Pub Date : 2022-05-23DOI: 10.1186/s13326-022-00271-7
Olivia Sanchez-Graillet, Christian Witte, Frank Grimm, P. Cimiano
{"title":"An annotated corpus of clinical trial publications supporting schema-based relational information extraction","authors":"Olivia Sanchez-Graillet, Christian Witte, Frank Grimm, P. Cimiano","doi":"10.1186/s13326-022-00271-7","DOIUrl":"https://doi.org/10.1186/s13326-022-00271-7","url":null,"abstract":"","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43016385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-05-08DOI: 10.1186/s13326-022-00269-1
Lucas Emanuel Silva E Oliveira, Ana Carolina Peters, Adalniza Moura Pucca da Silva, Caroline Pilatti Gebeluca, Yohan Bonescki Gumiel, Lilian Mie Mukai Cintho, Deborah Ribeiro Carvalho, Sadid Al Hasan, Claudia Maria Cabral Moro
Background: The high volume of research focusing on extracting patient information from electronic health records (EHRs) has led to an increase in the demand for annotated corpora, which are a precious resource for both the development and evaluation of natural language processing (NLP) algorithms. The absence of a multipurpose clinical corpus outside the scope of the English language, especially in Brazilian Portuguese, is glaring and severely impacts scientific progress in the biomedical NLP field.
Methods: In this study, a semantically annotated corpus was developed using clinical text from multiple medical specialties, document types, and institutions. In addition, we present, (1) a survey listing common aspects, differences, and lessons learned from previous research, (2) a fine-grained annotation schema that can be replicated to guide other annotation initiatives, (3) a web-based annotation tool focusing on an annotation suggestion feature, and (4) both intrinsic and extrinsic evaluation of the annotations.
Results: This study resulted in SemClinBr, a corpus that has 1000 clinical notes, labeled with 65,117 entities and 11,263 relations. In addition, both negation cues and medical abbreviation dictionaries were generated from the annotations. The average annotator agreement score varied from 0.71 (applying strict match) to 0.92 (considering a relaxed match) while accepting partial overlaps and hierarchically related semantic types. The extrinsic evaluation, when applying the corpus to two downstream NLP tasks, demonstrated the reliability and usefulness of annotations, with the systems achieving results that were consistent with the agreement scores.
Conclusion: The SemClinBr corpus and other resources produced in this work can support clinical NLP studies, providing a common development and evaluation resource for the research community, boosting the utilization of EHRs in both clinical practice and biomedical research. To the best of our knowledge, SemClinBr is the first available Portuguese clinical corpus.
{"title":"SemClinBr - a multi-institutional and multi-specialty semantically annotated corpus for Portuguese clinical NLP tasks.","authors":"Lucas Emanuel Silva E Oliveira, Ana Carolina Peters, Adalniza Moura Pucca da Silva, Caroline Pilatti Gebeluca, Yohan Bonescki Gumiel, Lilian Mie Mukai Cintho, Deborah Ribeiro Carvalho, Sadid Al Hasan, Claudia Maria Cabral Moro","doi":"10.1186/s13326-022-00269-1","DOIUrl":"https://doi.org/10.1186/s13326-022-00269-1","url":null,"abstract":"<p><strong>Background: </strong>The high volume of research focusing on extracting patient information from electronic health records (EHRs) has led to an increase in the demand for annotated corpora, which are a precious resource for both the development and evaluation of natural language processing (NLP) algorithms. The absence of a multipurpose clinical corpus outside the scope of the English language, especially in Brazilian Portuguese, is glaring and severely impacts scientific progress in the biomedical NLP field.</p><p><strong>Methods: </strong>In this study, a semantically annotated corpus was developed using clinical text from multiple medical specialties, document types, and institutions. In addition, we present, (1) a survey listing common aspects, differences, and lessons learned from previous research, (2) a fine-grained annotation schema that can be replicated to guide other annotation initiatives, (3) a web-based annotation tool focusing on an annotation suggestion feature, and (4) both intrinsic and extrinsic evaluation of the annotations.</p><p><strong>Results: </strong>This study resulted in SemClinBr, a corpus that has 1000 clinical notes, labeled with 65,117 entities and 11,263 relations. In addition, both negation cues and medical abbreviation dictionaries were generated from the annotations. The average annotator agreement score varied from 0.71 (applying strict match) to 0.92 (considering a relaxed match) while accepting partial overlaps and hierarchically related semantic types. The extrinsic evaluation, when applying the corpus to two downstream NLP tasks, demonstrated the reliability and usefulness of annotations, with the systems achieving results that were consistent with the agreement scores.</p><p><strong>Conclusion: </strong>The SemClinBr corpus and other resources produced in this work can support clinical NLP studies, providing a common development and evaluation resource for the research community, boosting the utilization of EHRs in both clinical practice and biomedical research. To the best of our knowledge, SemClinBr is the first available Portuguese clinical corpus.</p>","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":"13 1","pages":"13"},"PeriodicalIF":1.9,"publicationDate":"2022-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9080187/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10252310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-25DOI: 10.1186/s13326-022-00263-7
Queralt-Rosinach, Núria, Kaliyaperumal, Rajaram, Bernabé, César H., Long, Qinqin, Joosten, Simone A., van der Wijk, Henk Jan, Flikkenschild, Erik L.A., Burger, Kees, Jacobsen, Annika, Mons, Barend, Roos, Marco
The COVID-19 pandemic has challenged healthcare systems and research worldwide. Data is collected all over the world and needs to be integrated and made available to other researchers quickly. However, the various heterogeneous information systems that are used in hospitals can result in fragmentation of health data over multiple data ‘silos’ that are not interoperable for analysis. Consequently, clinical observations in hospitalised patients are not prepared to be reused efficiently and timely. There is a need to adapt the research data management in hospitals to make COVID-19 observational patient data machine actionable, i.e. more Findable, Accessible, Interoperable and Reusable (FAIR) for humans and machines. We therefore applied the FAIR principles in the hospital to make patient data more FAIR. In this paper, we present our FAIR approach to transform COVID-19 observational patient data collected in the hospital into machine actionable digital objects to answer medical doctors’ research questions. With this objective, we conducted a coordinated FAIRification among stakeholders based on ontological models for data and metadata, and a FAIR based architecture that complements the existing data management. We applied FAIR Data Points for metadata exposure, turning investigational parameters into a FAIR dataset. We demonstrated that this dataset is machine actionable by means of three different computational activities: federated query of patient data along open existing knowledge sources across the world through the Semantic Web, implementing Web APIs for data query interoperability, and building applications on top of these FAIR patient data for FAIR data analytics in the hospital. Our work demonstrates that a FAIR research data management plan based on ontological models for data and metadata, open Science, Semantic Web technologies, and FAIR Data Points is providing data infrastructure in the hospital for machine actionable FAIR Digital Objects. This FAIR data is prepared to be reused for federated analysis, linkable to other FAIR data such as Linked Open Data, and reusable to develop software applications on top of them for hypothesis generation and knowledge discovery.
{"title":"Applying the FAIR principles to data in a hospital: challenges and opportunities in a pandemic","authors":"Queralt-Rosinach, Núria, Kaliyaperumal, Rajaram, Bernabé, César H., Long, Qinqin, Joosten, Simone A., van der Wijk, Henk Jan, Flikkenschild, Erik L.A., Burger, Kees, Jacobsen, Annika, Mons, Barend, Roos, Marco","doi":"10.1186/s13326-022-00263-7","DOIUrl":"https://doi.org/10.1186/s13326-022-00263-7","url":null,"abstract":"The COVID-19 pandemic has challenged healthcare systems and research worldwide. Data is collected all over the world and needs to be integrated and made available to other researchers quickly. However, the various heterogeneous information systems that are used in hospitals can result in fragmentation of health data over multiple data ‘silos’ that are not interoperable for analysis. Consequently, clinical observations in hospitalised patients are not prepared to be reused efficiently and timely. There is a need to adapt the research data management in hospitals to make COVID-19 observational patient data machine actionable, i.e. more Findable, Accessible, Interoperable and Reusable (FAIR) for humans and machines. We therefore applied the FAIR principles in the hospital to make patient data more FAIR. In this paper, we present our FAIR approach to transform COVID-19 observational patient data collected in the hospital into machine actionable digital objects to answer medical doctors’ research questions. With this objective, we conducted a coordinated FAIRification among stakeholders based on ontological models for data and metadata, and a FAIR based architecture that complements the existing data management. We applied FAIR Data Points for metadata exposure, turning investigational parameters into a FAIR dataset. We demonstrated that this dataset is machine actionable by means of three different computational activities: federated query of patient data along open existing knowledge sources across the world through the Semantic Web, implementing Web APIs for data query interoperability, and building applications on top of these FAIR patient data for FAIR data analytics in the hospital. Our work demonstrates that a FAIR research data management plan based on ontological models for data and metadata, open Science, Semantic Web technologies, and FAIR Data Points is providing data infrastructure in the hospital for machine actionable FAIR Digital Objects. This FAIR data is prepared to be reused for federated analysis, linkable to other FAIR data such as Linked Open Data, and reusable to develop software applications on top of them for hypothesis generation and knowledge discovery.","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":"90 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138538450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Health data from different specialties or domains generallly have diverse formats and meanings, which can cause semantic communication barriers when these data are exchanged among heterogeneous systems. As such, this study is intended to develop a national health concept data model (HCDM) and develop a corresponding system to facilitate healthcare data standardization and centralized metadata management. Based on 55 data sets (4640 data items) from 7 health business domains in China, a bottom-up approach was employed to build the structure and metadata for HCDM by referencing HL7 RIM. According to ISO/IEC 11179, a top-down approach was used to develop and standardize the data elements. HCDM adopted three-level architecture of class, attribute and data type, and consisted of 6 classes and 15 sub-classes. Each class had a set of descriptive attributes and every attribute was assigned a data type. 100 initial data elements (DEs) were extracted from HCDM and 144 general DEs were derived from corresponding initial DEs. Domain DEs were transformed by specializing general DEs using 12 controlled vocabularies which developed from HL7 vocabularies and actual health demands. A model-based system was successfully established to evaluate and manage the NHDD. HCDM provided a unified metadata reference for multi-source data standardization and management. This approach of defining health data elements was a feasible solution in healthcare information standardization to enable healthcare interoperability in China.
来自不同专业或领域的健康数据通常具有不同的格式和含义,当这些数据在异构系统之间交换时,可能会造成语义通信障碍。因此,本研究旨在建立国家健康概念数据模型(HCDM)并开发相应的系统,以促进医疗数据标准化和元数据的集中管理。基于来自中国7个健康业务领域的55个数据集(4640个数据项),采用自底向上的方法,参照HL7 RIM构建HCDM的结构和元数据。根据ISO/IEC 11179,采用了自顶向下的方法来开发和标准化数据元素。HCDM采用类、属性、数据类型三级架构,由6个类和15个子类组成。每个类都有一组描述性属性,每个属性都被分配了一个数据类型。从HCDM中提取了100个初始数据元素(initial data elements, DEs),并由相应的初始数据元素衍生出144个通用数据元素(general data elements),利用HL7词汇表和实际健康需求发展而来的12个受控词汇表,对通用数据元素进行专门化转换。成功建立了一个基于模型的NHDD评估与管理系统。HCDM为多源数据的标准化和管理提供了统一的元数据参考。这种定义健康数据元素的方法是实现中国医疗保健互操作性的医疗保健信息标准化的可行解决方案。
{"title":"Defining health data elements under the HL7 development framework for metadata management","authors":"Yang, Zhe, Jiang, Kun, Lou, Miaomiao, Gong, Yang, Zhang, Lili, Liu, Jing, Bao, Xinyu, Liu, Danhong, Yang, Peng","doi":"10.1186/s13326-022-00265-5","DOIUrl":"https://doi.org/10.1186/s13326-022-00265-5","url":null,"abstract":"Health data from different specialties or domains generallly have diverse formats and meanings, which can cause semantic communication barriers when these data are exchanged among heterogeneous systems. As such, this study is intended to develop a national health concept data model (HCDM) and develop a corresponding system to facilitate healthcare data standardization and centralized metadata management. Based on 55 data sets (4640 data items) from 7 health business domains in China, a bottom-up approach was employed to build the structure and metadata for HCDM by referencing HL7 RIM. According to ISO/IEC 11179, a top-down approach was used to develop and standardize the data elements. HCDM adopted three-level architecture of class, attribute and data type, and consisted of 6 classes and 15 sub-classes. Each class had a set of descriptive attributes and every attribute was assigned a data type. 100 initial data elements (DEs) were extracted from HCDM and 144 general DEs were derived from corresponding initial DEs. Domain DEs were transformed by specializing general DEs using 12 controlled vocabularies which developed from HL7 vocabularies and actual health demands. A model-based system was successfully established to evaluate and manage the NHDD. HCDM provided a unified metadata reference for multi-source data standardization and management. This approach of defining health data elements was a feasible solution in healthcare information standardization to enable healthcare interoperability in China.","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":"24 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2022-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138538405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-03-15DOI: 10.1186/s13326-022-00264-6
Kaliyaperumal, Rajaram, Wilkinson, Mark D., Moreno, Pablo Alarcón, Benis, Nirupama, Cornet, Ronald, dos Santos Vieira, Bruna, Dumontier, Michel, Bernabé, César Henrique, Jacobsen, Annika, Le Cornec, Clémence M. A., Godoy, Mario Prieto, Queralt-Rosinach, Núria, Schultze Kool, Leo J., Swertz, Morris A., van Damme, Philip, van der Velde, K. Joeri, Lalout, Nawel, Zhang, Shuxin, Roos, Marco
The European Platform on Rare Disease Registration (EU RD Platform) aims to address the fragmentation of European rare disease (RD) patient data, scattered among hundreds of independent and non-coordinating registries, by establishing standards for integration and interoperability. The first practical output of this effort was a set of 16 Common Data Elements (CDEs) that should be implemented by all RD registries. Interoperability, however, requires decisions beyond data elements - including data models, formats, and semantics. Within the European Joint Programme on Rare Diseases (EJP RD), we aim to further the goals of the EU RD Platform by generating reusable RD semantic model templates that follow the FAIR Data Principles. Through a team-based iterative approach, we created semantically grounded models to represent each of the CDEs, using the SemanticScience Integrated Ontology as the core framework for representing the entities and their relationships. Within that framework, we mapped the concepts represented in the CDEs, and their possible values, into domain ontologies such as the Orphanet Rare Disease Ontology, Human Phenotype Ontology and National Cancer Institute Thesaurus. Finally, we created an exemplar, reusable ETL pipeline that we will be deploying over these non-coordinating data repositories to assist them in creating model-compliant FAIR data without requiring site-specific coding nor expertise in Linked Data or FAIR. Within the EJP RD project, we determined that creating reusable, expert-designed templates reduced or eliminated the requirement for our participating biomedical domain experts and rare disease data hosts to understand OWL semantics. This enabled them to publish highly expressive FAIR data using tools and approaches that were already familiar to them.
{"title":"Semantic modelling of common data elements for rare disease registries, and a prototype workflow for their deployment over registry data","authors":"Kaliyaperumal, Rajaram, Wilkinson, Mark D., Moreno, Pablo Alarcón, Benis, Nirupama, Cornet, Ronald, dos Santos Vieira, Bruna, Dumontier, Michel, Bernabé, César Henrique, Jacobsen, Annika, Le Cornec, Clémence M. A., Godoy, Mario Prieto, Queralt-Rosinach, Núria, Schultze Kool, Leo J., Swertz, Morris A., van Damme, Philip, van der Velde, K. Joeri, Lalout, Nawel, Zhang, Shuxin, Roos, Marco","doi":"10.1186/s13326-022-00264-6","DOIUrl":"https://doi.org/10.1186/s13326-022-00264-6","url":null,"abstract":"The European Platform on Rare Disease Registration (EU RD Platform) aims to address the fragmentation of European rare disease (RD) patient data, scattered among hundreds of independent and non-coordinating registries, by establishing standards for integration and interoperability. The first practical output of this effort was a set of 16 Common Data Elements (CDEs) that should be implemented by all RD registries. Interoperability, however, requires decisions beyond data elements - including data models, formats, and semantics. Within the European Joint Programme on Rare Diseases (EJP RD), we aim to further the goals of the EU RD Platform by generating reusable RD semantic model templates that follow the FAIR Data Principles. Through a team-based iterative approach, we created semantically grounded models to represent each of the CDEs, using the SemanticScience Integrated Ontology as the core framework for representing the entities and their relationships. Within that framework, we mapped the concepts represented in the CDEs, and their possible values, into domain ontologies such as the Orphanet Rare Disease Ontology, Human Phenotype Ontology and National Cancer Institute Thesaurus. Finally, we created an exemplar, reusable ETL pipeline that we will be deploying over these non-coordinating data repositories to assist them in creating model-compliant FAIR data without requiring site-specific coding nor expertise in Linked Data or FAIR. Within the EJP RD project, we determined that creating reusable, expert-designed templates reduced or eliminated the requirement for our participating biomedical domain experts and rare disease data hosts to understand OWL semantics. This enabled them to publish highly expressive FAIR data using tools and approaches that were already familiar to them.","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":"32 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138538468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-02-23DOI: 10.1186/s13326-022-00262-8
Amara Tariq, Omar Kallas, Patricia Balthazar, Scott Jeffery Lee, Terry Desser, Daniel Rubin, Judy Wawira Gichoya, Imon Banerjee
Background: Transfer learning is a common practice in image classification with deep learning where the available data is often limited for training a complex model with millions of parameters. However, transferring language models requires special attention since cross-domain vocabularies (e.g. between two different modalities MR and US) do not always overlap as the pixel intensity range overlaps mostly for images.
Method: We present a concept of similar domain adaptation where we transfer inter-institutional language models (context-dependent and context-independent) between two different modalities (ultrasound and MRI) to capture liver abnormalities.
Results: We use MR and US screening exam reports for hepatocellular carcinoma as the use-case and apply the transfer language space strategy to automatically label imaging exams with and without structured template with > 0.9 average f1-score.
Conclusion: We conclude that transfer learning along with fine-tuning the discriminative model is often more effective for performing shared targeted tasks than the training for a language space from scratch.
{"title":"Transfer language space with similar domain adaptation: a case study with hepatocellular carcinoma.","authors":"Amara Tariq, Omar Kallas, Patricia Balthazar, Scott Jeffery Lee, Terry Desser, Daniel Rubin, Judy Wawira Gichoya, Imon Banerjee","doi":"10.1186/s13326-022-00262-8","DOIUrl":"https://doi.org/10.1186/s13326-022-00262-8","url":null,"abstract":"<p><strong>Background: </strong>Transfer learning is a common practice in image classification with deep learning where the available data is often limited for training a complex model with millions of parameters. However, transferring language models requires special attention since cross-domain vocabularies (e.g. between two different modalities MR and US) do not always overlap as the pixel intensity range overlaps mostly for images.</p><p><strong>Method: </strong>We present a concept of similar domain adaptation where we transfer inter-institutional language models (context-dependent and context-independent) between two different modalities (ultrasound and MRI) to capture liver abnormalities.</p><p><strong>Results: </strong>We use MR and US screening exam reports for hepatocellular carcinoma as the use-case and apply the transfer language space strategy to automatically label imaging exams with and without structured template with > 0.9 average f1-score.</p><p><strong>Conclusion: </strong>We conclude that transfer learning along with fine-tuning the discriminative model is often more effective for performing shared targeted tasks than the training for a language space from scratch.</p>","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":" ","pages":"8"},"PeriodicalIF":1.9,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8867666/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39809029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-02-22DOI: 10.1186/s13326-022-00260-w
Nicholas Charles Nicholson, Francesco Giusti, Manola Bettio, Raquel Negrao Carvalho, Nadya Dimitrova, Tadeusz Dyba, Manuela Flego, Luciana Neamtiu, Giorgia Randi, Carmen Martos
Background: Population-based cancer registries are a critical reference source for the surveillance and control of cancer. Cancer registries work extensively with the internationally recognised TNM classification system used to stage solid tumours, but the system is complex and compounded by the different TNM editions in concurrent use. TNM ontologies exist but the design requirements are different for the needs of the clinical and cancer-registry domains. Two TNM ontologies developed specifically for cancer registries were designed for different purposes and have limitations for serving wider application. A unified ontology is proposed to serve the various cancer registry TNM-related tasks and reduce the multiplication effects of different ontologies serving specific tasks. The ontology is comprehensive of the rules for TNM edition 7 as required by cancer registries and designed on a modular basis to allow extension to other TNM editions.
Results: A unified ontology was developed building on the experience and design of the existing ontologies. It follows a modular approach allowing plug in of components dependent upon any particular TNM edition. A Java front-end was developed to interface with the ontology via the Web Ontology Language application programme interface and enables batch validation or classification of cancer registry records. The programme also allows the means of automated error correction in some instances. Initial tests verified the design concept by correctly inferring TNM stage and successfully handling the TNM-related validation checks on a number of cancer case records, with a performance similar to that of an existing ontology dedicated to the task.
Conclusions: The unified ontology provides a multi-purpose tool for TNM-related tasks in a cancer registry and is scalable for different editions of TNM. It offers a convenient way of quickly checking validity of cancer case stage information and for batch processing of multi-record data via a dedicated front-end programme. The ontology is adaptable to many uses, either as a standalone TNM module or as a component in applications of wider focus. It provides a first step towards a single, unified TNM ontology for cancer registries.
{"title":"A multipurpose TNM stage ontology for cancer registries.","authors":"Nicholas Charles Nicholson, Francesco Giusti, Manola Bettio, Raquel Negrao Carvalho, Nadya Dimitrova, Tadeusz Dyba, Manuela Flego, Luciana Neamtiu, Giorgia Randi, Carmen Martos","doi":"10.1186/s13326-022-00260-w","DOIUrl":"https://doi.org/10.1186/s13326-022-00260-w","url":null,"abstract":"<p><strong>Background: </strong>Population-based cancer registries are a critical reference source for the surveillance and control of cancer. Cancer registries work extensively with the internationally recognised TNM classification system used to stage solid tumours, but the system is complex and compounded by the different TNM editions in concurrent use. TNM ontologies exist but the design requirements are different for the needs of the clinical and cancer-registry domains. Two TNM ontologies developed specifically for cancer registries were designed for different purposes and have limitations for serving wider application. A unified ontology is proposed to serve the various cancer registry TNM-related tasks and reduce the multiplication effects of different ontologies serving specific tasks. The ontology is comprehensive of the rules for TNM edition 7 as required by cancer registries and designed on a modular basis to allow extension to other TNM editions.</p><p><strong>Results: </strong>A unified ontology was developed building on the experience and design of the existing ontologies. It follows a modular approach allowing plug in of components dependent upon any particular TNM edition. A Java front-end was developed to interface with the ontology via the Web Ontology Language application programme interface and enables batch validation or classification of cancer registry records. The programme also allows the means of automated error correction in some instances. Initial tests verified the design concept by correctly inferring TNM stage and successfully handling the TNM-related validation checks on a number of cancer case records, with a performance similar to that of an existing ontology dedicated to the task.</p><p><strong>Conclusions: </strong>The unified ontology provides a multi-purpose tool for TNM-related tasks in a cancer registry and is scalable for different editions of TNM. It offers a convenient way of quickly checking validity of cancer case stage information and for batch processing of multi-record data via a dedicated front-end programme. The ontology is adaptable to many uses, either as a standalone TNM module or as a component in applications of wider focus. It provides a first step towards a single, unified TNM ontology for cancer registries.</p>","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":" ","pages":"7"},"PeriodicalIF":1.9,"publicationDate":"2022-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8862240/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39945025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-02-22DOI: 10.1186/s13326-022-00261-9
Raphaël Gazzotti, Catherine Faron, Fabien Gandon, Virginie Lacroix-Hugues, David Darmon
Background: Artificial intelligence methods applied to electronic medical records (EMRs) hold the potential to help physicians save time by sharpening their analysis and decisions, thereby improving the health of patients. On the one hand, machine learning algorithms have proven their effectiveness in extracting information and exploiting knowledge extracted from data. On the other hand, knowledge graphs capture human knowledge by relying on conceptual schemas and formalization and supporting reasoning. Leveraging knowledge graphs that are legion in the medical field, it is possible to pre-process and enrich data representation used by machine learning algorithms. Medical data standardization is an opportunity to jointly exploit the richness of knowledge graphs and the capabilities of machine learning algorithms.
Methods: We propose to address the problem of hospitalization prediction for patients with an approach that enriches vector representation of EMRs with information extracted from different knowledge graphs before learning and predicting. In addition, we performed an automatic selection of features resulting from knowledge graphs to distinguish noisy ones from those that can benefit the decision making. We report the results of our experiments on the PRIMEGE PACA database that contains more than 600,000 consultations carried out by 17 general practitioners (GPs).
Results: A statistical evaluation shows that our proposed approach improves hospitalization prediction. More precisely, injecting features extracted from cross-domain knowledge graphs in the vector representation of EMRs given as input to the prediction algorithm significantly increases the F1 score of the prediction.
Conclusions: By injecting knowledge from recognized reference sources into the representation of EMRs, it is possible to significantly improve the prediction of medical events. Future work would be to evaluate the impact of a feature selection step coupled with a combination of features extracted from several knowledge graphs. A possible avenue is to study more hierarchical levels and properties related to concepts, as well as to integrate more semantic annotators to exploit unstructured data.
{"title":"Extending electronic medical records vector models with knowledge graphs to improve hospitalization prediction.","authors":"Raphaël Gazzotti, Catherine Faron, Fabien Gandon, Virginie Lacroix-Hugues, David Darmon","doi":"10.1186/s13326-022-00261-9","DOIUrl":"https://doi.org/10.1186/s13326-022-00261-9","url":null,"abstract":"<p><strong>Background: </strong>Artificial intelligence methods applied to electronic medical records (EMRs) hold the potential to help physicians save time by sharpening their analysis and decisions, thereby improving the health of patients. On the one hand, machine learning algorithms have proven their effectiveness in extracting information and exploiting knowledge extracted from data. On the other hand, knowledge graphs capture human knowledge by relying on conceptual schemas and formalization and supporting reasoning. Leveraging knowledge graphs that are legion in the medical field, it is possible to pre-process and enrich data representation used by machine learning algorithms. Medical data standardization is an opportunity to jointly exploit the richness of knowledge graphs and the capabilities of machine learning algorithms.</p><p><strong>Methods: </strong>We propose to address the problem of hospitalization prediction for patients with an approach that enriches vector representation of EMRs with information extracted from different knowledge graphs before learning and predicting. In addition, we performed an automatic selection of features resulting from knowledge graphs to distinguish noisy ones from those that can benefit the decision making. We report the results of our experiments on the PRIMEGE PACA database that contains more than 600,000 consultations carried out by 17 general practitioners (GPs).</p><p><strong>Results: </strong>A statistical evaluation shows that our proposed approach improves hospitalization prediction. More precisely, injecting features extracted from cross-domain knowledge graphs in the vector representation of EMRs given as input to the prediction algorithm significantly increases the F1 score of the prediction.</p><p><strong>Conclusions: </strong>By injecting knowledge from recognized reference sources into the representation of EMRs, it is possible to significantly improve the prediction of medical events. Future work would be to evaluate the impact of a feature selection step coupled with a combination of features extracted from several knowledge graphs. A possible avenue is to study more hierarchical levels and properties related to concepts, as well as to integrate more semantic annotators to exploit unstructured data.</p>","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":" ","pages":"6"},"PeriodicalIF":1.9,"publicationDate":"2022-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8861628/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39945027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-31DOI: 10.1186/s13326-022-00259-3
Florent Baty, Jemima Hegermann, Tiziana Locatelli, Claudio Rüegg, Christian Gysin, Frank Rassouli, Martin Brutsche
Background: Text mining can be applied to automate knowledge extraction from unstructured data included in medical reports and generate quality indicators applicable for medical documentation. The primary objective of this study was to apply text mining methodology for the analysis of polysomnographic medical reports in order to quantify sources of variation - here the diagnostic precision vs. the inter-rater variability - in the work-up of sleep-disordered breathing. The secondary objective was to assess the impact of a text block standardization on the diagnostic precision of polysomnography reports in an independent test set.
Results: Polysomnography reports of 243 laboratory-based overnight sleep investigations scored by 9 trained sleep specialists of the Sleep Center St. Gallen were analyzed using a text-mining methodology. Patterns in the usage of discriminating terms allowed for the characterization of type and severity of disease and inter-rater homogeneity. The variation introduced by the inter-rater (technician/physician) heterogeneity was found to be twice as high compared to the variation introduced by effective diagnostic information. A simple text block standardization could significantly reduce the inter-rater variability by 44%, enhance the predictive value and ultimately improve the diagnostic accuracy of polysomnography reports.
Conclusions: Text mining was successfully used to assess and optimize the quality, as well as the precision and homogeneity of medical reporting of diagnostic procedures - here exemplified with sleep studies. Text mining methodology could lay the ground for objective and systematic qualitative assessment of medical reports.
{"title":"Text mining-based measurement of precision of polysomnographic reports as basis for intervention.","authors":"Florent Baty, Jemima Hegermann, Tiziana Locatelli, Claudio Rüegg, Christian Gysin, Frank Rassouli, Martin Brutsche","doi":"10.1186/s13326-022-00259-3","DOIUrl":"https://doi.org/10.1186/s13326-022-00259-3","url":null,"abstract":"<p><strong>Background: </strong>Text mining can be applied to automate knowledge extraction from unstructured data included in medical reports and generate quality indicators applicable for medical documentation. The primary objective of this study was to apply text mining methodology for the analysis of polysomnographic medical reports in order to quantify sources of variation - here the diagnostic precision vs. the inter-rater variability - in the work-up of sleep-disordered breathing. The secondary objective was to assess the impact of a text block standardization on the diagnostic precision of polysomnography reports in an independent test set.</p><p><strong>Results: </strong>Polysomnography reports of 243 laboratory-based overnight sleep investigations scored by 9 trained sleep specialists of the Sleep Center St. Gallen were analyzed using a text-mining methodology. Patterns in the usage of discriminating terms allowed for the characterization of type and severity of disease and inter-rater homogeneity. The variation introduced by the inter-rater (technician/physician) heterogeneity was found to be twice as high compared to the variation introduced by effective diagnostic information. A simple text block standardization could significantly reduce the inter-rater variability by 44%, enhance the predictive value and ultimately improve the diagnostic accuracy of polysomnography reports.</p><p><strong>Conclusions: </strong>Text mining was successfully used to assess and optimize the quality, as well as the precision and homogeneity of medical reporting of diagnostic procedures - here exemplified with sleep studies. Text mining methodology could lay the ground for objective and systematic qualitative assessment of medical reports.</p>","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":" ","pages":"5"},"PeriodicalIF":1.9,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8805265/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39576218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-24DOI: 10.1186/s13326-021-00258-w
Bernd Müller, Leyla Jael Castro, Dietrich Rebholz-Schuhmann
Background: Drug repurposing can improve the return of investment as it finds new uses for existing drugs. Literature-based analyses exploit factual knowledge on drugs and diseases, e.g. from databases, and combine it with information from scholarly publications. Here we report the use of the Open Discovery Process on scientific literature to identify non-explicit ties between a disease, namely epilepsy, and known drugs, making full use of available epilepsy-specific ontologies.
Results: We identified characteristics of epilepsy-specific ontologies to create subsets of documents from the literature; from these subsets we generated ranked lists of co-occurring neurological drug names with varying specificity. From these ranked lists, we observed a high intersection regarding reference lists of pharmaceutical compounds recommended for the treatment of epilepsy. Furthermore, we performed a drug set enrichment analysis, i.e. a novel scoring function using an adaptive tuning parameter and comparing top-k ranked lists taking into account the varying length and the current position in the list. We also provide an overview of the pharmaceutical space in the context of epilepsy, including a final combined ranked list of more than 70 drug names.
Conclusions: Biomedical ontologies are a rich resource that can be combined with text mining for the identification of drug names for drug repurposing in the domain of epilepsy. The ranking of the drug names related to epilepsy provides benefits to patients and to researchers as it enables a quick evaluation of statistical evidence hidden in the scientific literature, useful to validate approaches in the drug discovery process.
{"title":"Ontology-based identification and prioritization of candidate drugs for epilepsy from literature.","authors":"Bernd Müller, Leyla Jael Castro, Dietrich Rebholz-Schuhmann","doi":"10.1186/s13326-021-00258-w","DOIUrl":"https://doi.org/10.1186/s13326-021-00258-w","url":null,"abstract":"<p><strong>Background: </strong>Drug repurposing can improve the return of investment as it finds new uses for existing drugs. Literature-based analyses exploit factual knowledge on drugs and diseases, e.g. from databases, and combine it with information from scholarly publications. Here we report the use of the Open Discovery Process on scientific literature to identify non-explicit ties between a disease, namely epilepsy, and known drugs, making full use of available epilepsy-specific ontologies.</p><p><strong>Results: </strong>We identified characteristics of epilepsy-specific ontologies to create subsets of documents from the literature; from these subsets we generated ranked lists of co-occurring neurological drug names with varying specificity. From these ranked lists, we observed a high intersection regarding reference lists of pharmaceutical compounds recommended for the treatment of epilepsy. Furthermore, we performed a drug set enrichment analysis, i.e. a novel scoring function using an adaptive tuning parameter and comparing top-k ranked lists taking into account the varying length and the current position in the list. We also provide an overview of the pharmaceutical space in the context of epilepsy, including a final combined ranked list of more than 70 drug names.</p><p><strong>Conclusions: </strong>Biomedical ontologies are a rich resource that can be combined with text mining for the identification of drug names for drug repurposing in the domain of epilepsy. The ranking of the drug names related to epilepsy provides benefits to patients and to researchers as it enables a quick evaluation of statistical evidence hidden in the scientific literature, useful to validate approaches in the drug discovery process.</p>","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":" ","pages":"3"},"PeriodicalIF":1.9,"publicationDate":"2022-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8785029/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39945193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}