Agustin B Actis Dato, Luciana G Naso, Valeria R Martínez, Evelina G Ferrer, Patricia A M Williams
The redox imbalance, caused by depletion or generation of reactive oxygen species (ROS), is a key mechanism by which metal complexes exert anticancer effects. Carbidopa has shown the ability to inhibit the MDA-MB-231 cell line, a highly aggressive triple-negative human breast adenocarcinoma, by inducing reductive stress. The metal complex of carbidopa with zinc (ZnCarbi) was designed to modify carbidopa's structure and exhibited increased cytotoxicity against MDA-MB-231 cells. Interestingly, ZnCarbi selectively targets certain cancer cells, showing no impact on the viability of normal HEK293 (human embryonic kidney) cells or other cancer cell lines like A549 (human lung adenocarcinoma), LM3 (murine breast adenocarcinoma), or HCT116 (human colon cancer). Treatment with carbidopa and ZnCarbi induces reductive stress, decreases ROS levels, increases the GSH/GSSG ratio, and protects cells from H2O2-induced death. Both compounds also cause mitochondrial damage, leading to cell death, and exhibit antimetastatic effects by inhibiting cell migration and invasion of MDA-MB-231 cells. Interaction studies with bovine serum albumin showed moderate binding through hydrophobic association. Overall, ZnCarbi demonstrates enhanced anticancer properties compared to carbidopa alone, highlighting its potential as an anticancer and antimetastatic compound.
{"title":"Carbidopa and ZnCarbidopa Induce Reductive Stress in MDA-MB-231 Cells.","authors":"Agustin B Actis Dato, Luciana G Naso, Valeria R Martínez, Evelina G Ferrer, Patricia A M Williams","doi":"10.1002/cplu.202400596","DOIUrl":"10.1002/cplu.202400596","url":null,"abstract":"<p><p>The redox imbalance, caused by depletion or generation of reactive oxygen species (ROS), is a key mechanism by which metal complexes exert anticancer effects. Carbidopa has shown the ability to inhibit the MDA-MB-231 cell line, a highly aggressive triple-negative human breast adenocarcinoma, by inducing reductive stress. The metal complex of carbidopa with zinc (ZnCarbi) was designed to modify carbidopa's structure and exhibited increased cytotoxicity against MDA-MB-231 cells. Interestingly, ZnCarbi selectively targets certain cancer cells, showing no impact on the viability of normal HEK293 (human embryonic kidney) cells or other cancer cell lines like A549 (human lung adenocarcinoma), LM3 (murine breast adenocarcinoma), or HCT116 (human colon cancer). Treatment with carbidopa and ZnCarbi induces reductive stress, decreases ROS levels, increases the GSH/GSSG ratio, and protects cells from H<sub>2</sub>O<sub>2</sub>-induced death. Both compounds also cause mitochondrial damage, leading to cell death, and exhibit antimetastatic effects by inhibiting cell migration and invasion of MDA-MB-231 cells. Interaction studies with bovine serum albumin showed moderate binding through hydrophobic association. Overall, ZnCarbi demonstrates enhanced anticancer properties compared to carbidopa alone, highlighting its potential as an anticancer and antimetastatic compound.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":" ","pages":"e202400596"},"PeriodicalIF":3.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142875666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nuray Uzunlu Ince, Péter Pongrácz, László Kollár, András Szilágyi, Attila Takács, László T Mika
The palladium-catalyzed aminocarbonylation is one of the most effective methods for the synthesis of carboxamides having great importance. Replacing fossil-based organic solvents in this routinely used catalytic protocol with biomass-derived media is crucial for developing environmentally safe alternatives and towards sustainability considerations. In this study, the open-chain derivatives of bio-originated substance γ-valerolactone i. e. alkyl 4-alkoxyvalerates (alkyl: methyl, ethyl, and propyl) were characterized and tested as potential polar aprotic alternatives of fossil-based common N,N-dimethylformamide (DMF) in aminocarbonylation protocols. First, the temperature-dependent physicochemical properties of alkyl 4-alkoxyvalerates were determined. Based on their characteristics, methyl 4-methoxyvalerate (Me-4MeOV) was selected and introduced in the Pd-catalyzed aminocarbonylation of iodobenzene and morpholine as a model reaction, and an optimization study was carried out. Using the optimized conditions, several substituted iodobenzenes, as well as heteroaryl iodides, were successfully applied resulting in the target carboxamides selectively in short reaction time. Furthermore, the aminocarbonylation of iodobenzene in the presence of various amines was also accomplished extending the scope of the carboxamides produced in this alternative medium. Considering our observations, such as high conversions (up to 95 %) in short reaction time and selective amide formation, it has been justified that Me-4MeOV could be an appropriate alternative medium in aminocarbonylation protocols.
{"title":"Alkyl 4-Alkoxyvalerates: Characterization and Application in Pd-Catalyzed Aminocarbonylation of Iodo(hetero)arene Compounds.","authors":"Nuray Uzunlu Ince, Péter Pongrácz, László Kollár, András Szilágyi, Attila Takács, László T Mika","doi":"10.1002/cplu.202400713","DOIUrl":"10.1002/cplu.202400713","url":null,"abstract":"<p><p>The palladium-catalyzed aminocarbonylation is one of the most effective methods for the synthesis of carboxamides having great importance. Replacing fossil-based organic solvents in this routinely used catalytic protocol with biomass-derived media is crucial for developing environmentally safe alternatives and towards sustainability considerations. In this study, the open-chain derivatives of bio-originated substance γ-valerolactone i. e. alkyl 4-alkoxyvalerates (alkyl: methyl, ethyl, and propyl) were characterized and tested as potential polar aprotic alternatives of fossil-based common N,N-dimethylformamide (DMF) in aminocarbonylation protocols. First, the temperature-dependent physicochemical properties of alkyl 4-alkoxyvalerates were determined. Based on their characteristics, methyl 4-methoxyvalerate (Me-4MeOV) was selected and introduced in the Pd-catalyzed aminocarbonylation of iodobenzene and morpholine as a model reaction, and an optimization study was carried out. Using the optimized conditions, several substituted iodobenzenes, as well as heteroaryl iodides, were successfully applied resulting in the target carboxamides selectively in short reaction time. Furthermore, the aminocarbonylation of iodobenzene in the presence of various amines was also accomplished extending the scope of the carboxamides produced in this alternative medium. Considering our observations, such as high conversions (up to 95 %) in short reaction time and selective amide formation, it has been justified that Me-4MeOV could be an appropriate alternative medium in aminocarbonylation protocols.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":" ","pages":"e202400713"},"PeriodicalIF":3.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142880929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Metal-Organic Frameworks (MOFs) are an emerging class of solid-state materials comprising inorganic elements and organic molecules. These hybrid materials are widely recognized for their diverse properties, rendering them indispensable in the field of organic synthesis, material science and the pharmaceutical industry. Although the traditional batch methods for MOFs synthesis are well-developed, they often struggle with reproducibility, scalability and environmental issues. However, the development of continuous flow techniques has emerged as a promising alternative, offering more efficient mass and heat transfer, precise reaction control, greater potential for automation, improved safety, and reduced environmental impact. This review primarily focuses on advanced continuous flow synthesis of MOFs incorporating techniques such as air flow, spray drying, microwave, micro-droplets, supercritical carbon dioxide, and ultrasound. Additionally, the recent advancements in applying MOFs as heterogeneous catalysts for various organic transformations under continuous flow conditions are discussed, categorized by the type of bond formation, including C-H bond formation (hydrogen reduction), C-C bond formation, and C-O bond formation.
{"title":"Continuous Flow Synthesis and Applications of Metal-Organic Frameworks: Advances and Innovations.","authors":"Rashed Rahman, Fazal Malik, Zaw Min Hein, Junrong Huang, Hengzhi You, Yuxiang Zhu","doi":"10.1002/cplu.202400634","DOIUrl":"10.1002/cplu.202400634","url":null,"abstract":"<p><p>Metal-Organic Frameworks (MOFs) are an emerging class of solid-state materials comprising inorganic elements and organic molecules. These hybrid materials are widely recognized for their diverse properties, rendering them indispensable in the field of organic synthesis, material science and the pharmaceutical industry. Although the traditional batch methods for MOFs synthesis are well-developed, they often struggle with reproducibility, scalability and environmental issues. However, the development of continuous flow techniques has emerged as a promising alternative, offering more efficient mass and heat transfer, precise reaction control, greater potential for automation, improved safety, and reduced environmental impact. This review primarily focuses on advanced continuous flow synthesis of MOFs incorporating techniques such as air flow, spray drying, microwave, micro-droplets, supercritical carbon dioxide, and ultrasound. Additionally, the recent advancements in applying MOFs as heterogeneous catalysts for various organic transformations under continuous flow conditions are discussed, categorized by the type of bond formation, including C-H bond formation (hydrogen reduction), C-C bond formation, and C-O bond formation.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":" ","pages":"e202400634"},"PeriodicalIF":3.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142880932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In Singapore's hot and humid climate, watercolor papers are particularly prone to a paper oxidation issue known as foxing, which refers to the discoloration forming yellowish-brown stains on paper, changing the visual outcome of the watercolor artworks. This research investigates two most popular types of watercolor paper, made from 100 % cotton and cotton-wood-pulp mixture. Foxing was generally categorized into two types: biotic and abiotic foxing caused by fungi activities and the presence of metallic contaminants catalytic fungi growth. However, recent hypotheses further relate it to heterogeneous cellulose structures. Watercolor paper is typically produced in a well-controlled environment, which should theoretically reduce the occurrence of foxing, catalyzed by metallic contaminants. The research involved a comprehensive analysis of aged samples, from old watercolors, dating back to the 1990s and fresh watercolor paper samples. focusing on understanding the origin and causes of watercolor paper foxing based on cellulose content & structures. By comparing 100 % cotton and cotton wood-pulp blended watercolor paper, the susceptivity of foxing was hinted to be related to cellulose packing density. These findings will support further research in developing strategies for the conservation and storage of watercolor artworks.
{"title":"Foxing of Watercolor Paper and Environmental Control as Preventive Actions.","authors":"Woon Lam Ng, Huanlong Hu, Zeyan Zhuang","doi":"10.1002/cplu.202400647","DOIUrl":"10.1002/cplu.202400647","url":null,"abstract":"<p><p>In Singapore's hot and humid climate, watercolor papers are particularly prone to a paper oxidation issue known as foxing, which refers to the discoloration forming yellowish-brown stains on paper, changing the visual outcome of the watercolor artworks. This research investigates two most popular types of watercolor paper, made from 100 % cotton and cotton-wood-pulp mixture. Foxing was generally categorized into two types: biotic and abiotic foxing caused by fungi activities and the presence of metallic contaminants catalytic fungi growth. However, recent hypotheses further relate it to heterogeneous cellulose structures. Watercolor paper is typically produced in a well-controlled environment, which should theoretically reduce the occurrence of foxing, catalyzed by metallic contaminants. The research involved a comprehensive analysis of aged samples, from old watercolors, dating back to the 1990s and fresh watercolor paper samples. focusing on understanding the origin and causes of watercolor paper foxing based on cellulose content & structures. By comparing 100 % cotton and cotton wood-pulp blended watercolor paper, the susceptivity of foxing was hinted to be related to cellulose packing density. These findings will support further research in developing strategies for the conservation and storage of watercolor artworks.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":" ","pages":"e202400647"},"PeriodicalIF":3.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142875692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Silvana Carina Pamies, Nélida María Peruchena, Andre Nicolai Petelski
The cover feature shows the structure of ammeline in the center, surrounded by its hydrogen bond palette, which gives rise to all the most stable possibilities of dimerization. In the background are two solvents that can affect the self-recognition of this supramolecular building block: water and chloroform. More information can be found in the Research Article by Andre Nicolai Petelski, Silvana Carina Pamies, and Nélida María Peruchena (DOI: 10.1002/cplu.202400436).