Background: Host-microbiome interactions (HMIs) are critical for the modulation of biological processes and are associated with several diseases. Extensive HMI studies have generated large amounts of data. We propose that the logical representation of the knowledge derived from these data and the standardized representation of experimental variables and processes can foster integration of data and reproducibility of experiments and thereby further HMI knowledge discovery.
Methods: Through a multi-institutional collaboration, a community-based Ontology of Host-Microbiome Interactions (OHMI) was developed following the Open Biological/Biomedical Ontologies (OBO) Foundry principles. As an OBO library ontology, OHMI leverages established ontologies to create logically structured representations of (1) microbiomes, microbial taxonomy, host species, host anatomical entities, and HMIs under different conditions and (2) associated study protocols and types of data analysis and experimental results.
Results: Aligned with the Basic Formal Ontology, OHMI comprises over 1000 terms, including terms imported from more than 10 existing ontologies together with some 500 OHMI-specific terms. A specific OHMI design pattern was generated to represent typical host-microbiome interaction studies. As one major OHMI use case, drawing on data from over 50 peer-reviewed publications, we identified over 100 bacteria and fungi from the gut, oral cavity, skin, and airway that are associated with six rheumatic diseases including rheumatoid arthritis. Our ontological study identified new high-level microbiota taxonomical structures. Two microbiome-related competency questions were also designed and addressed. We were also able to use OHMI to represent statistically significant results identified from a large existing microbiome database data analysis.
Conclusion: OHMI represents entities and relations in the domain of HMIs. It supports shared knowledge representation, data and metadata standardization and integration, and can be used in formulation of advanced queries for purposes of data analysis.
Background: With the improvements to text mining technology and the availability of large unstructured Electronic Healthcare Records (EHR) datasets, it is now possible to extract structured information from raw text contained within EHR at reasonably high accuracy. We describe a text mining system for classifying radiologists' reports of CT and MRI brain scans, assigning labels indicating occurrence and type of stroke, as well as other observations. Our system, the Edinburgh Information Extraction for Radiology reports (EdIE-R) system, which we describe here, was developed and tested on a collection of radiology reports.The work reported in this paper is based on 1168 radiology reports from the Edinburgh Stroke Study (ESS), a hospital-based register of stroke and transient ischaemic attack patients. We manually created annotations for this data in parallel with developing the rule-based EdIE-R system to identify phenotype information related to stroke in radiology reports. This process was iterative and domain expert feedback was considered at each iteration to adapt and tune the EdIE-R text mining system which identifies entities, negation and relations between entities in each report and determines report-level labels (phenotypes).
Results: The inter-annotator agreement (IAA) for all types of annotations is high at 96.96 for entities, 96.46 for negation, 95.84 for relations and 94.02 for labels. The equivalent system scores on the blind test set are equally high at 95.49 for entities, 94.41 for negation, 98.27 for relations and 96.39 for labels for the first annotator and 96.86, 96.01, 96.53 and 92.61, respectively for the second annotator.
Conclusion: Automated reading of such EHR data at such high levels of accuracies opens up avenues for population health monitoring and audit, and can provide a resource for epidemiological studies. We are in the process of validating EdIE-R in separate larger cohorts in NHS England and Scotland. The manually annotated ESS corpus will be available for research purposes on application.