQM2 利用RZWQM2探索灌溉时间表对华北平原冬小麦蒸散分配和作物水分生产率的影响
IF 3.7 2区 农林科学 Q1 AGRONOMY Pub Date : 2024-09-17 DOI: 10.1111/jac.12760
Mingliang Gao, Fuying Liu, Haoze Zhang, Huabin Yuan, Rui Zong, Mingming Zhang, Quanqi Li

A significant basis for winter wheat production in China is the North China Plain (NCP). However, winter wheat production is severely hampered by water shortages in this area. Transpiration co-occurs with photosynthesis, affecting crop water productivity (CWP). The purpose of this experiment is to use Root Zone Water Quality Model (RZWQM2) to study actual transpiration (AT) and evaporation (AE) under different irrigation schedules and then determine its impact on grain yield and CWP. In the 2019–2022 winter wheat growing seasons, four experimental treatments were set up: no irrigation during growth period (I0), irrigation at jointing stage (I1), irrigation at jointing and anthesis stage (I2) and irrigation at jointing, anthesis and filling stage (I3), and the RZWQM2 model was calibrated and verified in this experiment. A higher yield (7840.90 kg/ha for an average of 3 years) and the highest CWP can be obtained in I2 treatment (increased by 12.72%, 5.98% and 4.28% for an average of 3 years, respectively, compared to the other three treatments). The model has a good simulation effect on soil water dynamic change and plant physiological performance of the four treatments; the model showed that irrigation increased the simulated AE and AT; however, reduced AE/actual evapotranspiration. For the whole growth period, AT in I3, I2, I1 and I0 was 351.70, 317.30, 271.50 and 223.70 mm, respectively. Especially in the late growth stage of winter wheat, the AT in I3 was 65.20 mm for an average of 3 years, which was significantly higher than I2, I1 and I0 by 31.60, 13.50 and 10.00 mm, respectively. Thus, I3 increased AT at the late growth stage of winter wheat and resulted in an increase in grain yield; however, it did not significantly increase CWP. This study demonstrated that irrigation at winter wheat jointing and anthesis stages can improve the CWP to achieve the goal of stable grain yield and water saving.

华北平原(NCP)是中国冬小麦生产的重要基地。然而,该地区的水资源短缺严重阻碍了冬小麦的生产。蒸腾作用与光合作用同时进行,影响作物水分生产率(CWP)。本试验的目的是利用根区水质模型(RZWQM2)研究不同灌溉计划下的实际蒸腾(AT)和蒸发(AE),然后确定其对谷物产量和 CWP 的影响。在2019-2022年冬小麦生长期,设置了生长期不灌溉(I0)、拔节期灌溉(I1)、拔节期和开花期灌溉(I2)以及拔节期、开花期和灌浆期灌溉(I3)四个试验处理,并在该试验中对RZWQM2模型进行了校准和验证。I2 处理的产量较高(平均 3 年为 7840.90 千克/公顷),CWP 最高(平均 3 年分别比其他三个处理增加 12.72%、5.98% 和 4.28%)。该模型对四个处理的土壤水动态变化和植物生理表现有较好的模拟效果;模型显示,灌溉增加了模拟 AE 和 AT,但降低了 AE/实际蒸散量。在整个生长期,I3、I2、I1 和 I0 的 AT 分别为 351.70、317.30、271.50 和 223.70 毫米。特别是在冬小麦生长后期,I3 的平均 AT 为 65.20 毫米,3 年平均值分别比 I2、I1 和 I0 显著高出 31.60、13.50 和 10.00 毫米。因此,I3 增加了冬小麦生长后期的蒸腾速率(AT),从而提高了谷物产量,但并未显著提高 CWP。该研究表明,在冬小麦拔节期和开花期灌溉可以提高 CWP,从而达到稳产节水的目的。
{"title":"Exploring the Effects of Irrigation Schedules on Evapotranspiration Partitioning and Crop Water Productivity of Winter Wheat (Triticum aestivum L.) in North China Plain Using RZWQM2","authors":"Mingliang Gao,&nbsp;Fuying Liu,&nbsp;Haoze Zhang,&nbsp;Huabin Yuan,&nbsp;Rui Zong,&nbsp;Mingming Zhang,&nbsp;Quanqi Li","doi":"10.1111/jac.12760","DOIUrl":"10.1111/jac.12760","url":null,"abstract":"<div>\u0000 \u0000 <p>A significant basis for winter wheat production in China is the North China Plain (NCP). However, winter wheat production is severely hampered by water shortages in this area. Transpiration co-occurs with photosynthesis, affecting crop water productivity (CWP). The purpose of this experiment is to use Root Zone Water Quality Model (RZWQM2) to study actual transpiration (AT) and evaporation (AE) under different irrigation schedules and then determine its impact on grain yield and CWP. In the 2019–2022 winter wheat growing seasons, four experimental treatments were set up: no irrigation during growth period (I0), irrigation at jointing stage (I1), irrigation at jointing and anthesis stage (I2) and irrigation at jointing, anthesis and filling stage (I3), and the RZWQM2 model was calibrated and verified in this experiment. A higher yield (7840.90 kg/ha for an average of 3 years) and the highest CWP can be obtained in I2 treatment (increased by 12.72%, 5.98% and 4.28% for an average of 3 years, respectively, compared to the other three treatments). The model has a good simulation effect on soil water dynamic change and plant physiological performance of the four treatments; the model showed that irrigation increased the simulated AE and AT; however, reduced AE/actual evapotranspiration. For the whole growth period, AT in I3, I2, I1 and I0 was 351.70, 317.30, 271.50 and 223.70 mm, respectively. Especially in the late growth stage of winter wheat, the AT in I3 was 65.20 mm for an average of 3 years, which was significantly higher than I2, I1 and I0 by 31.60, 13.50 and 10.00 mm, respectively. Thus, I3 increased AT at the late growth stage of winter wheat and resulted in an increase in grain yield; however, it did not significantly increase CWP. This study demonstrated that irrigation at winter wheat jointing and anthesis stages can improve the CWP to achieve the goal of stable grain yield and water saving.</p>\u0000 </div>","PeriodicalId":14864,"journal":{"name":"Journal of Agronomy and Crop Science","volume":"210 5","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142236375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Holistic Approach to the Selection of Soybean (Glycine max) Cultivars for Shade Environments Based on Morphological, Yield and Genetic Traits 基于形态、产量和遗传性状的阴凉环境下大豆(Glycine max)栽培品种整体选育方法
IF 3.7 2区 农林科学 Q1 AGRONOMY Pub Date : 2024-09-16 DOI: 10.1111/jac.12759
Wellington Ferreira Campos, João Paulo Ribeiro Leite, Fábio Santos Matos, Leonardo Barros Dobbss, Alessandro Nicoli, Anderson Barbosa Evaristo

The reduction of photosynthetically active radiation impacts the growth and productivity of soybean in agroforestry and intercropping systems. Thus, this report explored the responses of 16 soybean cultivars submitted to shade levels in field conditions. Multi-faceted and relative importance analyses revealed that the steam diameter and plant height are fundamental morphological markers for selecting shade-resilient cultivars, both were high and positively correlated to yield components. Moreover, the responses to shade varied among soybean cultivars, with certain genotypes demonstrating distinct tolerance levels, which allowed also the estimative of genetic variance that revealed strong participation of genetic components in responses to shade. Multivariate and clustering analysis using steam diameter and plant height in combination with two yield components resulted in the identification of four soybean cultivars more tolerant to shade environments and two sensible. Therefore, this report provides insights into soybean cultivation under varying light conditions, provides a robust foundation for the integration of morphological and yield markers in breeding programmes focused on shade tolerance and guides future endeavours in crop improvement for optimal and sustainable yield and resilience in the climate change context.

光合有效辐射的减少会影响农林业和间作系统中大豆的生长和产量。因此,本报告探讨了 16 个大豆栽培品种在田间条件下对遮荫程度的反应。多方面和相对重要性分析表明,蒸腾直径和株高是选择耐阴栽培品种的基本形态标记,二者与产量成分高度正相关。此外,大豆栽培品种对遮荫的反应各不相同,某些基因型表现出不同的耐荫水平,这也使得对遗传变异的估计显示出遗传成分在对遮荫的反应中的强烈参与。利用蒸腾直径和株高以及两个产量成分进行多变量和聚类分析,确定了四个更耐阴的大豆栽培品种和两个敏感的大豆栽培品种。因此,本报告深入探讨了不同光照条件下的大豆栽培问题,为将形态和产量标记整合到以耐荫性为重点的育种计划中奠定了坚实的基础,并指导了未来的作物改良工作,以在气候变化背景下实现最佳和可持续的产量及抗逆性。
{"title":"A Holistic Approach to the Selection of Soybean (Glycine max) Cultivars for Shade Environments Based on Morphological, Yield and Genetic Traits","authors":"Wellington Ferreira Campos,&nbsp;João Paulo Ribeiro Leite,&nbsp;Fábio Santos Matos,&nbsp;Leonardo Barros Dobbss,&nbsp;Alessandro Nicoli,&nbsp;Anderson Barbosa Evaristo","doi":"10.1111/jac.12759","DOIUrl":"https://doi.org/10.1111/jac.12759","url":null,"abstract":"<div>\u0000 \u0000 <p>The reduction of photosynthetically active radiation impacts the growth and productivity of soybean in agroforestry and intercropping systems. Thus, this report explored the responses of 16 soybean cultivars submitted to shade levels in field conditions. Multi-faceted and relative importance analyses revealed that the steam diameter and plant height are fundamental morphological markers for selecting shade-resilient cultivars, both were high and positively correlated to yield components. Moreover, the responses to shade varied among soybean cultivars, with certain genotypes demonstrating distinct tolerance levels, which allowed also the estimative of genetic variance that revealed strong participation of genetic components in responses to shade. Multivariate and clustering analysis using steam diameter and plant height in combination with two yield components resulted in the identification of four soybean cultivars more tolerant to shade environments and two sensible. Therefore, this report provides insights into soybean cultivation under varying light conditions, provides a robust foundation for the integration of morphological and yield markers in breeding programmes focused on shade tolerance and guides future endeavours in crop improvement for optimal and sustainable yield and resilience in the climate change context.</p>\u0000 </div>","PeriodicalId":14864,"journal":{"name":"Journal of Agronomy and Crop Science","volume":"210 5","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142234982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of Smart Agriculture Techniques in Food Security: A Systematic Review 智能农业技术在粮食安全中的作用:系统综述
IF 3.7 2区 农林科学 Q1 AGRONOMY Pub Date : 2024-09-16 DOI: 10.1111/jac.12758
Tanveer Ahmad, Samreen Ahsan, Muhammad Adil Farooq, Muhammad Gulzar, Mubashir Mubben, Ashiq Hussain, Adnan Ahmed, Afifa Asif, Samina Kauser, Ayesha Najam,  Sidrah, Nida Firdous

Agriculture plays an important part in the overall growth and development of a nation. Concerns about agriculture continue to be a recalcitrant obstacle in the path of upward movement. Although agricultural yields are increased, however, low- and middle-income countries still have difficulty in producing all of the required foods with the current state of agricultural technology. Smart agriculture is becoming increasingly important to the farmers as a means of ensuring optimal field growth and higher crop yield. This systematic study analysed and briefly explained the effects of using smart agriculture techniques (SATs) from a variety of countries, including China, the United States of America, Australia, India, the Philippine Islands, South Africa, Pakistan and Iran, among others. Increased climatic change resulting in abiotic stress and other harmful effects on plants have resulted in decreased productivity under traditional agricultural practices. Stats from the literature have shown that the launching of SATs has resulted in a significant increase in cotton–wheat and rice–wheat crop yields, resultantly increased incomes of the farmers. Application of SATs, including satellite remote sensing, drones, machine learning and image processing, monitoring, wireless sensor networks, IoT–based robotics, precision agriculture and agroforestry could be extremely useful in developing intelligent agricultural systems in underdeveloped and developing countries, with improved plant growth, high crop yield and ensuring food security. These technologies could help farmers by storing additional water, spraying pesticides with drones, practicing precision agriculture and employing sensors for assessing different environmental parameters. By making efficient use of these technologies, countries could be able to increase the yield of their crops, which, in turn, will contribute to the reduction of poverty and the elimination of food insecurity.

农业在国家的整体增长和发展中发挥着重要作用。对农业的担忧仍然是前进道路上的顽固障碍。虽然农业产量有所提高,但中低收入国家仍难以在现有农业技术条件下生产出所需的全部粮食。智能农业作为确保田间最佳生长和提高作物产量的一种手段,对农民来说越来越重要。这项系统性研究分析并简要说明了中国、美国、澳大利亚、印度、菲律宾群岛、南非、巴基斯坦和伊朗等多个国家使用智能农业技术(SATs)的效果。气候变化加剧导致非生物压力和其他对植物的有害影响,从而导致传统农业生产方式下的生产力下降。文献统计表明,卫星遥感技术的应用大大提高了棉花-小麦和水稻-小麦作物的产量,从而增加了农民的收入。卫星遥感、无人机、机器学习和图像处理、监测、无线传感器网络、基于物联网的机器人技术、精准农业和农林业等卫星遥感技术的应用,对于不发达国家和发展中国家开发智能农业系统、改善植物生长、提高作物产量和确保粮食安全极为有用。这些技术可以帮助农民储存更多的水,用无人机喷洒农药,实施精准农业,并利用传感器评估不同的环境参数。通过有效利用这些技术,各国可以提高作物产量,这反过来将有助于减少贫困和消除粮食不安全。
{"title":"Role of Smart Agriculture Techniques in Food Security: A Systematic Review","authors":"Tanveer Ahmad,&nbsp;Samreen Ahsan,&nbsp;Muhammad Adil Farooq,&nbsp;Muhammad Gulzar,&nbsp;Mubashir Mubben,&nbsp;Ashiq Hussain,&nbsp;Adnan Ahmed,&nbsp;Afifa Asif,&nbsp;Samina Kauser,&nbsp;Ayesha Najam,&nbsp; Sidrah,&nbsp;Nida Firdous","doi":"10.1111/jac.12758","DOIUrl":"https://doi.org/10.1111/jac.12758","url":null,"abstract":"<div>\u0000 \u0000 <p>Agriculture plays an important part in the overall growth and development of a nation. Concerns about agriculture continue to be a recalcitrant obstacle in the path of upward movement. Although agricultural yields are increased, however, low- and middle-income countries still have difficulty in producing all of the required foods with the current state of agricultural technology. Smart agriculture is becoming increasingly important to the farmers as a means of ensuring optimal field growth and higher crop yield. This systematic study analysed and briefly explained the effects of using smart agriculture techniques (SATs) from a variety of countries, including China, the United States of America, Australia, India, the Philippine Islands, South Africa, Pakistan and Iran, among others. Increased climatic change resulting in abiotic stress and other harmful effects on plants have resulted in decreased productivity under traditional agricultural practices. Stats from the literature have shown that the launching of SATs has resulted in a significant increase in cotton–wheat and rice–wheat crop yields, resultantly increased incomes of the farmers. Application of SATs, including satellite remote sensing, drones, machine learning and image processing, monitoring, wireless sensor networks, IoT–based robotics, precision agriculture and agroforestry could be extremely useful in developing intelligent agricultural systems in underdeveloped and developing countries, with improved plant growth, high crop yield and ensuring food security. These technologies could help farmers by storing additional water, spraying pesticides with drones, practicing precision agriculture and employing sensors for assessing different environmental parameters. By making efficient use of these technologies, countries could be able to increase the yield of their crops, which, in turn, will contribute to the reduction of poverty and the elimination of food insecurity.</p>\u0000 </div>","PeriodicalId":14864,"journal":{"name":"Journal of Agronomy and Crop Science","volume":"210 5","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142234716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distinguishing High Daytime From Nighttime Temperature Effects During Early Vegetative Growth in Cotton 区分棉花早期植株生长过程中白天高温和夜间温度的影响
IF 3.7 2区 农林科学 Q1 AGRONOMY Pub Date : 2024-09-16 DOI: 10.1111/jac.12757
Ved Parkash, John Snider, Kelvin Jimmy Awori, Jhansy Reddy Katta, Cristiane Pilon, Viktor Tishchenko

High-temperature limits early season vegetative growth of cotton, and the physiological response of cotton (Gossypium hirsutum L.) to high daytime or nighttime temperature needs to be explored. The objectives of the current study were to determine (1) plant growth response, (2) physiological contributors to variation in biomass production and (3) mechanisms driving variation in net photosynthetic rate (AN) in response to different combinations of high daytime and nighttime temperatures. Beginning at planting, cotton was exposed to four different growth temperature regimes: (1) optimum (30/20°C day/night), (2) high nighttime (30/30°C), (3) high daytime (40/20°C) and combined high daytime and nighttime (40/30°C) for 4 weeks. Relative to the 30/20°C treatment, plant growth was positively affected by high nighttime temperature and negatively affected by high daytime temperature and combined high day and night temperature. Increased leaf area mainly contributed to increased biomass production in high nighttime temperature; higher nighttime respiration (RN) drove reductions in biomass in combined high daytime and nighttime temperature; and decreased leaf area and AN and increased RN drove reductions in biomass under high daytime temperature alone. AN was not impacted by high nighttime temperature, while decreased under high daytime temperature and increased with combined high daytime and nighttime temperature. Adjustments in leaf traits contributed to increases in AN in combined high daytime and nighttime temperature, and increased photorespiration and respiration contributed to reductions in AN under high daytime temperature. Overall, early season vegetative growth of cotton exhibited differential responses to high daytime and nighttime temperatures.

高温限制了棉花早期的无性生长,因此需要探索棉花(Gossypium hirsutum L.)对白天或夜间高温的生理反应。本研究的目的是确定:(1)植物生长反应;(2)生物量产生变化的生理因素;(3)昼夜高温不同组合下净光合速率(AN)变化的驱动机制。从播种开始,棉花暴露在四种不同的生长温度条件下:(1) 最适温度(30/20°C 昼夜温差),(2) 夜间高温(30/30°C),(3) 白天高温(40/20°C)和昼夜高温组合(40/30°C),持续四周。与 30/20°C 处理相比,植物生长受到夜间高温的积极影响,而受到白天高温和昼夜联合高温的消极影响。在夜间高温条件下,叶面积增加是生物量增加的主要原因;在昼夜温差较大的情况下,夜间呼吸量(RN)增加导致生物量减少;在白天高温条件下,叶面积和 AN 减少以及 RN 增加导致生物量减少。AN 不受夜间高温的影响,但在白天高温下会减少,在白天和夜间高温共同作用下会增加。叶片性状的调整导致了昼夜温差大时 AN 的增加,而光呼吸和呼吸作用的增加导致了昼夜温差大时 AN 的减少。总体而言,棉花早季无性生长对白天和夜间高温的反应各不相同。
{"title":"Distinguishing High Daytime From Nighttime Temperature Effects During Early Vegetative Growth in Cotton","authors":"Ved Parkash,&nbsp;John Snider,&nbsp;Kelvin Jimmy Awori,&nbsp;Jhansy Reddy Katta,&nbsp;Cristiane Pilon,&nbsp;Viktor Tishchenko","doi":"10.1111/jac.12757","DOIUrl":"https://doi.org/10.1111/jac.12757","url":null,"abstract":"<p>High-temperature limits early season vegetative growth of cotton, and the physiological response of cotton (<i>Gossypium hirsutum</i> L.) to high daytime or nighttime temperature needs to be explored. The objectives of the current study were to determine (1) plant growth response, (2) physiological contributors to variation in biomass production and (3) mechanisms driving variation in net photosynthetic rate (<i>A</i><sub>N</sub>) in response to different combinations of high daytime and nighttime temperatures. Beginning at planting, cotton was exposed to four different growth temperature regimes: (1) optimum (30/20°C day/night), (2) high nighttime (30/30°C), (3) high daytime (40/20°C) and combined high daytime and nighttime (40/30°C) for 4 weeks. Relative to the 30/20°C treatment, plant growth was positively affected by high nighttime temperature and negatively affected by high daytime temperature and combined high day and night temperature. Increased leaf area mainly contributed to increased biomass production in high nighttime temperature; higher nighttime respiration (<i>R</i><sub>N</sub>) drove reductions in biomass in combined high daytime and nighttime temperature; and decreased leaf area and <i>A</i><sub>N</sub> and increased <i>R</i><sub>N</sub> drove reductions in biomass under high daytime temperature alone. <i>A</i><sub>N</sub> was not impacted by high nighttime temperature, while decreased under high daytime temperature and increased with combined high daytime and nighttime temperature. Adjustments in leaf traits contributed to increases in <i>A</i><sub>N</sub> in combined high daytime and nighttime temperature, and increased photorespiration and respiration contributed to reductions in <i>A</i><sub>N</sub> under high daytime temperature. Overall, early season vegetative growth of cotton exhibited differential responses to high daytime and nighttime temperatures.</p>","PeriodicalId":14864,"journal":{"name":"Journal of Agronomy and Crop Science","volume":"210 5","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jac.12757","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142234713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unravelling Morpho-Physiological Mechanism and Candidate Genes Associated With Salinity Tolerance in Superior Haplotypes of Barley (Hordeum vulgare L.) 揭示大麦(Hordeum vulgare L.)优良单倍型的形态生理机制及与耐盐性相关的候选基因
IF 3.7 2区 农林科学 Q1 AGRONOMY Pub Date : 2024-09-15 DOI: 10.1111/jac.12756
Sonia Singh, Shashank Kumar Yadav, Sunder Singh Arya, Sherry R. Jacob, Raj Kumar Gautam, Gyanendra Pratap Singh, Vikender Kaur

The lack of suitable genetic resources for saline regions and the complexity of the traits involved impede the progress in crop breeding for salt tolerance. The present investigation was carried out using 27 diverse barley genotypes chosen based on the assessment of salt tolerance potential within the barley mini-core collection at the National Genebank of India. The genotypes were exposed to salinity stress (200 mM NaCl) and were examined for morpho-agronomic, physiological traits and salt uptake parameters. Exposure to salt stress resulted in a significant decline in all parameters ranging from 5.94% in relative water content to 80.04% in shoot K+/Na+ ratio compared to the control in the evaluated accessions. Moreover, the grain yield and its key attribute hundred-grain weight decreased substantially by 65.35% and 48.62%, respectively, under saline treatment. The majority of the resilient accessions managed to uphold a higher K+/Na+ ratio ranging from 0.51 in EC0578359 to 1.19 EC0578251 in contrast to vulnerable germplasm (<0.56) under saline circumstances. The analysis of haplotype variants disclosed allelic diversity linked with two promising candidate genes, HVA1 and HvHKT2, recognised for conferring salt tolerance. Examination of nucleotide sequences revealed that the HVA1 remained considerably conserved among the evaluated genotypes as the majority of the SNPs (single-nucleotide polymorphisms) were synonymous. Conversely, for HvHKT2, a significant level of genetic variation led to the identification of two primary haplotypic clusters—Hap1 associated with sensitivity to salinity and Hap2 linked with tolerant traits. Hap2 predominantly consisted of In/Dels which caused a modification in the overall protein length alongside the phospho-variant allelic form of the HKT2 gene, further enhancing the biological specificity and functional stress response in a spatiotemporal fashion. These haplotype clusters correlated with favourable traits could be utilised for trait integration into breeding populations, thereby expediting the enhancement of superior salt-tolerant barley cultivars.

由于缺乏适合盐碱地区的遗传资源,以及相关性状的复杂性,阻碍了作物耐盐育种的进展。本研究根据印度国家基因库大麦迷你核心收集的耐盐潜力评估结果,选择了 27 种不同的大麦基因型。这些基因型受到了盐胁迫(200 mM NaCl),并对其形态、生理性状和盐吸收参数进行了检测。与对照组相比,暴露于盐胁迫导致所有参数显著下降,从相对含水量的 5.94% 到芽 K+/Na+ 比率的 80.04%。此外,在盐碱处理下,谷物产量及其关键属性百粒重分别大幅下降了 65.35% 和 48.62%。在盐碱环境下,大多数抗逆性强的品种都能保持较高的 K+/Na+ 比率,从 EC0578359 的 0.51 到 EC0578251 的 1.19,与弱势种质(<0.56)形成鲜明对比。对单倍型变异的分析显示,等位基因多样性与两个有希望的候选基因 HVA1 和 HvHKT2 有关,这两个基因被认为能赋予植物耐盐性。核苷酸序列分析表明,HVA1 在所评估的基因型中保持了相当大的一致性,因为大多数 SNP(单核苷酸多态性)都是同义的。相反,对于 HvHKT2,遗传变异的显著水平导致鉴定出两个主要的单倍型群--Hap1 与对盐分的敏感性有关,Hap2 与耐盐性状有关。Hap2主要由In/Dels组成,它与HKT2基因的磷酸变异等位基因形式一起导致了蛋白质总长度的改变,进一步增强了生物特异性和时空上的功能性胁迫响应。这些与有利性状相关的单倍型群可用于育种群体的性状整合,从而加快培育优良的耐盐大麦品种。
{"title":"Unravelling Morpho-Physiological Mechanism and Candidate Genes Associated With Salinity Tolerance in Superior Haplotypes of Barley (Hordeum vulgare L.)","authors":"Sonia Singh,&nbsp;Shashank Kumar Yadav,&nbsp;Sunder Singh Arya,&nbsp;Sherry R. Jacob,&nbsp;Raj Kumar Gautam,&nbsp;Gyanendra Pratap Singh,&nbsp;Vikender Kaur","doi":"10.1111/jac.12756","DOIUrl":"https://doi.org/10.1111/jac.12756","url":null,"abstract":"<div>\u0000 \u0000 <p>The lack of suitable genetic resources for saline regions and the complexity of the traits involved impede the progress in crop breeding for salt tolerance. The present investigation was carried out using 27 diverse barley genotypes chosen based on the assessment of salt tolerance potential within the barley mini-core collection at the National Genebank of India. The genotypes were exposed to salinity stress (200 mM NaCl) and were examined for morpho-agronomic, physiological traits and salt uptake parameters. Exposure to salt stress resulted in a significant decline in all parameters ranging from 5.94% in relative water content to 80.04% in shoot K<sup>+</sup>/Na<sup>+</sup> ratio compared to the control in the evaluated accessions. Moreover, the grain yield and its key attribute hundred-grain weight decreased substantially by 65.35% and 48.62%, respectively, under saline treatment. The majority of the resilient accessions managed to uphold a higher K<sup>+</sup>/Na<sup>+</sup> ratio ranging from 0.51 in EC0578359 to 1.19 EC0578251 in contrast to vulnerable germplasm (&lt;0.56) under saline circumstances. The analysis of haplotype variants disclosed allelic diversity linked with two promising candidate genes, <i>HVA1</i> and <i>HvHKT2</i>, recognised for conferring salt tolerance. Examination of nucleotide sequences revealed that the <i>HVA1</i> remained considerably conserved among the evaluated genotypes as the majority of the SNPs (single-nucleotide polymorphisms) were synonymous. Conversely, for <i>HvHKT2</i>, a significant level of genetic variation led to the identification of two primary haplotypic clusters—Hap1 associated with sensitivity to salinity and Hap2 linked with tolerant traits. Hap2 predominantly consisted of In/Dels which caused a modification in the overall protein length alongside the phospho-variant allelic form of the <i>HKT2</i> gene, further enhancing the biological specificity and functional stress response in a spatiotemporal fashion. These haplotype clusters correlated with favourable traits could be utilised for trait integration into breeding populations, thereby expediting the enhancement of superior salt-tolerant barley cultivars.</p>\u0000 </div>","PeriodicalId":14864,"journal":{"name":"Journal of Agronomy and Crop Science","volume":"210 5","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142234940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biological Nitrogen Fixation for Sustainable Agriculture Development Under Climate Change–New Insights From a Meta-Analysis 生物固氮促进气候变化下的可持续农业发展--一项 Meta 分析的新见解
IF 3.7 2区 农林科学 Q1 AGRONOMY Pub Date : 2024-09-06 DOI: 10.1111/jac.12754
Abu Zar Ghafoor, Hafiz Hassan Javed, Hassan Karim, Marcin Studnicki, Ijaz Ali, Hu Yue, Peng Xiao, Muhammad Ahsan Asghar, Christopher Brock, Yongcheng Wu

Biological nitrogen fixation (BNF) in legume crops is a crucial ecosystem service that enhances soil nitrogen and reduces the need for chemical fertilisers. This study evaluates the factors influencing the proportion of plant nitrogen derived from atmospheric fixation (Ndfa) in legume crops. We compiled a global dataset spanning from 1980 to 2018 and used the 15N method to assess the impacts of crop species, climatic conditions, stand composition and nitrogen fertilisation on Ndfa. The global meta-analysis reveals that the percentage of nitrogen derived from atmospheric fixation (Ndfa) in legumes ranges from 5% to 99%, with an average of 68%. Fodder legumes exhibited higher Ndfa, averaging 75%, while grain legumes showed more variability, ranging from 38% to 85%, depending on species and climatic conditions. The significant variability in Ndfa underscores the complexity of the process, which is influenced by species-specific traits, ecological conditions and competition in mixed stands. However, the current data is insufficient for precise Ndfa estimation in nitrogen balances and decision support tools. The study highlights the need for further research on the impact of nitrogen fertilisation and stand composition on Ndfa. These findings emphasise the potential of BNF to support sustainable agriculture by improving nitrogen availability and reducing dependence on synthetic fertilisers and particularly susceptibility to climate change challenges. To optimise the benefits of BNF, future research should focus on refining fertilisation regimes and exploring species-specific responses to various ecological conditions. Exploring adaptive strategies, like selecting drought-tolerant legumes and optimising irrigation, is essential. This will enhance the application of BNF in diverse agricultural systems, contributing to more sustainable and efficient farming practices.

豆科作物的生物固氮(BNF)是一项重要的生态系统服务,它能提高土壤氮含量,减少对化肥的需求。本研究评估了影响豆科作物中来自大气固氮(Ndfa)的植物氮比例的因素。我们汇编了从1980年到2018年的全球数据集,并使用15N方法评估了作物种类、气候条件、植株组成和氮肥对Ndfa的影响。全球荟萃分析表明,豆科植物中来自大气固定(Ndfa)的氮比例从5%到99%不等,平均为68%。饲料豆科植物的氮固定率较高,平均为 75%,而谷物豆科植物的氮固定率变化较大,从 38% 到 85%不等,具体取决于物种和气候条件。Ndfa 的巨大差异凸显了这一过程的复杂性,它受到物种特异性、生态条件和混合林分竞争的影响。然而,目前的数据不足以在氮平衡和决策支持工具中对 Ndfa 进行精确估算。这项研究强调了进一步研究氮肥和林分组成对 Ndfa 影响的必要性。这些发现强调了生物氮肥的潜力,即通过提高氮的可用性,减少对合成肥料的依赖,尤其是减少对气候变化挑战的敏感性,从而支持可持续农业。为了优化生物氮肥的效益,未来的研究应侧重于完善施肥制度,探索物种对各种生态条件的特定反应。探索适应性策略至关重要,如选择耐旱豆科植物和优化灌溉。这将加强 BNF 在不同农业系统中的应用,促进更可持续、更高效的农业实践。
{"title":"Biological Nitrogen Fixation for Sustainable Agriculture Development Under Climate Change–New Insights From a Meta-Analysis","authors":"Abu Zar Ghafoor,&nbsp;Hafiz Hassan Javed,&nbsp;Hassan Karim,&nbsp;Marcin Studnicki,&nbsp;Ijaz Ali,&nbsp;Hu Yue,&nbsp;Peng Xiao,&nbsp;Muhammad Ahsan Asghar,&nbsp;Christopher Brock,&nbsp;Yongcheng Wu","doi":"10.1111/jac.12754","DOIUrl":"10.1111/jac.12754","url":null,"abstract":"<div>\u0000 \u0000 <p>Biological nitrogen fixation (BNF) in legume crops is a crucial ecosystem service that enhances soil nitrogen and reduces the need for chemical fertilisers. This study evaluates the factors influencing the proportion of plant nitrogen derived from atmospheric fixation (Ndfa) in legume crops. We compiled a global dataset spanning from 1980 to 2018 and used the <sup>15</sup>N method to assess the impacts of crop species, climatic conditions, stand composition and nitrogen fertilisation on Ndfa. The global meta-analysis reveals that the percentage of nitrogen derived from atmospheric fixation (Ndfa) in legumes ranges from 5% to 99%, with an average of 68%. Fodder legumes exhibited higher Ndfa, averaging 75%, while grain legumes showed more variability, ranging from 38% to 85%, depending on species and climatic conditions. The significant variability in Ndfa underscores the complexity of the process, which is influenced by species-specific traits, ecological conditions and competition in mixed stands. However, the current data is insufficient for precise Ndfa estimation in nitrogen balances and decision support tools. The study highlights the need for further research on the impact of nitrogen fertilisation and stand composition on Ndfa. These findings emphasise the potential of BNF to support sustainable agriculture by improving nitrogen availability and reducing dependence on synthetic fertilisers and particularly susceptibility to climate change challenges. To optimise the benefits of BNF, future research should focus on refining fertilisation regimes and exploring species-specific responses to various ecological conditions. Exploring adaptive strategies, like selecting drought-tolerant legumes and optimising irrigation, is essential. This will enhance the application of BNF in diverse agricultural systems, contributing to more sustainable and efficient farming practices.</p>\u0000 </div>","PeriodicalId":14864,"journal":{"name":"Journal of Agronomy and Crop Science","volume":"210 5","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142144330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nitrogen Fertilisation and Seed Rate Regulation Improved Photosynthesis, Grain Yield and Water Use Efficiency of Winter Wheat (Triticum aestivum L.) Under Ridge–Furrow Cropping 氮肥施用和种子率调节提高了垄作冬小麦(Triticum aestivum L.)的光合作用、籽粒产量和水分利用效率
IF 3.7 2区 农林科学 Q1 AGRONOMY Pub Date : 2024-09-05 DOI: 10.1111/jac.12749
Yulong Dai, Zhenqi Liao, Shengzhao Pei, Zhenlin Lai, Bin Liao, Zhijun Li, Junliang Fan, Yuanlai Cui

Ridge–furrow cropping patterns, nitrogen fertilisation and seed rate regulation are popular management strategies for improving crop yields in the semi-arid areas of Northwest China, but their interactive effects on grain yield and water use efficiency remain poorly understood. In 2020–2021 and 2021–2022, a two-season field experiment was conducted on winter wheat. There were two cropping patterns (C), ridge–furrow cropping with film mulch (RC) and traditional cropping without mulch (TC), two nitrogen fertilisation rates (N), 0 and 200 kg N ha−1 (N0 and N1) and three seed rates (S), 240, 360 and 480 plants m−2 (S1, S2 and S3). The study was conducted in a split–split design with three replications (randomised blocks) and a total of 24 experimental plots. It was found that the interactive effects of C × N, C × S and N × S were significant on soil temperature (ST), leaf area index (LAI), relative chlorophyll content (SPAD), photosynthetic parameters, grain yield (GY) and water use efficiency (WUE) (p < 0.05), while C × N × S was significant only for LAI, aboveground biomass (AGB), GY and WUE (p < 0.05). Compared with TC and N0, RC and N1 significantly increased SPAD value (2.4% and 15.8%), net photosynthetic rate (Pn) (19.8% and 32.8%), net photosynthetic rate (Pn), transpiration rate (Tr) (7.0% and 15.7%) and the effective PSII quantum production (ΦPSII) (10.7% and 5.0%). The highest GY (6773 kg ha−1 over 2020–2021 and 8036 kg ha−1 over 2021–2022) and WUE (20.03 kg ha−1 mm−1 over 2020–2021, and 21.77 kg ha−1 mm−1 over 2021–2022) of winter wheat were observed under RC + N1 + S2. The findings showed that the RC cropping pattern with fertilisation and seed rate regulation (360 plants m−2) of winter wheat, which is appropriate for ensuring the long-term sustainability of agricultural production in the semi-arid regions of Northwest China, enhanced plant growth, photosynthetic traits, yield and water use efficiency. The study might give useful information for enhancing the productivity and water use efficiency of winter wheat in this and other similar climate locations.

垄作模式、氮肥施用和播种量调节是西北半干旱地区提高作物产量的常用管理策略,但它们对粮食产量和水分利用效率的交互影响仍鲜为人知。2020-2021 年和 2021-2022 年,对冬小麦进行了两季田间试验。试验采用两种种植模式(C):覆膜脊耙种植(RC)和无覆膜传统种植(TC);两种氮肥施用量(N):0 和 200 kg N ha-1(N0 和 N1);三种播种量(S):240、360 和 480 株 m-2(S1、S2 和 S3)。研究采用了三重复(随机区组)、共 24 块试验田的分割设计。研究发现,C × N、C × S 和 N × S 的交互效应对土壤温度(ST)、叶面积指数(LAI)、相对叶绿素含量(SPAD)、光合参数、谷物产量(GY)和水分利用效率(WUE)有显著影响(p < 0.05),而 C × N × S 仅对 LAI、地上生物量(AGB)、GY 和 WUE 有显著影响(p < 0.05)。与 TC 和 N0 相比,RC 和 N1 显著提高了 SPAD 值(2.4% 和 15.8%)、净光合速率(Pn)(19.8% 和 32.8%)、净光合速率(Pn)、蒸腾速率(Tr)(7.0% 和 15.7%)和 PSII 有效量子产量(ΦPSII)(10.7% 和 5.0%)。在 RC + N1 + S2 条件下,冬小麦的 GY(2020-2021 年为 6773 千克/公顷-1,2021-2022 年为 8036 千克/公顷-1)和 WUE(2020-2021 年为 20.03 千克/公顷-1 毫米-1,2021-2022 年为 21.77 千克/公顷-1 毫米-1)最高。研究结果表明,冬小麦施肥和播种量调控(360 株/米-2)的 RC 种植模式可提高植株生长、光合性状、产量和水分利用效率,适合于确保西北半干旱地区农业生产的长期可持续性。该研究可为提高该地区及其他类似气候条件下冬小麦的产量和水分利用效率提供有用信息。
{"title":"Nitrogen Fertilisation and Seed Rate Regulation Improved Photosynthesis, Grain Yield and Water Use Efficiency of Winter Wheat (Triticum aestivum L.) Under Ridge–Furrow Cropping","authors":"Yulong Dai,&nbsp;Zhenqi Liao,&nbsp;Shengzhao Pei,&nbsp;Zhenlin Lai,&nbsp;Bin Liao,&nbsp;Zhijun Li,&nbsp;Junliang Fan,&nbsp;Yuanlai Cui","doi":"10.1111/jac.12749","DOIUrl":"10.1111/jac.12749","url":null,"abstract":"<div>\u0000 \u0000 <p>Ridge–furrow cropping patterns, nitrogen fertilisation and seed rate regulation are popular management strategies for improving crop yields in the semi-arid areas of Northwest China, but their interactive effects on grain yield and water use efficiency remain poorly understood. In 2020–2021 and 2021–2022, a two-season field experiment was conducted on winter wheat. There were two cropping patterns (C), ridge–furrow cropping with film mulch (RC) and traditional cropping without mulch (TC), two nitrogen fertilisation rates (N), 0 and 200 kg N ha<sup>−1</sup> (N<sub>0</sub> and N<sub>1</sub>) and three seed rates (S), 240, 360 and 480 plants m<sup>−2</sup> (S<sub>1</sub>, S<sub>2</sub> and S<sub>3</sub>). The study was conducted in a split–split design with three replications (randomised blocks) and a total of 24 experimental plots. It was found that the interactive effects of C × N, C × S and N × S were significant on soil temperature (ST), leaf area index (LAI), relative chlorophyll content (SPAD), photosynthetic parameters, grain yield (GY) and water use efficiency (WUE) (<i>p</i> &lt; 0.05), while C × N × S was significant only for LAI, aboveground biomass (AGB), GY and WUE (<i>p</i> &lt; 0.05). Compared with TC and N<sub>0</sub>, RC and N<sub>1</sub> significantly increased SPAD value (2.4% and 15.8%), net photosynthetic rate (<i>P</i><sub>n</sub>) (19.8% and 32.8%), net photosynthetic rate (<i>P</i><sub>n</sub>), transpiration rate (<i>T</i><sub>r</sub>) (7.0% and 15.7%) and the effective PSII quantum production (ΦPSII) (10.7% and 5.0%). The highest GY (6773 kg ha<sup>−1</sup> over 2020–2021 and 8036 kg ha<sup>−1</sup> over 2021–2022) and WUE (20.03 kg ha<sup>−1</sup> mm<sup>−1</sup> over 2020–2021, and 21.77 kg ha<sup>−1</sup> mm<sup>−1</sup> over 2021–2022) of winter wheat were observed under RC + N<sub>1</sub> + S<sub>2</sub>. The findings showed that the RC cropping pattern with fertilisation and seed rate regulation (360 plants m<sup>−2</sup>) of winter wheat, which is appropriate for ensuring the long-term sustainability of agricultural production in the semi-arid regions of Northwest China, enhanced plant growth, photosynthetic traits, yield and water use efficiency. The study might give useful information for enhancing the productivity and water use efficiency of winter wheat in this and other similar climate locations.</p>\u0000 </div>","PeriodicalId":14864,"journal":{"name":"Journal of Agronomy and Crop Science","volume":"210 5","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142144250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Response of Antioxidant Enzymes of Winter Wheat (Triticum aestivum L.) to Shallow and Saline Groundwater Depths 冬小麦(Triticum aestivum L.)的抗氧化酵素对浅层和含盐地下水深度的响应
IF 3.7 2区 农林科学 Q1 AGRONOMY Pub Date : 2024-09-02 DOI: 10.1111/jac.12752
Mehmet Sait Kiremit, Hakan Arslan

Antioxidant enzymes in plants are critical for protection against oxidative stress and for the overall health and resilience of plant systems. However, antioxidant responses of plants grown in shallow and saline groundwater are poorly understood. Therefore, understanding the biochemical responses of plants to shallow groundwater significantly affects food security and environmental conservation. With this aim, the present work was carried out for 2 years in drainable lysimeters to assess the effects of four different groundwater salinities (0.38, 2.0, 4.0 and 8.0 dS m−1) on the temporal changes in antioxidant enzymatic activity in wheat plants under three different groundwater depths (30, 55 and 80 cm). Superoxide dismutase (SOD), glutathione S-transferase (GST) and catalase (CAT) activities varied significantly based on groundwater depth and salinity. CAT and GST enzyme levels increased curvilinearly with rising groundwater depth and salinity. Conversely, the GR enzyme activity showed no significant change with groundwater depths but increased linearly with higher salinity. SOD enzyme activity notably increased at a groundwater depth of 30 cm but decreased at a depth of 80 cm. Moreover, the peak activity of the GR enzyme was observed at a 6 dS m−1 groundwater salinity under groundwater depths. Additionally, the GST and CAT enzyme activities were inhibited more when the groundwater depth was <55 cm and the groundwater salinity was >4.20 dS m−1. Finally, identifying the peak levels of antioxidant enzymes could potentially serve as an indicator for determining the optimal timing for applying stress mitigation methods in areas with shallow and saline groundwater.

植物中的抗氧化酶对于保护植物免受氧化胁迫以及植物系统的整体健康和恢复能力至关重要。然而,人们对生长在浅层和含盐地下水中的植物的抗氧化反应知之甚少。因此,了解植物对浅层地下水的生化反应会对粮食安全和环境保护产生重大影响。为此,本研究在可排水的溶液池中进行了为期两年的研究,以评估四种不同地下水盐度(0.38、2.0、4.0 和 8.0 dS m-1)对三种不同地下水深度(30、55 和 80 厘米)下小麦植物抗氧化酶活性的时间变化的影响。超氧化物歧化酶(SOD)、谷胱甘肽 S-转移酶(GST)和过氧化氢酶(CAT)的活性随地下水深度和盐度的变化而显著不同。随着地下水深度和盐度的增加,CAT 和 GST 酶水平呈曲线上升。相反,GR 酶活性随地下水深度变化不大,但随盐度升高呈线性增长。SOD 酶活性在地下水深度为 30 厘米时显著增加,但在地下水深度为 80 厘米时却有所下降。此外,在地下水深度为 6 dS m-1 时,GR 酶的活性达到峰值。此外,当地下水深度为 55 cm、地下水盐度为 4.20 dS m-1 时,GST 和 CAT 的活性受到的抑制更大。最后,确定抗氧化酶的峰值水平可作为一个指标,用于确定在浅层地下水和含盐地下水地区采用胁迫缓解方法的最佳时机。
{"title":"Response of Antioxidant Enzymes of Winter Wheat (Triticum aestivum L.) to Shallow and Saline Groundwater Depths","authors":"Mehmet Sait Kiremit,&nbsp;Hakan Arslan","doi":"10.1111/jac.12752","DOIUrl":"https://doi.org/10.1111/jac.12752","url":null,"abstract":"<div>\u0000 \u0000 <p>Antioxidant enzymes in plants are critical for protection against oxidative stress and for the overall health and resilience of plant systems. However, antioxidant responses of plants grown in shallow and saline groundwater are poorly understood. Therefore, understanding the biochemical responses of plants to shallow groundwater significantly affects food security and environmental conservation. With this aim, the present work was carried out for 2 years in drainable lysimeters to assess the effects of four different groundwater salinities (0.38, 2.0, 4.0 and 8.0 dS m<sup>−1</sup>) on the temporal changes in antioxidant enzymatic activity in wheat plants under three different groundwater depths (30, 55 and 80 cm). Superoxide dismutase (SOD), glutathione S-transferase (GST) and catalase (CAT) activities varied significantly based on groundwater depth and salinity. CAT and GST enzyme levels increased curvilinearly with rising groundwater depth and salinity. Conversely, the GR enzyme activity showed no significant change with groundwater depths but increased linearly with higher salinity. SOD enzyme activity notably increased at a groundwater depth of 30 cm but decreased at a depth of 80 cm. Moreover, the peak activity of the GR enzyme was observed at a 6 dS m<sup>−1</sup> groundwater salinity under groundwater depths. Additionally, the GST and CAT enzyme activities were inhibited more when the groundwater depth was &lt;55 cm and the groundwater salinity was &gt;4.20 dS m<sup>−1</sup>. Finally, identifying the peak levels of antioxidant enzymes could potentially serve as an indicator for determining the optimal timing for applying stress mitigation methods in areas with shallow and saline groundwater.</p>\u0000 </div>","PeriodicalId":14864,"journal":{"name":"Journal of Agronomy and Crop Science","volume":"210 5","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142123109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Agronomy and Crop Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1