首页 > 最新文献

ChemPlusChem最新文献

英文 中文
Benzimidazo[1,2-c]Quinazolines Luminescent Materials: Synthesis, Molecular Packing, and Aggregation Effects 苯并咪唑[1,2-c]喹唑啉类发光材料的合成、分子堆积及聚集效应
IF 2.8 4区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-07-25 DOI: 10.1002/cplu.202500349
Chunhua Zhang, Bowen Li, Peige Qin, Yanhu Wang, Jiangpei Yuan, Qilong Bian

The introduction of N atoms can effectively modulate the electronic structure of molecular materials, resulting in superior optoelectronic properties. In this study, a class of benzimidazo[1,2-c]quinazoline derivatives with aggregation-induced emission (AIE) enhancement (AIEE) activity is reported. The core scaffold is a benzimidazo[1,2-c]quinazoline core and a near-vertical core of benzene rings substituted at the C6 position. By changing the substituents of the aryl ring on C6, it is possible not only to change the position of the electron distribution on the molecular backbone but also to redshift the maximum fluorescence emission wavelength by 93 nm. Computational and single-crystal results show that the molecules exhibit state-dependent photophysical properties upon aggregation with abundant cross-space interactions (π-dimer between two quinazoline planar backbones, multiple N···H-Ar hydrogen bonds, van der Waals forces, etc.), and these multiple interactions not only extend the electron-conjugated system but also stabilize the conformation of the molecule after aggregation and enhance the fluorescence intensity.

N原子的引入可以有效地调制分子材料的电子结构,从而获得优越的光电性能。本文报道了一类具有聚集诱导发射(AIEE)增强(AIEE)活性的苯并咪唑[1,2-c]喹唑啉衍生物。核心支架是一个苯并咪唑[1,2-c]喹唑啉核心和一个在C6位置取代的近垂直苯环核心。通过改变C6上芳基环的取代基,不仅可以改变分子主链上电子分布的位置,而且可以使最大荧光发射波长红移93 nm。计算和单晶结果表明,分子在聚集时表现出状态依赖的光物理性质,具有丰富的跨空间相互作用(两个喹唑啉平面骨架之间的π二聚体、多个N··H-Ar氢键、范德华力等),这些多重相互作用不仅扩展了电子共轭体系,而且稳定了分子聚集后的构象,增强了荧光强度。
{"title":"Benzimidazo[1,2-c]Quinazolines Luminescent Materials: Synthesis, Molecular Packing, and Aggregation Effects","authors":"Chunhua Zhang,&nbsp;Bowen Li,&nbsp;Peige Qin,&nbsp;Yanhu Wang,&nbsp;Jiangpei Yuan,&nbsp;Qilong Bian","doi":"10.1002/cplu.202500349","DOIUrl":"10.1002/cplu.202500349","url":null,"abstract":"<p>The introduction of N atoms can effectively modulate the electronic structure of molecular materials, resulting in superior optoelectronic properties. In this study, a class of benzimidazo[1,2-c]quinazoline derivatives with aggregation-induced emission (AIE) enhancement (AIEE) activity is reported. The core scaffold is a benzimidazo[1,2-c]quinazoline core and a near-vertical core of benzene rings substituted at the C<sub>6</sub> position. By changing the substituents of the aryl ring on C<sub>6</sub>, it is possible not only to change the position of the electron distribution on the molecular backbone but also to redshift the maximum fluorescence emission wavelength by 93 nm. Computational and single-crystal results show that the molecules exhibit state-dependent photophysical properties upon aggregation with abundant cross-space interactions (π-dimer between two quinazoline planar backbones, multiple N···H-Ar hydrogen bonds, van der Waals forces, etc.), and these multiple interactions not only extend the electron-conjugated system but also stabilize the conformation of the molecule after aggregation and enhance the fluorescence intensity.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":"90 10","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144705891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to “Gallium(III) Amide Corroles: DNA Interaction and Photodynamic Activity in Cancer Cells” 修正“镓(III)酰胺的协同作用:肿瘤细胞中的DNA相互作用和光动力活性”。
IF 2.8 4区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-07-24 DOI: 10.1002/cplu.202500427

ChemPlusChem, 2023, 88, e202200413

DOI: 10.1002/cplu.202200413

Meng-Yuan Li,[a] Wu Yang,[a] Jing-He Cen,[a] Ling-Gui Liu,[a] Gang Yang,[a] Hai-Yang Liu,*[a] Yu-Hui Liao,*[b] and Xi-Hao Zhong*[c]

In page 5 Figure 6, the images located in the third row and third column, and the fourth column of the third row were mistakenly pasted during the composition process. We apologize for this oversight. Upon re-examination of initial cell experiments database, we have corrected the cell picture. In addition, we have also refined the sample formation, scale and other information in Figure 6 and Figure 7. Please refer to the updated correction version.

The updated corrected Figure 6.

The updated corrected Figure 7.

Despite this error, the overall conclusions of the study remain unaffected. The corrected figure does not alter the experimental results or the interpretations drawn from them.

化学化学,2023,88,e202200413DOI: 10.1002/cplu。202200413李孟媛,[a]杨武,[a]岑靖和,[a]刘令贵,[a]杨刚,[a]刘海洋,*[a]廖玉辉,*[b],钟希浩*[c]图6第5页,构图过程中错误粘贴了位于第3行第3列和第3列第4列的图像。我们为这个疏忽道歉。在重新检查初始细胞实验数据库后,我们对细胞图像进行了修正。此外,我们还对图6和图7中的样品地层、尺度等信息进行了细化。请以更新后的更正版本为准。更新后的更正图6。更新后的更正图7。尽管存在这个错误,但研究的总体结论仍未受到影响。修正后的数字不会改变实验结果或由此得出的解释。
{"title":"Correction to “Gallium(III) Amide Corroles: DNA Interaction and Photodynamic Activity in Cancer Cells”","authors":"","doi":"10.1002/cplu.202500427","DOIUrl":"10.1002/cplu.202500427","url":null,"abstract":"<p><i>ChemPlusChem</i>, 2023, <i>88</i>, e202200413</p><p>DOI: 10.1002/cplu.202200413</p><p>Meng-Yuan Li,<sup>[a]</sup> Wu Yang,<sup>[a]</sup> Jing-He Cen,<sup>[a]</sup> Ling-Gui Liu,<sup>[a]</sup> Gang Yang,<sup>[a]</sup> Hai-Yang Liu,*<sup>[a]</sup> Yu-Hui Liao,*<sup>[b]</sup> and Xi-Hao Zhong*<sup>[c]</sup></p><p>In page 5 Figure 6, the images located in the third row and third column, and the fourth column of the third row were mistakenly pasted during the composition process. We apologize for this oversight. Upon re-examination of initial cell experiments database, we have corrected the cell picture. In addition, we have also refined the sample formation, scale and other information in Figure 6 and Figure 7. Please refer to the updated correction version.</p><p>The updated corrected <b>Figure</b> 6.</p><p>The updated corrected <b>Figure</b> 7.</p><p>Despite this error, the overall conclusions of the study remain unaffected. The corrected figure does not alter the experimental results or the interpretations drawn from them.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":"90 10","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cplu.202500427","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144697209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Studying the Effect of Mn2+ Doping on Structural and Photophysical Properties of Morpholinium Lead Bromide Perovskite 掺杂Mn2+对溴化铅钙钛矿结构和光物理性质影响的研究。
IF 2.8 4区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-07-23 DOI: 10.1002/cplu.202500241
Vishal Singh, Joydeep Dhar

Organic–inorganic lead halide perovskite is under intense focus on developing different optoelectronic devices because of its exceptional optical and electrical properties and ease of processing. However, the Pb2+ toxicity and the luminescence instability of these classes of semiconductors require continuous development of newer luminescent variants. Herein, Mn2+ is used as a dopant in luminescent morpholinium lead bromide perovskite, (C4H10NO)PbBr3, to substitute Pb2+ with Mn2+ with varied doping percentage to develop two different analogs of Mn2+-doped (C4H10NO)PbBr3 with varied optical properties. The incorporation of the dopant ion is investigated using various characterization techniques like inductively coupled plasma-optical emission spectroscopy, single-crystal and powder X-ray diffraction, infrared, and electron paramagnetic resonance spectroscopies. The photophysical properties are characterized by absorption and emission spectroscopies. With the increase in Mn2+-dopant amount, the emission maxima showed a blueshift with respect to the pristine sample and exhibited an enhanced (about 40%) photoluminescence quantum yield. Finally, the possibility of utilizing these semiconductors for practical applications is conducted by studying the structural and photophysical properties after embedding them into an optically transparent polymer, polymethyl methacrylate.

有机-无机卤化铅钙钛矿因其优异的光学和电学性能以及易于加工而成为开发各种光电器件的热点。然而,Pb2+的毒性和这类半导体的发光不稳定性需要不断开发新的发光变体。本文将Mn2+作为发光型溴化铅钙钛矿(C4H10NO)PbBr3的掺杂剂,用不同掺杂比例的Mn2+代替Pb2+,得到两种不同光学性质的Mn2+掺杂(C4H10NO)PbBr3类似物。利用各种表征技术,如电感耦合等离子体光学发射光谱、单晶和粉末x射线衍射、红外和电子顺磁共振光谱,研究了掺杂离子的掺入。利用吸收光谱和发射光谱对其光物理性质进行了表征。随着Mn2+掺杂量的增加,发射最大值相对于原始样品出现蓝移,光致发光量子产率提高约40%。最后,通过研究将这些半导体嵌入光学透明聚合物聚甲基丙烯酸甲酯后的结构和光物理性质,研究了将这些半导体用于实际应用的可能性。
{"title":"Studying the Effect of Mn2+ Doping on Structural and Photophysical Properties of Morpholinium Lead Bromide Perovskite","authors":"Vishal Singh,&nbsp;Joydeep Dhar","doi":"10.1002/cplu.202500241","DOIUrl":"10.1002/cplu.202500241","url":null,"abstract":"<p>Organic–inorganic lead halide perovskite is under intense focus on developing different optoelectronic devices because of its exceptional optical and electrical properties and ease of processing. However, the Pb<sup>2+</sup> toxicity and the luminescence instability of these classes of semiconductors require continuous development of newer luminescent variants. Herein, Mn<sup>2+</sup> is used as a dopant in luminescent morpholinium lead bromide perovskite, (C<sub>4</sub>H<sub>10</sub>NO)PbBr<sub>3</sub>, to substitute Pb<sup>2+</sup> with Mn<sup>2+</sup> with varied doping percentage to develop two different analogs of Mn<sup>2+</sup>-doped (C<sub>4</sub>H<sub>10</sub>NO)PbBr<sub>3</sub> with varied optical properties. The incorporation of the dopant ion is investigated using various characterization techniques like inductively coupled plasma-optical emission spectroscopy, single-crystal and powder X-ray diffraction, infrared, and electron paramagnetic resonance spectroscopies. The photophysical properties are characterized by absorption and emission spectroscopies. With the increase in Mn<sup>2+</sup>-dopant amount, the emission maxima showed a blueshift with respect to the pristine sample and exhibited an enhanced (about 40%) photoluminescence quantum yield. Finally, the possibility of utilizing these semiconductors for practical applications is conducted by studying the structural and photophysical properties after embedding them into an optically transparent polymer, polymethyl methacrylate.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":"90 10","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144688463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to “Borophene: Synthesis, Chemistry, and Electronic Properties” 更正“硼罗芬:合成、化学和电子性质”。
IF 2.8 4区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-07-21 DOI: 10.1002/cplu.202500443

Kai Wang, Shilpa Choyal, Jeremy F. Schultz, James McKenzie, Linfei Li, Xiaolong Liu, Nan Jiang, Borophene: Synthesis, Chemistry, and Electronic Properties, ChemPlusChem 2025, 89, e202400333, https://doi.org/10.1002/cplu.202400333.

In the Acknowledgements section, an incorrect funding source was listed. The following sentence should therefore be revised: “J.M. and X.L. acknowledge support from the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0024291.”

The Acknowledgements should have read: “K. W., S. C., L. L., and N. J gratefully acknowledge financial support from the National Science Foundation (DMR-2211474). X.L. acknowledges support from the Oak Ridge Associated Universities Ralph E. Powe Junior Faculty Enhancement Award.”

We apologize for this error.

王凯,Shilpa Choyal, Jeremy F. Schultz, James McKenzie,李林飞,刘晓龙,江南,硼罗芬:合成、化学和电子性质,ChemPlusChem 2025, 89, e202400333, https://doi.org/10.1002/cplu.202400333.In致谢部分,列出了错误的资助来源。因此,下面这句话应该修改:“J.M.和X.L.感谢美国能源部、科学办公室和基础能源科学办公室的支持,项目编号为DE-SC0024291。”致谢应该是:“K。W.、S. C.、L. L.和N. J感谢国家科学基金会(DMR-2211474)的资金支持。X.L.感谢橡树岭联合大学Ralph E. Powe青年教师提升奖的支持。”我们为这个错误道歉。
{"title":"Correction to “Borophene: Synthesis, Chemistry, and Electronic Properties”","authors":"","doi":"10.1002/cplu.202500443","DOIUrl":"10.1002/cplu.202500443","url":null,"abstract":"<p>Kai Wang, Shilpa Choyal, Jeremy F. Schultz, James McKenzie, Linfei Li, Xiaolong Liu, Nan Jiang, Borophene: Synthesis, Chemistry, and Electronic Properties, ChemPlusChem 2025, 89, e202400333, https://doi.org/10.1002/cplu.202400333.</p><p>In the Acknowledgements section, an incorrect funding source was listed. The following sentence should therefore be revised: “J.M. and X.L. acknowledge support from the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0024291.”</p><p>The Acknowledgements should have read: “K. W., S. C., L. L., and N. J gratefully acknowledge financial support from the National Science Foundation (DMR-2211474). X.L. acknowledges support from the Oak Ridge Associated Universities Ralph E. Powe Junior Faculty Enhancement Award.”</p><p>We apologize for this error.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":"90 10","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cplu.202500443","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144673483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating the Aqueous Stability of Alkyl-/Aryl-Hydrosilanes by NMR Spectroscopy and GC-MS 用核磁共振光谱和气相色谱-质谱法评价烷基/芳基氢硅烷的水稳定性。
IF 2.8 4区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-07-21 DOI: 10.1002/cplu.202500310
Fawwaz Azam, Marc J. Adler

Hydrosilanes are commonly used as reducing agents or as synthetic precursors for silanols. However, the incorporation of hydrosilanes as carbon bioisosteres is underexplored. In this study, the hydrolytic stability of ten variably substituted hydrosilanes—including monoaryl, monoalkyl, diaryl, dialkyl, alkyl aryl, triaryl, trialkyl, dialkyl aryl, and alkyl diaryl silanes—is investigated using five complementary methods, including 1H–NMR time-lapse and GC-MS experiments, at neutral pH. The 1H–NMR time-lapse experiments suggest that monoaryl and monoalkyl silanes are susceptible to hydrolysis, as evidenced by 31% and 22% reduction in starting material, respectively, over 24 h. Other investigated silanes are resistant to hydrolysis in these solvent systems for at least 24 h. The GC-MS experiments quantitatively support the respective reactivity of these hydrosilanes at pH 7. Lastly, the reactivity of selected hydrosilanes is evaluated at pH 7.4 phosphate-buffered saline buffer; only monoalkyl silanes degraded in the presence of the added salt content. Overall, the study demonstrates that hydrosilanes exhibit hydrolytic stability at neutral pH, except for monoaryl- and monoalkyl-substituted silanes, which are susceptible to degradation. The results provide insight into the likelihood of the SiH bond surviving in aqueous environments, opening the door for a wider variety of silicon-containing molecules in drug discovery.

氢硅烷通常用作还原剂或硅烷醇的合成前体。然而,氢硅烷作为碳生物同工异构体的掺入尚未得到充分的研究。本研究采用1H-NMR延时实验和GC-MS实验等五种互补方法,在中性ph条件下,研究了单芳基、单烷基、二芳基、二烷基芳基、三芳基、三烷基、二烷基芳基和烷基二芳基硅烷等10种可变取代氢硅烷的水解稳定性。1H-NMR延时实验表明,单芳基和单烷基硅烷容易被水解,起始原料分别减少31%和22%。超过24小时。其他研究的硅烷在这些溶剂体系中至少耐水解24小时。GC-MS实验定量地支持了这些氢硅烷在pH为7时的反应性。最后,在pH为7.4的磷酸盐缓冲盐水缓冲液中评价了选定的氢硅烷的反应性;在添加盐的情况下,只有单烷基硅烷降解。总的来说,研究表明氢硅烷在中性pH下表现出水解稳定性,除了单芳基和单烷基取代的硅烷容易降解。这些结果为Si - H键在水环境中存活的可能性提供了深入的见解,为更广泛的含硅分子在药物发现中打开了大门。
{"title":"Evaluating the Aqueous Stability of Alkyl-/Aryl-Hydrosilanes by NMR Spectroscopy and GC-MS","authors":"Fawwaz Azam,&nbsp;Marc J. Adler","doi":"10.1002/cplu.202500310","DOIUrl":"10.1002/cplu.202500310","url":null,"abstract":"<p>Hydrosilanes are commonly used as reducing agents or as synthetic precursors for silanols. However, the incorporation of hydrosilanes as carbon bioisosteres is underexplored. In this study, the hydrolytic stability of ten variably substituted hydrosilanes—including monoaryl, monoalkyl, diaryl, dialkyl, alkyl aryl, triaryl, trialkyl, dialkyl aryl, and alkyl diaryl silanes—is investigated using five complementary methods, including <sup>1</sup>H–NMR time-lapse and GC-MS experiments, at neutral pH. The <sup>1</sup>H–NMR time-lapse experiments suggest that monoaryl and monoalkyl silanes are susceptible to hydrolysis, as evidenced by 31% and 22% reduction in starting material, respectively, over 24 h. Other investigated silanes are resistant to hydrolysis in these solvent systems for at least 24 h. The GC-MS experiments quantitatively support the respective reactivity of these hydrosilanes at pH 7. Lastly, the reactivity of selected hydrosilanes is evaluated at pH 7.4 phosphate-buffered saline buffer; only monoalkyl silanes degraded in the presence of the added salt content. Overall, the study demonstrates that hydrosilanes exhibit hydrolytic stability at neutral pH, except for monoaryl- and monoalkyl-substituted silanes, which are susceptible to degradation. The results provide insight into the likelihood of the Si<span></span>H bond surviving in aqueous environments, opening the door for a wider variety of silicon-containing molecules in drug discovery.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":"90 10","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cplu.202500310","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144673484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced CO2 Adsorption on CeO2/SBA-15: The Key Role of Oxygen Vacancies CeO2/SBA-15对CO2的增强吸附:氧空位的关键作用
IF 2.8 4区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-07-16 DOI: 10.1002/cplu.202500288
Danilo W. Losito, Jessica A. F. Pedro, Luís C. Cides-da-Silva, Matheus C. R. Miranda, Animesh Dutta, Rafael M. Santos, Tereza S. Martins

This study investigates the role of oxygen vacancies in the CO2 adsorption and desorption dynamics of SBA-15:CeO2 nanocomposites synthesized by direct (DS) and postsynthesis (PS) methods. Physicochemical analyses reveal that the DS method increases the concentration of oxygen vacancies and structural defects within the CeO2 framework, which significantly boosts CO2 adsorption capacity and strengthens the gas-surface interactions. Among the materials, S_Ce4.a demonstrates the highest adsorption capacity, reaching 29.4 mg g1 at 25 °C and 10.7 mg g−1 at 70 °C. These results indicate a physisorption mechanism governed by both thermal conditions and oxygen vacancies. Furthermore, S_Ce4.a and S_Ce10.a. exhibit remarkable stability over 20 adsorption–desorption cycles. The findings suggest that a lower cerium oxide content provides more accessible adsorption sites, making these materials promising candidates for high-performance. Overall, this work highlights synergistic interplay between oxygen vacancies and mesoporous structures, paving the way for the rational design of advanced materials for CO2 capture technologies.

本文研究了氧空位在直接(DS)和后合成(PS)制备的SBA-15:CeO2纳米复合材料的CO2吸附和解吸动力学中的作用。理化分析表明,DS方法增加了CeO2框架内氧空位和结构缺陷的浓度,显著提高了CO2吸附能力,增强了气-表面相互作用。其中,S_Ce4。a表现出最高的吸附量,在25°C和70°C下分别达到29.4 mg g-1和10.7 mg g-1。这些结果表明了一个由热条件和氧空位共同控制的物理吸附机制。此外,S_Ce4。a和S_Ce10.a。在20次吸附-解吸循环中表现出显著的稳定性。研究结果表明,较低的氧化铈含量提供了更容易获得的吸附位点,使这些材料成为高性能的有希望的候选者。总的来说,这项工作强调了氧空位和介孔结构之间的协同相互作用,为合理设计用于二氧化碳捕获技术的先进材料铺平了道路。
{"title":"Enhanced CO2 Adsorption on CeO2/SBA-15: The Key Role of Oxygen Vacancies","authors":"Danilo W. Losito,&nbsp;Jessica A. F. Pedro,&nbsp;Luís C. Cides-da-Silva,&nbsp;Matheus C. R. Miranda,&nbsp;Animesh Dutta,&nbsp;Rafael M. Santos,&nbsp;Tereza S. Martins","doi":"10.1002/cplu.202500288","DOIUrl":"10.1002/cplu.202500288","url":null,"abstract":"<p>This study investigates the role of oxygen vacancies in the CO<sub>2</sub> adsorption and desorption dynamics of SBA-15:CeO<sub>2</sub> nanocomposites synthesized by direct (DS) and postsynthesis (PS) methods. Physicochemical analyses reveal that the DS method increases the concentration of oxygen vacancies and structural defects within the CeO<sub>2</sub> framework, which significantly boosts CO<sub>2</sub> adsorption capacity and strengthens the gas-surface interactions. Among the materials, S_Ce4.a demonstrates the highest adsorption capacity, reaching 29.4 mg g<sup>−</sup><sup>1</sup> at 25 °C and 10.7 mg g<sup>−1</sup> at 70 °C. These results indicate a physisorption mechanism governed by both thermal conditions and oxygen vacancies. Furthermore, S_Ce4.a and S_Ce10.a. exhibit remarkable stability over 20 adsorption–desorption cycles. The findings suggest that a lower cerium oxide content provides more accessible adsorption sites, making these materials promising candidates for high-performance. Overall, this work highlights synergistic interplay between oxygen vacancies and mesoporous structures, paving the way for the rational design of advanced materials for CO<sub>2</sub> capture technologies.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":"90 9","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cplu.202500288","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144641326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Feature: Corrosion of Steel Strings on Historical Musical Instruments Triggered by the Emissions of Degrading Cellulose Nitrate (ChemPlusChem 7/2025) 封面特征:由降解硝酸盐纤维素排放引发的历史乐器钢弦腐蚀(ChemPlusChem 7/2025)
IF 2.8 4区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-07-15 DOI: 10.1002/cplu.202580702
Vera Milena de Bruyn-Ouboter, Hartmut Kutzke, Shannen Thora Lea Sait, Henrik Friis, Maciej Krzywiecki, Andreas Erbe

The cover feature shows a banjo mandolin undergoing an intense degradation process at the upper plastic bridge in contact with the strings. Steel strings strongly corrode in the environment of decomposing cellulose nitrate (CN) as a gas mixture containing corrosive compounds is emitted from the CN. Goethite and nitrate containing corrosion products form on the steel strings in the presence of gaseous CN degradation products. This analytical study supports musical instrument collections in their research on conservation. More information can be found in the Research Article by Vera Milena de Bruyn-Ouboter and co-workers (DOI: 10.1002/cplu.202500099).

封面特征显示了班卓曼陀林在与琴弦接触的上部塑料桥上经历了强烈的退化过程。钢串在分解的硝酸纤维素(CN)的环境中被强烈腐蚀,因为从CN中释放出含有腐蚀性化合物的气体混合物。在气态CN降解产物存在的情况下,钢串上形成针铁矿和含硝酸盐的腐蚀产物。这项分析研究为乐器收藏的保护研究提供了支持。更多信息可以在Vera Milena de Bruyn-Ouboter及其同事的研究文章中找到(DOI: 10.1002/cplu.202500099)。
{"title":"Cover Feature: Corrosion of Steel Strings on Historical Musical Instruments Triggered by the Emissions of Degrading Cellulose Nitrate (ChemPlusChem 7/2025)","authors":"Vera Milena de Bruyn-Ouboter,&nbsp;Hartmut Kutzke,&nbsp;Shannen Thora Lea Sait,&nbsp;Henrik Friis,&nbsp;Maciej Krzywiecki,&nbsp;Andreas Erbe","doi":"10.1002/cplu.202580702","DOIUrl":"10.1002/cplu.202580702","url":null,"abstract":"<p><b>The cover feature shows a banjo mandolin</b> undergoing an intense degradation process at the upper plastic bridge in contact with the strings. Steel strings strongly corrode in the environment of decomposing cellulose nitrate (CN) as a gas mixture containing corrosive compounds is emitted from the CN. Goethite and nitrate containing corrosion products form on the steel strings in the presence of gaseous CN degradation products. This analytical study supports musical instrument collections in their research on conservation. More information can be found in the Research Article by Vera Milena de Bruyn-Ouboter and co-workers (DOI: 10.1002/cplu.202500099).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":"90 7","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cplu.202580702","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144624757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Feature: Controlling Lampenflora in Heritage Sites: In Situ Testing of Polyoxometalate–Ionic Liquids in the Pommery Champagne Cellar (ChemPlusChem 7/2025) 封面专题:控制文化遗产中的蓝茅草:在Pommery香槟酒窖中对多金属氧酸离子液体的原位测试(ChemPlusChem 7/2025)
IF 2.8 4区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-07-15 DOI: 10.1002/cplu.202580703
Stéphanie Eyssautier-Chuine, Ludovic Besaury, Nathalie Vaillant-Gaveau, Sandra Villaume, Anouck Habrant, Isabel Franco-Castillo, Marine Rondeau, Dina Aggad, Maxime Gommeaux, Gilles Fronteau, Scott G. Mitchell

The cover features vibrant lampenflora colonizing historic chalk bas-reliefs under artificial lighting. It illustrates the challenge of microbial biofilms in heritage conservation and highlights the study’s innovative use of biocidal POM-ILs. These compounds effectively prevent regrowth on test areas in the Pommery Champagne cellar, offering a sustainable strategy to protect culturally significant subterranean artworks. More information can be found in the Research Article by Stéphanie Eyssautier-Chuine, Scott G. Mitchell, and co-workers (DOI: 10.1002/cplu.202500043).

封面以充满活力的蓝藻为特色,在人工照明下殖民历史悠久的白垩浅浮雕。它说明了微生物生物膜在遗产保护中的挑战,并强调了生物杀灭剂pom - il的创新使用。这些化合物有效地防止了Pommery Champagne酒窖测试区域的再生,为保护具有重要文化意义的地下艺术品提供了可持续的策略。更多的信息可以在stenjophanie Eyssautier-Chuine, Scott G. Mitchell及其同事的研究文章中找到(DOI: 10.1002/cplu.202500043)。
{"title":"Cover Feature: Controlling Lampenflora in Heritage Sites: In Situ Testing of Polyoxometalate–Ionic Liquids in the Pommery Champagne Cellar (ChemPlusChem 7/2025)","authors":"Stéphanie Eyssautier-Chuine,&nbsp;Ludovic Besaury,&nbsp;Nathalie Vaillant-Gaveau,&nbsp;Sandra Villaume,&nbsp;Anouck Habrant,&nbsp;Isabel Franco-Castillo,&nbsp;Marine Rondeau,&nbsp;Dina Aggad,&nbsp;Maxime Gommeaux,&nbsp;Gilles Fronteau,&nbsp;Scott G. Mitchell","doi":"10.1002/cplu.202580703","DOIUrl":"10.1002/cplu.202580703","url":null,"abstract":"<p><b>The cover features vibrant lampenflora</b> colonizing historic chalk bas-reliefs under artificial lighting. It illustrates the challenge of microbial biofilms in heritage conservation and highlights the study’s innovative use of biocidal POM-ILs. These compounds effectively prevent regrowth on test areas in the Pommery Champagne cellar, offering a sustainable strategy to protect culturally significant subterranean artworks. More information can be found in the Research Article by Stéphanie Eyssautier-Chuine, Scott G. Mitchell, and co-workers (DOI: 10.1002/cplu.202500043).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":"90 7","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cplu.202580703","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144624879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemistry Related Research at the Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, Greece 纳米科学和纳米技术研究所化学相关研究,NCSR“Demokritos”,希腊
IF 2.8 4区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-07-15 DOI: 10.1002/cplu.202500318
Konstantina Yannakopoulou, Yannis G. Lazarou, Evangelos Gogolides

The Institute of Nanoscience and Nanotechnology (INN) is part of the National Center for Scientific Research “Demokritos” (NCSRD), located in Aghia Paraskevi, Attiki, Greece. The research carried out at INN is multidisciplinary, giving rise to a multitude of research projects in the areas of chemical sciences for nanostructures and biological applications, cultural heritage, magnetism and superconductivity, nanochemistry, as well as nanomaterials, nanoelectronics, photonics, and microsystems. The research activities in INN span the range from fundamental physical sciences and engineering principles to innovative applications in: environment, energy, and industry; digital technology, space, security, and defense; quantum materials and technology; health and agrofood; and culture and climate. In this Institute Feature, a number of articles are presented reporting recent research in which chemistry is an essential component.

纳米科学和纳米技术研究所(INN)是位于希腊Attiki的Aghia Paraskevi的国家科学研究中心“Demokritos”(NCSRD)的一部分。该研究所开展的研究是多学科的,在纳米结构和生物应用的化学科学、文化遗产、磁性和超导性、纳米化学以及纳米材料、纳米电子学、光子学和微系统等领域产生了大量的研究项目。INN的研究活动涵盖了从基础物理科学和工程原理到环境、能源和工业领域的创新应用;数字技术、航天、安全与国防;量子材料与技术;卫生和农业食品;还有文化和气候。在这个研究所的特点,一些文章提出报告最近的研究,其中化学是一个重要组成部分。
{"title":"Chemistry Related Research at the Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, Greece","authors":"Konstantina Yannakopoulou,&nbsp;Yannis G. Lazarou,&nbsp;Evangelos Gogolides","doi":"10.1002/cplu.202500318","DOIUrl":"10.1002/cplu.202500318","url":null,"abstract":"<p>The Institute of Nanoscience and Nanotechnology (INN) is part of the National Center for Scientific Research “Demokritos” (NCSRD), located in Aghia Paraskevi, Attiki, Greece. The research carried out at INN is multidisciplinary, giving rise to a multitude of research projects in the areas of chemical sciences for nanostructures and biological applications, cultural heritage, magnetism and superconductivity, nanochemistry, as well as nanomaterials, nanoelectronics, photonics, and microsystems. The research activities in INN span the range from fundamental physical sciences and engineering principles to innovative applications in: environment, energy, and industry; digital technology, space, security, and defense; quantum materials and technology; health and agrofood; and culture and climate. In this Institute Feature, a number of articles are presented reporting recent research in which chemistry is an essential component.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":"90 7","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cplu.202500318","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144624363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Front Cover: Beeswax Nanoemulsion for Consolidation and Hydrophobization of Canvases (ChemPlusChem 7/2025) 封面:用于帆布固结和疏水性的蜂蜡纳米乳液(ChemPlusChem 7/2025)
IF 2.8 4区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-07-15 DOI: 10.1002/cplu.202580701
Yiming Jia, Krister Holmberg, Romain Bordes

The conservation of degraded canvases often requires consolidation treatments that improve mechanical strength and minimize the impact of temperature and humidity fluctuations. In their Research Article (10.1002/cplu.202500058), Romain Bordes, Yiming Jia, and Krister Holmberg present an eco-friendly dispersion system that combines CNC, EHM, and beeswax nanoemulsion for consolidation and hydrophobization of degraded canvases. The beeswax nanoemulsion, prepared using the Ouzo effect, enhances moisture resistance while mimicking superhydrophobic surfaces.

退化画布的保存通常需要加固处理,以提高机械强度并尽量减少温度和湿度波动的影响。在他们的研究论文(10.1002/ cpls .202500058)中,Romain Bordes, Yiming Jia和Krister Holmberg提出了一种结合CNC, EHM和蜂蜡纳米乳液的环保分散系统,用于降解画布的固结和疏水。利用Ouzo效应制备的蜂蜡纳米乳液,在模拟超疏水表面的同时增强了抗湿性。
{"title":"Front Cover: Beeswax Nanoemulsion for Consolidation and Hydrophobization of Canvases (ChemPlusChem 7/2025)","authors":"Yiming Jia,&nbsp;Krister Holmberg,&nbsp;Romain Bordes","doi":"10.1002/cplu.202580701","DOIUrl":"10.1002/cplu.202580701","url":null,"abstract":"<p><b>The conservation of degraded canvases</b> often requires consolidation treatments that improve mechanical strength and minimize the impact of temperature and humidity fluctuations. In their Research Article (10.1002/cplu.202500058), Romain Bordes, Yiming Jia, and Krister Holmberg present an eco-friendly dispersion system that combines CNC, EHM, and beeswax nanoemulsion for consolidation and hydrophobization of degraded canvases. The beeswax nanoemulsion, prepared using the Ouzo effect, enhances moisture resistance while mimicking superhydrophobic surfaces.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":"90 7","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cplu.202580701","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144624753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ChemPlusChem
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1