首页 > 最新文献

Journal of Atmospheric and Oceanic Technology最新文献

英文 中文
Corrections for Geostationary Cloud Liquid Water Path Using Microwave Imagery 利用微波成像校正地球静止云液态水路径
IF 2.2 4区 地球科学 Q2 ENGINEERING, OCEAN Pub Date : 2023-07-11 DOI: 10.1175/jtech-d-23-0030.1
K. Smalley, M. Lebsock
Geostationary observations provide measurements of the cloud liquid water path (LWP), permitting continuous observation of cloud evolution throughout the daylit portion of the diurnal cycle. Relative to LWP derived from microwave imagery, these observations have biases related to scattering geometry, which systematically varies throughout the day. Therefore, we have developed a set of bias corrections using microwave LWP for the Geostationary Operational Environmental Satellites (GOES-16 and GOES-17) observations of LWP derived from retrieved cloud-optical properties. The bias corrections are defined based on scattering geometry (solar zenith, sensor zenith, and relative azimuth) and low-cloud fraction. We demonstrate that over the low-cloud regions of the northeast and southeast Pacific, these bias corrections drastically improve the characteristics of the retrieved LWP, including its regional distribution, diurnal variation, and evolution along short-time-scale Lagrangian trajectories.
地球静止观测提供了云-液-水路径(LWP)的测量,允许在昼夜周期的白天部分连续观测云的演变。相对于从微波图像中获得的LWP,这些观测结果具有与散射几何结构相关的偏差,散射几何结构在一天中系统地变化。因此,我们使用微波LWP为地球静止运行环境卫星(GOES-16和GOES-17)从检索到的云光学特性中获得的LWP观测开发了一组偏差校正。偏差校正是根据散射几何结构(太阳天顶、传感器天顶和相对方位角)和低云量定义的。我们证明,在东北太平洋和东南太平洋的低云区,这些偏差校正极大地改善了反演的LWP的特征,包括其区域分布、日变化和沿短时间尺度拉格朗日轨迹的演化。
{"title":"Corrections for Geostationary Cloud Liquid Water Path Using Microwave Imagery","authors":"K. Smalley, M. Lebsock","doi":"10.1175/jtech-d-23-0030.1","DOIUrl":"https://doi.org/10.1175/jtech-d-23-0030.1","url":null,"abstract":"\u0000Geostationary observations provide measurements of the cloud liquid water path (LWP), permitting continuous observation of cloud evolution throughout the daylit portion of the diurnal cycle. Relative to LWP derived from microwave imagery, these observations have biases related to scattering geometry, which systematically varies throughout the day. Therefore, we have developed a set of bias corrections using microwave LWP for the Geostationary Operational Environmental Satellites (GOES-16 and GOES-17) observations of LWP derived from retrieved cloud-optical properties. The bias corrections are defined based on scattering geometry (solar zenith, sensor zenith, and relative azimuth) and low-cloud fraction. We demonstrate that over the low-cloud regions of the northeast and southeast Pacific, these bias corrections drastically improve the characteristics of the retrieved LWP, including its regional distribution, diurnal variation, and evolution along short-time-scale Lagrangian trajectories.","PeriodicalId":15074,"journal":{"name":"Journal of Atmospheric and Oceanic Technology","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49437836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Data assimilation of range-and-depth-averaged sound speed from acoustic tomography measurements in Fram Strait 弗拉姆海峡声学层析成像测量的距离和深度平均声速数据同化
IF 2.2 4区 地球科学 Q2 ENGINEERING, OCEAN Pub Date : 2023-07-07 DOI: 10.1175/jtech-d-22-0132.1
F. Geyer, G. Gopalakrishnan, H. Sagen, B. Cornuelle, F. Challet, M. Mazloff
The 2010-2012 Acoustic Technology for Observing the Interior of the Arctic Ocean (ACOBAR) experiment provided acoustic tomography data along three 167-301 km long sections in Fram Strait between Greenland and Spitsbergen. Ocean sound speed data were assimilated into a regional numerical ocean model using the Massachusetts Institute of Technology General Circulation Model-Estimating the Circulation and Climate of the Ocean four-dimensional variational (MITgcm-ECCO 4DVAR) assimilation system. The resulting state estimate matched the assimilated sound speed time series, the root mean squared (RMS) error of the sound speed estimate (~0.4 m s−1) is smaller than the uncertainty of the measurement (~0.8 m s−1). Data assimilation improved modeled range-and-depth-averaged ocean temperatures at the 78°50’N oceanographic mooring section in Fram Strait. The RMS error of the state estimate (0.21°C) is comparable to the uncertainty of the interpolated mooring section (0.23°C). Lack of depth information in the assimilated ocean sound speed measurements caused an increased temperature bias in the upper ocean (0-500 m). The correlations with the mooring section were not improved as short-term variations in the mooring measurements and the ocean state estimate do not always coincide in time. This is likely due to the small-scale eddying and non-linearity of the ocean circulation in Fram Strait. Furthermore, the horizontal resolution of the state estimate (4.5 km) is eddy-permitting, rather than eddy resolving. Thus, the state estimate cannot represent the full ocean dynamics of the region. This study is the first to demonstrate the usefulness of large-scale acoustic measurements for improving ocean state estimates at high latitudes.
2010-2012年北冰洋内部观测声学技术(ACOBAR)实验提供了格陵兰岛和斯匹次卑尔根岛之间的弗拉姆海峡三个167-301公里长的剖面的声学层析成像数据。利用麻省理工学院环流模式-估算海洋环流和气候四维变分(MITgcm-ECCO 4DVAR)同化系统,将海洋声速数据同化为区域数值海洋模式。所得状态估计与同化的声速时间序列相匹配,声速估计的均方根误差(~0.4 m s−1)小于测量的不确定度(~0.8 m s−1)。数据同化改善了Fram海峡78°50′n海洋系泊段的距离和深度平均海洋温度模型。状态估计的均方根误差(0.21°C)与内插系泊段的不确定性(0.23°C)相当。在同化的海洋声速测量中缺乏深度信息导致上层海洋(0-500 m)的温度偏差增加。由于系泊测量的短期变化和海洋状态估计并不总是在时间上一致,因此与系泊段的相关性没有得到改善。这可能是由于弗拉姆海峡的小尺度涡旋和海洋环流的非线性。此外,状态估计(4.5 km)的水平分辨率是允许涡流的,而不是涡流分辨率。因此,状态估计不能代表该地区的全部海洋动态。这项研究首次证明了大规模声学测量对改善高纬度地区海洋状态估计的有用性。
{"title":"Data assimilation of range-and-depth-averaged sound speed from acoustic tomography measurements in Fram Strait","authors":"F. Geyer, G. Gopalakrishnan, H. Sagen, B. Cornuelle, F. Challet, M. Mazloff","doi":"10.1175/jtech-d-22-0132.1","DOIUrl":"https://doi.org/10.1175/jtech-d-22-0132.1","url":null,"abstract":"\u0000The 2010-2012 Acoustic Technology for Observing the Interior of the Arctic Ocean (ACOBAR) experiment provided acoustic tomography data along three 167-301 km long sections in Fram Strait between Greenland and Spitsbergen. Ocean sound speed data were assimilated into a regional numerical ocean model using the Massachusetts Institute of Technology General Circulation Model-Estimating the Circulation and Climate of the Ocean four-dimensional variational (MITgcm-ECCO 4DVAR) assimilation system. The resulting state estimate matched the assimilated sound speed time series, the root mean squared (RMS) error of the sound speed estimate (~0.4 m s−1) is smaller than the uncertainty of the measurement (~0.8 m s−1). Data assimilation improved modeled range-and-depth-averaged ocean temperatures at the 78°50’N oceanographic mooring section in Fram Strait. The RMS error of the state estimate (0.21°C) is comparable to the uncertainty of the interpolated mooring section (0.23°C). Lack of depth information in the assimilated ocean sound speed measurements caused an increased temperature bias in the upper ocean (0-500 m). The correlations with the mooring section were not improved as short-term variations in the mooring measurements and the ocean state estimate do not always coincide in time. This is likely due to the small-scale eddying and non-linearity of the ocean circulation in Fram Strait. Furthermore, the horizontal resolution of the state estimate (4.5 km) is eddy-permitting, rather than eddy resolving. Thus, the state estimate cannot represent the full ocean dynamics of the region. This study is the first to demonstrate the usefulness of large-scale acoustic measurements for improving ocean state estimates at high latitudes.","PeriodicalId":15074,"journal":{"name":"Journal of Atmospheric and Oceanic Technology","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47874836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DPCA-Based Doppler Radar Measurements from Space: Effect of System Errors on Velocity Estimation Performance 基于dpca的空间多普勒雷达测量:系统误差对速度估计性能的影响
IF 2.2 4区 地球科学 Q2 ENGINEERING, OCEAN Pub Date : 2023-07-01 DOI: 10.1175/jtech-d-22-0048.1
S. Durden, R. Beauchamp, S. Graniello, V. Venkatesh, S. Tanelli
The displaced phased center antenna (DPCA) method of clutter cancellation for ground moving target detection from airborne platforms has been in use for a number of decades. Application of the DPCA method for spaceborne Doppler weather radar velocity estimation was suggested in 2007. The initial description and analysis of the technique was followed several years ago by demonstration using a multiantenna airborne radar. Recent reviews of methods and technology for spaceborne cloud and precipitation radar have also mentioned possible use of DPCA. However, to date, analyses of the application of DPCA to spaceborne Doppler weather radar have assumed that the two channels and antennas are identical, including perfect alignment, and that the DPCA condition is well-satisfied. This study uses simulation to examine the effects of relaxing these assumptions. The simulation method and its validation are discussed, with companion analytical calculations in the appendix. Next, simulations are used to show the effects on the Doppler estimates from errors in pointing and positioning relative to the ideal DPCA. The DPCA technique is relatively robust to possible errors, indicating that a practical DPCA radar system can provide precise Doppler measurements from space.Analytical and simulation results show that the displaced phase center antenna approach can enable spaceborne atmospheric Doppler radar measurements with good accuracy, even in the presence of antenna mispointing and other system errors.
用于机载平台地面运动目标探测的位移相控中心天线(DPCA)消杂波方法已经应用了几十年。2007年提出了DPCA方法在星载多普勒天气雷达速度估计中的应用。该技术的最初描述和分析是在几年前通过使用多天线机载雷达进行演示。最近对星载云和降水雷达方法和技术的审查也提到了可能使用DPCA。然而,到目前为止,星载多普勒天气雷达中DPCA的应用分析都是假设两个信道和天线完全相同,包括完全对准,并且DPCA条件得到了很好的满足。本研究使用模拟来检验放宽这些假设的影响。本文讨论了仿真方法及其验证,并在附录中给出了相应的分析计算。其次,模拟显示了相对于理想DPCA的指向和定位误差对多普勒估计的影响。DPCA技术对可能出现的误差具有较强的鲁棒性,这表明一个实用的DPCA雷达系统可以从太空提供精确的多普勒测量。分析和仿真结果表明,即使在存在天线指向误差和其他系统误差的情况下,采用移相中心天线方法也能保证星载大气多普勒雷达的测量精度。
{"title":"DPCA-Based Doppler Radar Measurements from Space: Effect of System Errors on Velocity Estimation Performance","authors":"S. Durden, R. Beauchamp, S. Graniello, V. Venkatesh, S. Tanelli","doi":"10.1175/jtech-d-22-0048.1","DOIUrl":"https://doi.org/10.1175/jtech-d-22-0048.1","url":null,"abstract":"\u0000The displaced phased center antenna (DPCA) method of clutter cancellation for ground moving target detection from airborne platforms has been in use for a number of decades. Application of the DPCA method for spaceborne Doppler weather radar velocity estimation was suggested in 2007. The initial description and analysis of the technique was followed several years ago by demonstration using a multiantenna airborne radar. Recent reviews of methods and technology for spaceborne cloud and precipitation radar have also mentioned possible use of DPCA. However, to date, analyses of the application of DPCA to spaceborne Doppler weather radar have assumed that the two channels and antennas are identical, including perfect alignment, and that the DPCA condition is well-satisfied. This study uses simulation to examine the effects of relaxing these assumptions. The simulation method and its validation are discussed, with companion analytical calculations in the appendix. Next, simulations are used to show the effects on the Doppler estimates from errors in pointing and positioning relative to the ideal DPCA. The DPCA technique is relatively robust to possible errors, indicating that a practical DPCA radar system can provide precise Doppler measurements from space.\u0000\u0000\u0000Analytical and simulation results show that the displaced phase center antenna approach can enable spaceborne atmospheric Doppler radar measurements with good accuracy, even in the presence of antenna mispointing and other system errors.\u0000","PeriodicalId":15074,"journal":{"name":"Journal of Atmospheric and Oceanic Technology","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46894986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detection of rain in tropical cyclones by underwater ambient sound 利用水下环境声探测热带气旋降雨
IF 2.2 4区 地球科学 Q2 ENGINEERING, OCEAN Pub Date : 2023-06-29 DOI: 10.1175/jtech-d-22-0078.1
Zhong‐Kuo Zhao, E. D’Asaro
Rain in tropical cyclones is studied using eight time series of underwater ambient sound at 40 Hz–50 kHz with wind speeds up to 45ms−1 beneath three tropical cyclones. At tropical cyclone wind speeds, rain- and wind-generated sound levels are comparable, so that rain cannot be detected by sound level alone. A rain detection algorithm based on the variations of 5–30 kHz sound levels with periods longer than 20 seconds and shorter than 30 minutes is proposed. Faster fluctuations (<20 s) are primarily due to wave breaking, and slower ones (>30 min) due to overall wind variations. Higher frequency sound (>30 kHz) is strongly attenuated by bubble clouds. This approach is supported by observations that, for wind speeds <40 m s−1, the variation in sound level is much larger than that expected from observed wind variations, and roughly comparable with that expected from rain variations. The hydrophone results are consistent with rain estimates by the Tropical Rainfall Measuring Mission (TRMM) satellite and with Stepped-Frequency Microwave Radiometer (SFMR) and radar estimates by surveillance flights. The observations indicate that the rain-generated sound fluctuations have broadband acoustic spectra centered around 10 kHz. Acoustically detected rain events usually last for a few minutes. The data used in this study are insufficient to produce useful estimation of rain rate from ambient sound, due to limited quantity and accuracy of the validation data. The frequency dependence of sound variations suggests that quantitative rainfall algorithms from ambient sound may be developed using multiple sound frequencies.
在三个热带气旋下,使用8个40 Hz-50 kHz的水下环境声时间序列,风速高达45ms−1,研究了热带气旋中的降雨。在热带气旋风速下,降雨和风产生的声级是相当的,因此不能仅通过声级来探测降雨。提出了一种基于周期大于20秒小于30分钟的5 ~ 30 kHz声级变化的降雨检测算法。由于整体风向变化,波动更快(30分钟)。更高频率的声音(bb0 - 30khz)被气泡云强烈衰减。对于风速<40 m s - 1的观测结果,声级的变化远远大于观测到的风变化的预期值,与降雨变化的预期值大致相当。水听器的结果与热带降雨测量任务(TRMM)卫星的降雨估计、步进频率微波辐射计(SFMR)和监视飞行的雷达估计相一致。观测结果表明,雨声波动具有以10khz为中心的宽带声谱。声波探测到的降雨事件通常持续几分钟。由于验证数据的数量和准确性有限,本研究中使用的数据不足以从环境声中产生有用的降雨率估计。声音变化的频率依赖性表明,可以使用多个声音频率开发来自环境声音的定量降雨算法。
{"title":"Detection of rain in tropical cyclones by underwater ambient sound","authors":"Zhong‐Kuo Zhao, E. D’Asaro","doi":"10.1175/jtech-d-22-0078.1","DOIUrl":"https://doi.org/10.1175/jtech-d-22-0078.1","url":null,"abstract":"\u0000Rain in tropical cyclones is studied using eight time series of underwater ambient sound at 40 Hz–50 kHz with wind speeds up to 45ms−1 beneath three tropical cyclones. At tropical cyclone wind speeds, rain- and wind-generated sound levels are comparable, so that rain cannot be detected by sound level alone. A rain detection algorithm based on the variations of 5–30 kHz sound levels with periods longer than 20 seconds and shorter than 30 minutes is proposed. Faster fluctuations (<20 s) are primarily due to wave breaking, and slower ones (>30 min) due to overall wind variations. Higher frequency sound (>30 kHz) is strongly attenuated by bubble clouds. This approach is supported by observations that, for wind speeds <40 m s−1, the variation in sound level is much larger than that expected from observed wind variations, and roughly comparable with that expected from rain variations. The hydrophone results are consistent with rain estimates by the Tropical Rainfall Measuring Mission (TRMM) satellite and with Stepped-Frequency Microwave Radiometer (SFMR) and radar estimates by surveillance flights. The observations indicate that the rain-generated sound fluctuations have broadband acoustic spectra centered around 10 kHz. Acoustically detected rain events usually last for a few minutes. The data used in this study are insufficient to produce useful estimation of rain rate from ambient sound, due to limited quantity and accuracy of the validation data. The frequency dependence of sound variations suggests that quantitative rainfall algorithms from ambient sound may be developed using multiple sound frequencies.","PeriodicalId":15074,"journal":{"name":"Journal of Atmospheric and Oceanic Technology","volume":"1 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41514512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using existing Argo trajectories to statistically predict future float positions with a transition matrix 使用现有的Argo轨迹,通过过渡矩阵统计预测未来的浮动位置
IF 2.2 4区 地球科学 Q2 ENGINEERING, OCEAN Pub Date : 2023-06-12 DOI: 10.1175/jtech-d-22-0070.1
P. Chamberlain, L. Talley, M. Mazloff, E. van Sebille, S. Gille, T. tucker, M. Scanderbeg, Pelle E. Robbins
The Argo array provides nearly 4000 temperature and salinity profiles of the top 2000 meters of the ocean every 10 days. Still, Argo floats will never be able to measure the ocean at all times, everywhere. Optimized Argo float distributions should match the spatial and temporal variability of the many societally important ocean features that they observe. Determining these distributions is challenging because float advection is difficult to predict. Using no external models, transition matrices based on existing Argo trajectories provide statistical inferences about Argo float motion. We use the 24 years of Argo locations to construct an optimal transition matrix that minimizes estimation bias and uncertainty. The optimal array is determined to have a 2°×2° spatial resolution with a 90 day timestep. We then use the transition matrix to predict the probability of future float locations of the Core Argo array, the Global Biogeochemical Array, and the Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) array. A comparison of transition matrices derived from floats using Argos System and Iridium communication methods shows the impact of surface displacements, which is most apparent near the equator. Additionally, we demonstrate the utility of transition matrices for validating models by comparing the matrix derived from Argo floats with that derived from a particle release experiment in the Southern Ocean State Estimate (SOSE).
Argo阵列每10天提供近4000个海洋顶部2000米的温度和盐度剖面。尽管如此,Argo浮标不可能随时随地测量海洋。优化后的Argo浮子分布应该与他们观察到的许多具有重要社会意义的海洋特征的时空变化相匹配。确定这些分布是具有挑战性的,因为浮子平流很难预测。在没有外部模型的情况下,基于现有Argo轨迹的过渡矩阵提供了关于Argo浮子运动的统计推断。我们使用24年的Argo位置来构建一个最优的过渡矩阵,以最小化估计偏差和不确定性。确定最佳阵列具有2°×2°空间分辨率,时间步长为90天。然后,我们使用过渡矩阵来预测核心Argo阵列、全球生物地球化学阵列和南大洋碳和气候观测与建模(SOCCOM)阵列未来漂浮位置的概率。用Argos系统和铱星通信方法对浮子的过渡矩阵进行比较,结果显示地表位移的影响,在赤道附近最为明显。此外,我们还通过比较Argo浮标得出的矩阵与南大洋状态评估(SOSE)中颗粒释放实验得出的矩阵,证明了过渡矩阵在验证模型中的实用性。
{"title":"Using existing Argo trajectories to statistically predict future float positions with a transition matrix","authors":"P. Chamberlain, L. Talley, M. Mazloff, E. van Sebille, S. Gille, T. tucker, M. Scanderbeg, Pelle E. Robbins","doi":"10.1175/jtech-d-22-0070.1","DOIUrl":"https://doi.org/10.1175/jtech-d-22-0070.1","url":null,"abstract":"\u0000The Argo array provides nearly 4000 temperature and salinity profiles of the top 2000 meters of the ocean every 10 days. Still, Argo floats will never be able to measure the ocean at all times, everywhere. Optimized Argo float distributions should match the spatial and temporal variability of the many societally important ocean features that they observe. Determining these distributions is challenging because float advection is difficult to predict. Using no external models, transition matrices based on existing Argo trajectories provide statistical inferences about Argo float motion. We use the 24 years of Argo locations to construct an optimal transition matrix that minimizes estimation bias and uncertainty. The optimal array is determined to have a 2°×2° spatial resolution with a 90 day timestep. We then use the transition matrix to predict the probability of future float locations of the Core Argo array, the Global Biogeochemical Array, and the Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) array. A comparison of transition matrices derived from floats using Argos System and Iridium communication methods shows the impact of surface displacements, which is most apparent near the equator. Additionally, we demonstrate the utility of transition matrices for validating models by comparing the matrix derived from Argo floats with that derived from a particle release experiment in the Southern Ocean State Estimate (SOSE).","PeriodicalId":15074,"journal":{"name":"Journal of Atmospheric and Oceanic Technology","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42785393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Impacts of marine surface pressure observations from a spaceborne differential absorption radar investigated with an observing system simulation experiment 用观测系统模拟实验研究了星载差分吸收雷达观测海洋表面压力的影响
IF 2.2 4区 地球科学 Q2 ENGINEERING, OCEAN Pub Date : 2023-06-07 DOI: 10.1175/jtech-d-22-0088.1
N. Privé, M. McLinden, B. Lin, I. Moradi, M. Sienkiewicz, G. Heymsfield, W. McCarty
A new instrument has been proposed for measuring surface air pressure over the marine surface with a combined active/passive scanning multi-channel differential absorption radar (DAR) to provide an estimate of the total atmospheric column oxygen content. A demonstrator instrument, the Microwave Barometric Radar and Sounder (MBARS), has been funded by the National Aeronautics and Space Administration (NASA) for airborne test missions. Here, a proof-of-concept study to evaluate the potential impact of spaceborne surface pressure data on numerical weather prediction is performed using the Goddard Modeling and Assimilation Office global observing system simulation experiment (OSSE) framework. This OSSE framework employs the Goddard Earth Observing System model and the hybrid 4D ensemble variational Gridpoint Statistical Interpolation data assimilation system.Multiple flight and scanning configurations of potential spaceborne orbits are examined. Swath width and observation spacing for the surface pressure data are varied to explore a range of sampling strategies. For wider swaths, the addition of surface pressures reduces the root mean square surface pressure analysis error by as much as 20% over some ocean regions. The forecast sensitivity observation impact tool estimates impacts on the Pacific Ocean basin boundary layer 24-hour forecast temperatures for spaceborne surface pressures on par with rawinsondes and aircraft, and greater impacts than the current network of ships and buoys. The largest forecast impacts are found in the southern hemisphere extratropics.
提出了一种利用主/被动扫描多通道差分吸收雷达(DAR)测量海洋表面大气压力的新仪器,以估计大气总柱氧含量。一种演示仪器,微波气压雷达和测深仪(MBARS),已经由美国国家航空航天局(NASA)资助用于机载测试任务。本文利用戈达德模拟和同化办公室全球观测系统模拟实验(OSSE)框架进行了一项概念验证研究,以评估星载地表压力数据对数值天气预报的潜在影响。OSSE框架采用戈达德地球观测系统模式和混合四维系综变分网格点统计插值数据同化系统。对潜在星载轨道的多种飞行和扫描构型进行了研究。改变地表压力数据的条带宽度和观测间距,以探索一系列采样策略。对于更宽的区域,在某些海洋区域,表面压力的增加使表面压力分析的均方根误差减少了20%。预测灵敏度观测影响工具估计对太平洋盆地边界层24小时星载地表压力预报温度的影响与雷达探空仪和飞机相当,并且比目前的船舶和浮标网络的影响更大。预测影响最大的是南半球温带地区。
{"title":"Impacts of marine surface pressure observations from a spaceborne differential absorption radar investigated with an observing system simulation experiment","authors":"N. Privé, M. McLinden, B. Lin, I. Moradi, M. Sienkiewicz, G. Heymsfield, W. McCarty","doi":"10.1175/jtech-d-22-0088.1","DOIUrl":"https://doi.org/10.1175/jtech-d-22-0088.1","url":null,"abstract":"\u0000A new instrument has been proposed for measuring surface air pressure over the marine surface with a combined active/passive scanning multi-channel differential absorption radar (DAR) to provide an estimate of the total atmospheric column oxygen content. A demonstrator instrument, the Microwave Barometric Radar and Sounder (MBARS), has been funded by the National Aeronautics and Space Administration (NASA) for airborne test missions. Here, a proof-of-concept study to evaluate the potential impact of spaceborne surface pressure data on numerical weather prediction is performed using the Goddard Modeling and Assimilation Office global observing system simulation experiment (OSSE) framework. This OSSE framework employs the Goddard Earth Observing System model and the hybrid 4D ensemble variational Gridpoint Statistical Interpolation data assimilation system.\u0000Multiple flight and scanning configurations of potential spaceborne orbits are examined. Swath width and observation spacing for the surface pressure data are varied to explore a range of sampling strategies. For wider swaths, the addition of surface pressures reduces the root mean square surface pressure analysis error by as much as 20% over some ocean regions. The forecast sensitivity observation impact tool estimates impacts on the Pacific Ocean basin boundary layer 24-hour forecast temperatures for spaceborne surface pressures on par with rawinsondes and aircraft, and greater impacts than the current network of ships and buoys. The largest forecast impacts are found in the southern hemisphere extratropics.","PeriodicalId":15074,"journal":{"name":"Journal of Atmospheric and Oceanic Technology","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41691415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Removing interfering signals in spaceborne radar data for precipitation detection at very high altitudes 去除星载雷达数据中的干扰信号,用于非常高海拔地区的降水探测
IF 2.2 4区 地球科学 Q2 ENGINEERING, OCEAN Pub Date : 2023-06-01 DOI: 10.1175/jtech-d-22-0114.1
M. Hirose, Keita Okada, Kohei Kawaguchi, N. Takahashi
This study investigated the effects of interfering signals on high-altitude precipitation extraction from spaceborne precipitation radar data. Data analyses were performed on the products of the Tropical Rainfall Measuring Mission Precipitation Radar (TRMM PR) and the Global Precipitation Measurement Core Observatory Dual-frequency Precipitation Radar (GPM DPR) to clarify the effects of removing radio interferences and mirror images, particularly focusing on deep precipitation detection. The TRMM PR acquired precipitation data up to an altitude of approximately 20 km and occasionally captured interferences from artificial radio transmissions in specific areas. Artifacts could be distinguished as isolated profiles exhibiting almost constant radar reflectivity. The number of interferences affecting the TRMM PR gradually increased during the operation period of 1998–2013. A filter was introduced to separate the observed profiles into deep storms that reach the upper observation altitude and contamination caused by radio interference. The former frequently appeared over the Sahel area, where the observation upper limits are lowest. The removal of the latter, radio interference, improved the detection accuracy of the mean precipitation at high altitudes and considerably influenced specific low-precipitation areas such as the Middle East. This spatial feature-based filter allowed us to evaluate the results of screening based on noise limits that are implemented in standard algorithms. The GPM DPR Ku-band radar product contained other unwanted echoes due to the mirror images appearing as second-trip echoes contaminating the high-altitude statistics. Such second-trip echoes constitute a major portion of the echoes observed near the highest altitudes of deep storms.
研究了星载降水雷达数据中干扰信号对高空降水提取的影响。对热带降雨测量任务降水雷达(TRMM PR)和全球降水测量核心天文台双频降水雷达(GPM DPR)的产品进行数据分析,以阐明去除无线电干扰和镜像的影响,特别是对深度降水的探测。TRMM PR获取了大约20公里高度的降水数据,偶尔捕获了特定地区人工无线电传输的干扰。伪影可以被区分为具有几乎恒定雷达反射率的孤立剖面。在1998-2013年运行期间,影响TRMM PR的干扰数量逐渐增加。引入了一个过滤器,将观测到的剖面分为到达观测高度较高的深风暴和无线电干扰造成的污染。前者经常出现在观测上限最低的萨赫勒地区。消除后一种干扰,即无线电干扰,提高了高海拔地区平均降水的探测精度,并对中东等特定的低降水地区产生了很大影响。这种基于空间特征的滤波器使我们能够评估基于标准算法中实现的噪声限制的筛选结果。GPM DPR ku波段雷达产品含有其他不需要的回波,因为镜像出现为二次回波,污染了高空统计数据。这种二次回波构成了深风暴最高海拔附近观测到的回波的主要部分。
{"title":"Removing interfering signals in spaceborne radar data for precipitation detection at very high altitudes","authors":"M. Hirose, Keita Okada, Kohei Kawaguchi, N. Takahashi","doi":"10.1175/jtech-d-22-0114.1","DOIUrl":"https://doi.org/10.1175/jtech-d-22-0114.1","url":null,"abstract":"\u0000This study investigated the effects of interfering signals on high-altitude precipitation extraction from spaceborne precipitation radar data. Data analyses were performed on the products of the Tropical Rainfall Measuring Mission Precipitation Radar (TRMM PR) and the Global Precipitation Measurement Core Observatory Dual-frequency Precipitation Radar (GPM DPR) to clarify the effects of removing radio interferences and mirror images, particularly focusing on deep precipitation detection. The TRMM PR acquired precipitation data up to an altitude of approximately 20 km and occasionally captured interferences from artificial radio transmissions in specific areas. Artifacts could be distinguished as isolated profiles exhibiting almost constant radar reflectivity. The number of interferences affecting the TRMM PR gradually increased during the operation period of 1998–2013. A filter was introduced to separate the observed profiles into deep storms that reach the upper observation altitude and contamination caused by radio interference. The former frequently appeared over the Sahel area, where the observation upper limits are lowest. The removal of the latter, radio interference, improved the detection accuracy of the mean precipitation at high altitudes and considerably influenced specific low-precipitation areas such as the Middle East. This spatial feature-based filter allowed us to evaluate the results of screening based on noise limits that are implemented in standard algorithms. The GPM DPR Ku-band radar product contained other unwanted echoes due to the mirror images appearing as second-trip echoes contaminating the high-altitude statistics. Such second-trip echoes constitute a major portion of the echoes observed near the highest altitudes of deep storms.","PeriodicalId":15074,"journal":{"name":"Journal of Atmospheric and Oceanic Technology","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46258595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical evaluation of internal tide characteristics extracted from mobile float observations: A case study near the Luzon Strait 从流动浮标观测中提取的内部潮汐特征的数值评估:以吕宋海峡附近为例
IF 2.2 4区 地球科学 Q2 ENGINEERING, OCEAN Pub Date : 2023-05-31 DOI: 10.1175/jtech-d-22-0116.1
A. Cao, Zheng Guo, Shuya Wang, Xinyu Guo, Jinbao Song
With the development of ocean observation technology, data from specially-designed mobile profiling floats have been used to study the internal tides (ITs). However, the accuracy of IT characteristics extracted from such observations has not been fully evaluated. Based on numerical simulations of ITs and background circulation with hundreds of free-moving floats near the Luzon Strait, this study examines the IT characteristics extracted from the float observations based on statistics. For the case in which only the M2 constituent is considered, the lowest error level of extracted M2 temperature fluctuation amplitudes (TFAs) is 40−50%, which appears at 200−1500 m depth. Increasing the sampling frequency of the float from daily to hourly does not decrease the lowest error level. The quasi-daily sampling and other tidal constituents also have an impact on the extracted M2 TFAs and increase their errors. The different patterns of background currents mainly influence the errors of extracted M2 TFAs in the upper 200 m. The relation between TFA and vertical displacement of ITs and the two error sources of the TFA extracted from float observations are discussed in this study.
随着海洋观测技术的发展,来自专门设计的移动剖面浮标的数据已被用于研究内部潮汐。然而,从这些观测中提取的信息技术特征的准确性尚未得到充分评估。基于对吕宋海峡附近数百个自由移动浮筒的ITs和背景环流的数值模拟,本研究基于统计数据检验了从浮筒观测中提取的IT特征。对于只考虑M2成分的情况,提取的M2温度波动幅度(TFA)的最低误差水平为40−50%,出现在200−1500 m深度。将浮动的采样频率从每天增加到每小时并不会降低最低误差水平。准每日采样和其他潮汐成分也会对提取的M2 TFA产生影响,并增加其误差。背景电流的不同模式主要影响上层200 m提取的M2 TFA的误差。本文讨论了TFA与ITs垂直位移之间的关系以及从浮子观测中提取的TFA的两个误差源。
{"title":"Numerical evaluation of internal tide characteristics extracted from mobile float observations: A case study near the Luzon Strait","authors":"A. Cao, Zheng Guo, Shuya Wang, Xinyu Guo, Jinbao Song","doi":"10.1175/jtech-d-22-0116.1","DOIUrl":"https://doi.org/10.1175/jtech-d-22-0116.1","url":null,"abstract":"\u0000With the development of ocean observation technology, data from specially-designed mobile profiling floats have been used to study the internal tides (ITs). However, the accuracy of IT characteristics extracted from such observations has not been fully evaluated. Based on numerical simulations of ITs and background circulation with hundreds of free-moving floats near the Luzon Strait, this study examines the IT characteristics extracted from the float observations based on statistics. For the case in which only the M2 constituent is considered, the lowest error level of extracted M2 temperature fluctuation amplitudes (TFAs) is 40−50%, which appears at 200−1500 m depth. Increasing the sampling frequency of the float from daily to hourly does not decrease the lowest error level. The quasi-daily sampling and other tidal constituents also have an impact on the extracted M2 TFAs and increase their errors. The different patterns of background currents mainly influence the errors of extracted M2 TFAs in the upper 200 m. The relation between TFA and vertical displacement of ITs and the two error sources of the TFA extracted from float observations are discussed in this study.","PeriodicalId":15074,"journal":{"name":"Journal of Atmospheric and Oceanic Technology","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49490911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Framework for Comparisons of Downburst Precursor Observations using an All-Digital Phased Array Weather Radar 全数字相控阵气象雷达下爆前兆观测比较框架
IF 2.2 4区 地球科学 Q2 ENGINEERING, OCEAN Pub Date : 2023-05-25 DOI: 10.1175/jtech-d-22-0130.1
Connor Pearson, T. Yu, D. Bodine, S. Torres, A. Reinhart
Downbursts are a rapidly evolving meteorological phenomena with numerous vertically-oriented precursor signatures, and the temporal resolution and vertical sampling of the current NEXRAD system are too coarse to observe their evolution and precursor signatures properly. A future all-digital polarimetric phased array weather radar (PAR) should be able to improve both temporal resolution and spatial sampling of the atmosphere to provide better observations of rapidly evolving hazards such as downbursts. Previous work has been focused on understanding the trade-offs associated with using various scanning techniques on stationary PAR radars; however, a rotating, polarimetric PAR (RPAR) is a more feasible and cost-effective candidate. Thus, understanding the trade-offs associated with using various scanning techniques on an RPAR is vital in learning how to best observe downbursts with such a system. This work develops a framework for analyzing the trade-offs associated with different scanning strategies in the observation of downbursts and their precursor signatures. A proof-of-concept analysis — which uses a Cloud Model 1 (CM1) simulated downburst-producing thunderstorm — is also performed with both conventional and imaging scanning strategies in an adaptive scanning framework to show the potential value and feasibility of the framework. Preliminary results from the proof-of-concept analysis indicate that there is indeed a limit to the benefits of imaging as an update time speedup method. As imaging is used to achieve larger speedup factors, corresponding data degradation begins to hinder the observations of various precursor signatures.
下爆发是一种快速演变的气象现象,具有许多垂直方向的前兆特征,当前NEXRAD系统的时间分辨率和垂直采样过于粗糙,无法正确观察其演变和前兆特征。未来的全数字极化相控阵天气雷达(标准杆数)应能够提高大气的时间分辨率和空间采样,以更好地观测下击暴流等快速演变的危险。先前的工作重点是了解在固定标准杆数雷达上使用各种扫描技术的相关权衡;然而,旋转极化标准杆数(RPAR)是一种更可行和更具成本效益的候选。因此,了解与在RPAR上使用各种扫描技术相关的权衡对于学习如何使用这种系统最好地观测下击暴流至关重要。这项工作开发了一个框架,用于分析在观测下击暴及其前兆特征时与不同扫描策略相关的权衡。在自适应扫描框架中,还使用传统和成像扫描策略进行了概念验证分析,该分析使用云模型1(CM1)模拟的产生下击暴流的雷暴,以显示该框架的潜在价值和可行性。概念验证分析的初步结果表明,成像作为一种更新时间加速方法的好处确实是有限的。随着成像被用来实现更大的加速因子,相应的数据退化开始阻碍对各种前兆特征的观测。
{"title":"A Framework for Comparisons of Downburst Precursor Observations using an All-Digital Phased Array Weather Radar","authors":"Connor Pearson, T. Yu, D. Bodine, S. Torres, A. Reinhart","doi":"10.1175/jtech-d-22-0130.1","DOIUrl":"https://doi.org/10.1175/jtech-d-22-0130.1","url":null,"abstract":"\u0000Downbursts are a rapidly evolving meteorological phenomena with numerous vertically-oriented precursor signatures, and the temporal resolution and vertical sampling of the current NEXRAD system are too coarse to observe their evolution and precursor signatures properly. A future all-digital polarimetric phased array weather radar (PAR) should be able to improve both temporal resolution and spatial sampling of the atmosphere to provide better observations of rapidly evolving hazards such as downbursts. Previous work has been focused on understanding the trade-offs associated with using various scanning techniques on stationary PAR radars; however, a rotating, polarimetric PAR (RPAR) is a more feasible and cost-effective candidate. Thus, understanding the trade-offs associated with using various scanning techniques on an RPAR is vital in learning how to best observe downbursts with such a system. This work develops a framework for analyzing the trade-offs associated with different scanning strategies in the observation of downbursts and their precursor signatures. A proof-of-concept analysis — which uses a Cloud Model 1 (CM1) simulated downburst-producing thunderstorm — is also performed with both conventional and imaging scanning strategies in an adaptive scanning framework to show the potential value and feasibility of the framework. Preliminary results from the proof-of-concept analysis indicate that there is indeed a limit to the benefits of imaging as an update time speedup method. As imaging is used to achieve larger speedup factors, corresponding data degradation begins to hinder the observations of various precursor signatures.","PeriodicalId":15074,"journal":{"name":"Journal of Atmospheric and Oceanic Technology","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42592110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Comparative performance of Radar, Laser, and Waverider Buoy measurements of ocean waves – Part 2: Time domain analysis 海浪的雷达、激光和乘波浮标测量的比较性能——第2部分:时域分析
IF 2.2 4区 地球科学 Q2 ENGINEERING, OCEAN Pub Date : 2023-05-25 DOI: 10.1175/jtech-d-22-0123.1
P. Jangir, K. Ewans, I. Young
Accurate measurements of ocean waves underpin efficient offshore operations and optimal offshore structure design, helping to ensure the offshore industry can operate both safely and economically. Popular instruments used by the offshore industry are the Rosemount WaveRadar (Radar) and the Waverider Buoy. The Optech Laser has been used at some locations for specific studies. Recent reports indicate systematic differences of order 10% among the wave measurements made by these instruments. This paper examines the relative performance of these instruments based upon various time-domain comparisons, including results from a quality control procedure (QC), capabilities of measuring the wave surface profile (skewness), and crest heights for varying wind sea and swell conditions. The QC check provides good quality data that can be further investigated with an assurance of error-free data, suggesting that the Waverider produces the best quality data with the lowest failure rate compared to the Laser and Radar. A significant number of the Waverider surface elevation records have negative skewness, particularly at higher sea states, affecting its crest height measurements, which are lower than those from the Laser and Radar. Additionally, the significant wave height (H1/3) estimates of the Radar are lower than the Laser and Waverider, but its zero-crossing wave periods (TZ), on average, are longer than the Laser and the Waverider. The significant heights (H1/3) of Laser and Waverider are in good agreement for all three datasets, but the Waverider’s zero-crossing wave period (TZ) estimates are significantly longer than the Laser.
海浪的精确测量为高效的海上作业和优化的海上结构设计奠定了基础,有助于确保海上行业能够安全经济地运营。海上工业使用的常用仪器有罗斯蒙特WaveRadar(雷达)和Waverrider浮标。Optech激光器已在一些地方用于特定研究。最近的报告表明,这些仪器进行的波浪测量之间存在10%左右的系统差异。本文基于各种时域比较来检查这些仪器的相对性能,包括质量控制程序(QC)的结果、测量波面轮廓(倾斜度)的能力以及不同风海和涌浪条件下的波峰高度。QC检查提供了质量良好的数据,可以在保证无错误数据的情况下进行进一步调查,这表明与激光和雷达相比,Wavelrider产生了质量最好、故障率最低的数据。相当多的Waverider表面高程记录具有负偏斜度,特别是在较高的海况下,影响了其波峰高度测量值,该值低于激光和雷达的测量值。此外,雷达的有效波高(H1/3)估计值低于激光器和载波器,但其过零波周期(TZ)平均比激光器和载波器长。对于所有三个数据集,Laser和Waverider的有效高度(H1/3)都非常一致,但Waveride的过零波周期(TZ)估计值明显长于Laser。
{"title":"Comparative performance of Radar, Laser, and Waverider Buoy measurements of ocean waves – Part 2: Time domain analysis","authors":"P. Jangir, K. Ewans, I. Young","doi":"10.1175/jtech-d-22-0123.1","DOIUrl":"https://doi.org/10.1175/jtech-d-22-0123.1","url":null,"abstract":"\u0000Accurate measurements of ocean waves underpin efficient offshore operations and optimal offshore structure design, helping to ensure the offshore industry can operate both safely and economically. Popular instruments used by the offshore industry are the Rosemount WaveRadar (Radar) and the Waverider Buoy. The Optech Laser has been used at some locations for specific studies. Recent reports indicate systematic differences of order 10% among the wave measurements made by these instruments. This paper examines the relative performance of these instruments based upon various time-domain comparisons, including results from a quality control procedure (QC), capabilities of measuring the wave surface profile (skewness), and crest heights for varying wind sea and swell conditions. The QC check provides good quality data that can be further investigated with an assurance of error-free data, suggesting that the Waverider produces the best quality data with the lowest failure rate compared to the Laser and Radar. A significant number of the Waverider surface elevation records have negative skewness, particularly at higher sea states, affecting its crest height measurements, which are lower than those from the Laser and Radar. Additionally, the significant wave height (H1/3) estimates of the Radar are lower than the Laser and Waverider, but its zero-crossing wave periods (TZ), on average, are longer than the Laser and the Waverider. The significant heights (H1/3) of Laser and Waverider are in good agreement for all three datasets, but the Waverider’s zero-crossing wave period (TZ) estimates are significantly longer than the Laser.","PeriodicalId":15074,"journal":{"name":"Journal of Atmospheric and Oceanic Technology","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47629004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Journal of Atmospheric and Oceanic Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1