首页 > 最新文献

Journal of Big Data最新文献

英文 中文
Inhibitory neuron links the causal relationship from air pollution to psychiatric disorders: a large multi-omics analysis 抑制性神经元将空气污染与精神疾病的因果关系联系起来:大型多组学分析
IF 8.1 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2024-09-11 DOI: 10.1186/s40537-024-00960-3
Xisong Liang, Jie Wen, Chunrun Qu, Nan Zhang, Ziyu Dai, Hao Zhang, Peng Luo, Ming Meng, Zhixiong Liu, Fan Fan, Quan Cheng

Psychiatric disorders are severe health challenges that exert a heavy public burden. Air pollution has been widely reported as related to psychiatric disorder risk, but their casual association and pathological mechanism remained unclear. Herein, we systematically investigated the large genome-wide association studies (6 cohorts with 1,357,645 samples), single-cell RNA (26 samples with 157,488 cells), and bulk-RNAseq (1595 samples) datasets to reveal the genetic causality and biological link between four air pollutants and nine psychiatric disorders. As a result, we identified ten positive genetic correlations between air pollution and psychiatric disorders. Besides, PM2.5 and NO2 presented significant causal effects on schizophrenia risk which was robust with adjustment of potential confounders. Besides, transcriptome-wide association studies identified the shared genes between PM2.5/NO2 and schizophrenia. We then discovered a schizophrenia-derived inhibitory neuron subtype with highly expressed shared genes and abnormal synaptic and metabolic pathways by scRNA analyses and confirmed their abnormal level and correlations with the shared genes in schizophrenia patients in a large RNA-seq cohort. Comprehensively, we discovered robust genetic causality between PM2.5, NO2, and schizophrenia and identified an abnormal inhibitory neuron subtype that links schizophrenia pathology and PM2.5/NO2 exposure. These discoveries highlight the schizophrenia risk under air pollutants exposure and provide novel mechanical insights into schizophrenia pathology, contributing to pollutant-related schizophrenia risk control and therapeutic strategies development.

Graphical Abstract

精神疾病是严峻的健康挑战,给公众带来沉重负担。空气污染与精神疾病风险的关系已被广泛报道,但其偶然关联和病理机制仍不清楚。在此,我们系统地研究了大型全基因组关联研究(6 个队列,1,357,645 个样本)、单细胞 RNA(26 个样本,157,488 个细胞)和批量 RNAseq(1595 个样本)数据集,以揭示四种空气污染物与九种精神疾病之间的遗传因果关系和生物学联系。结果,我们发现了空气污染与精神疾病之间的十种正遗传相关性。此外,PM2.5 和二氧化氮对精神分裂症风险具有显著的因果效应,在调整了潜在的混杂因素后,这种效应是稳健的。此外,全转录组关联研究发现了PM2.5/二氧化氮与精神分裂症之间的共有基因。然后,我们通过scRNA分析发现了精神分裂症衍生的抑制性神经元亚型,该亚型具有高表达的共享基因以及异常的突触和代谢通路,并在一个大型RNA-seq队列中证实了精神分裂症患者的异常水平及其与共享基因的相关性。总之,我们发现了PM2.5、二氧化氮和精神分裂症之间的强大遗传因果关系,并确定了一种异常抑制性神经元亚型,它将精神分裂症病理和PM2.5/二氧化氮暴露联系在一起。这些发现凸显了空气污染物暴露下的精神分裂症风险,并为精神分裂症病理提供了新的力学见解,有助于与污染物相关的精神分裂症风险控制和治疗策略的开发。图文摘要
{"title":"Inhibitory neuron links the causal relationship from air pollution to psychiatric disorders: a large multi-omics analysis","authors":"Xisong Liang, Jie Wen, Chunrun Qu, Nan Zhang, Ziyu Dai, Hao Zhang, Peng Luo, Ming Meng, Zhixiong Liu, Fan Fan, Quan Cheng","doi":"10.1186/s40537-024-00960-3","DOIUrl":"https://doi.org/10.1186/s40537-024-00960-3","url":null,"abstract":"<p>Psychiatric disorders are severe health challenges that exert a heavy public burden. Air pollution has been widely reported as related to psychiatric disorder risk, but their casual association and pathological mechanism remained unclear. Herein, we systematically investigated the large genome-wide association studies (6 cohorts with 1,357,645 samples), single-cell RNA (26 samples with 157,488 cells), and bulk-RNAseq (1595 samples) datasets to reveal the genetic causality and biological link between four air pollutants and nine psychiatric disorders. As a result, we identified ten positive genetic correlations between air pollution and psychiatric disorders. Besides, PM2.5 and NO<sub>2</sub> presented significant causal effects on schizophrenia risk which was robust with adjustment of potential confounders. Besides, transcriptome-wide association studies identified the shared genes between PM2.5/NO2 and schizophrenia. We then discovered a schizophrenia-derived inhibitory neuron subtype with highly expressed shared genes and abnormal synaptic and metabolic pathways by scRNA analyses and confirmed their abnormal level and correlations with the shared genes in schizophrenia patients in a large RNA-seq cohort. Comprehensively, we discovered robust genetic causality between PM2.5, NO<sub>2</sub>, and schizophrenia and identified an abnormal inhibitory neuron subtype that links schizophrenia pathology and PM2.5/NO2 exposure. These discoveries highlight the schizophrenia risk under air pollutants exposure and provide novel mechanical insights into schizophrenia pathology, contributing to pollutant-related schizophrenia risk control and therapeutic strategies development.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":15158,"journal":{"name":"Journal of Big Data","volume":"58 1","pages":""},"PeriodicalIF":8.1,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling the impact of BDA-AI on sustainable innovation ambidexterity and environmental performance 模拟 BDA-AI 对可持续创新灵活性和环境绩效的影响
IF 8.1 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2024-09-08 DOI: 10.1186/s40537-024-00995-6
Chin-Tsu Chen, Asif Khan, Shih-Chih Chen

Data has evolved into one of the principal resources for contemporary businesses. Moreover, corporations have undergone digitalization; consequently, their supply chains generate substantial amounts of data. The theoretical framework of this investigation was built on novel concepts like big data analytics—artificial intelligence (BDA-AI) and supply chain ambidexterity’s (SCA) direct impacts on sustainable supply chain management (SSCM) and indirect impacts on sustainable innovation ambidexterity (SIA) and environmental performance (EP). This study selected employees of manufacturing industries as respondents for environmental performance, sustainable supply chain management, big data analytics, artificial intelligence, and supply chain ambidexterity. The results from this study show that BDA-AI and SCA significantly affect SSCM. SSCM has significant associations with SIA and EP. Finally, SIA has a significant impact on EP. According to the results indicating the indirect impacts, BDA-AI has significant indirect relationships with SIA and EP by having SSCM as the mediating variable. Furthermore, SCA has significant indirect associations with SIA and EP, with SSCM as the mediating variable. Additionally, both BDA-AI and SCA have significant indirect associations with EP, while SIA and SSCM are mediating variables. Finally, SSCM has an indirect association with EP while having SIA as a mediating variable. The findings of this paper provide several theoretical contributions to the research in sustainability and big data analytics artificial intelligence field. Furthermore, based on the suggested framework, this study offers a number of practical implications for decision-makers to improve significantly in the supply chain and BDA-AI. For instance, this paper provides significant insight for logistics and supply chain managers, supporting them in implementing BDA-AI solutions to help SSCM and enhance EP.

数据已发展成为当代企业的主要资源之一。此外,企业经历了数字化,因此其供应链产生了大量数据。本研究的理论框架建立在大数据分析-人工智能(BDA-AI)、供应链灵活性(SCA)对可持续供应链管理(SSCM)的直接影响以及对可持续创新灵活性(SIA)和环境绩效(EP)的间接影响等新概念之上。本研究选取了制造业员工作为环境绩效、可持续供应链管理、大数据分析、人工智能和供应链灵活性的调查对象。研究结果表明,BDA-AI 和 SCA 对 SSCM 有显著影响。SSCM 与 SIA 和 EP 有重大关联。最后,SIA 对 EP 有重大影响。根据间接影响的结果,BDA-AI 与 SIA 和 EP 有明显的间接关系,SSCM 是中介变量。此外,以 SSCM 为中介变量,SCA 与 SIA 和 EP 有明显的间接关系。此外,BDA-AI 和 SCA 与 EP 有显著的间接关联,而 SIA 和 SSCM 是中介变量。最后,SSCM 与 EP 间接相关,而 SIA 是中介变量。本文的研究结果为可持续发展和大数据分析人工智能领域的研究提供了若干理论贡献。此外,基于所建议的框架,本研究还为决策者提供了一些实际意义,以显著改善供应链和 BDA-AI 的状况。例如,本文为物流和供应链管理者提供了重要启示,支持他们实施 BDA-AI 解决方案,以帮助 SSCM 和提升 EP。
{"title":"Modeling the impact of BDA-AI on sustainable innovation ambidexterity and environmental performance","authors":"Chin-Tsu Chen, Asif Khan, Shih-Chih Chen","doi":"10.1186/s40537-024-00995-6","DOIUrl":"https://doi.org/10.1186/s40537-024-00995-6","url":null,"abstract":"<p>Data has evolved into one of the principal resources for contemporary businesses. Moreover, corporations have undergone digitalization; consequently, their supply chains generate substantial amounts of data. The theoretical framework of this investigation was built on novel concepts like big data analytics—artificial intelligence (BDA-AI) and supply chain ambidexterity’s (SCA) direct impacts on sustainable supply chain management (SSCM) and indirect impacts on sustainable innovation ambidexterity (SIA) and environmental performance (EP). This study selected employees of manufacturing industries as respondents for environmental performance, sustainable supply chain management, big data analytics, artificial intelligence, and supply chain ambidexterity. The results from this study show that BDA-AI and SCA significantly affect SSCM. SSCM has significant associations with SIA and EP. Finally, SIA has a significant impact on EP. According to the results indicating the indirect impacts, BDA-AI has significant indirect relationships with SIA and EP by having SSCM as the mediating variable. Furthermore, SCA has significant indirect associations with SIA and EP, with SSCM as the mediating variable. Additionally, both BDA-AI and SCA have significant indirect associations with EP, while SIA and SSCM are mediating variables. Finally, SSCM has an indirect association with EP while having SIA as a mediating variable. The findings of this paper provide several theoretical contributions to the research in sustainability and big data analytics artificial intelligence field. Furthermore, based on the suggested framework, this study offers a number of practical implications for decision-makers to improve significantly in the supply chain and BDA-AI. For instance, this paper provides significant insight for logistics and supply chain managers, supporting them in implementing BDA-AI solutions to help SSCM and enhance EP.</p>","PeriodicalId":15158,"journal":{"name":"Journal of Big Data","volume":"13 1","pages":""},"PeriodicalIF":8.1,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing oil palm segmentation model with GAN-based augmentation 利用基于 GAN 的增强技术改进油棕榈树细分模型
IF 8.1 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2024-09-08 DOI: 10.1186/s40537-024-00990-x
Qi Bin Kwong, Yee Thung Kon, Wan Rusydiah W. Rusik, Mohd Nor Azizi Shabudin, Shahirah Shazana A. Rahman, Harikrishna Kulaveerasingam, David Ross Appleton

In digital agriculture, accurate crop detection is fundamental to developing automated systems for efficient plantation management. For oil palm, the main challenge lies in developing robust models that perform well in different environmental conditions. This study addresses the feasibility of using GAN augmentation methods to improve palm detection models. For this purpose, drone images of young palms (< 5 year-old) from eight different estates were collected, annotated, and used to build a baseline detection model based on DETR. StyleGAN2 was trained on the extracted palms and then used to generate a series of synthetic palms, which were then inserted into tiles representing different environments. CycleGAN networks were trained for bidirectional translation between synthetic and real tiles, subsequently utilized to augment the authenticity of synthetic tiles. Both synthetic and real tiles were used to train the GAN-based detection model. The baseline model achieved precision and recall values of 95.8% and 97.2%. The GAN-based model achieved comparable result, with precision and recall values of 98.5% and 98.6%. In the challenge dataset 1 consisting older palms (> 5 year-old), both models also achieved similar accuracies, with baseline model achieving precision and recall of 93.1% and 99.4%, and GAN-based model achieving 95.7% and 99.4%. As for the challenge dataset 2 consisting of storm affected palms, the baseline model achieved precision of 100% but recall was only 13%. The GAN-based model achieved a significantly better result, with a precision and recall values of 98.7% and 95.3%. This result demonstrates that images generated by GANs have the potential to enhance the accuracies of palm detection models.

在数字农业领域,准确的作物检测是开发高效种植管理自动化系统的基础。对于油棕榈树来说,主要挑战在于开发在不同环境条件下表现良好的稳健模型。本研究探讨了使用 GAN 增强方法改进棕榈检测模型的可行性。为此,研究人员从八个不同的庄园收集了幼嫩棕榈树(5 岁)的无人机图像,并对其进行了注释,用于建立基于 DETR 的基准检测模型。对提取的棕榈树进行了 StyleGAN2 训练,然后用于生成一系列合成棕榈树,并将其插入代表不同环境的瓷砖中。对 CycleGAN 网络进行了训练,以实现合成和真实瓷砖之间的双向转换,随后用于增强合成瓷砖的真实性。合成瓷砖和真实瓷砖都用于训练基于 GAN 的检测模型。基线模型的精确度和召回率分别达到 95.8% 和 97.2%。基于 GAN 的模型取得了不相上下的结果,精确度和召回值分别为 98.5% 和 98.6%。在由年龄较大的手掌(5 岁)组成的挑战数据集 1 中,两个模型也取得了相似的准确度,基线模型的准确度和召回率分别为 93.1% 和 99.4%,基于 GAN 的模型的准确度和召回率分别为 95.7% 和 99.4%。至于由受风暴影响的手掌组成的挑战数据集 2,基线模型的精确度达到了 100%,但召回率仅为 13%。基于 GAN 的模型取得了明显更好的结果,精确率和召回率分别为 98.7% 和 95.3%。这一结果表明,由 GAN 生成的图像有可能提高棕榈检测模型的精确度。
{"title":"Enhancing oil palm segmentation model with GAN-based augmentation","authors":"Qi Bin Kwong, Yee Thung Kon, Wan Rusydiah W. Rusik, Mohd Nor Azizi Shabudin, Shahirah Shazana A. Rahman, Harikrishna Kulaveerasingam, David Ross Appleton","doi":"10.1186/s40537-024-00990-x","DOIUrl":"https://doi.org/10.1186/s40537-024-00990-x","url":null,"abstract":"<p>In digital agriculture, accurate crop detection is fundamental to developing automated systems for efficient plantation management. For oil palm, the main challenge lies in developing robust models that perform well in different environmental conditions. This study addresses the feasibility of using GAN augmentation methods to improve palm detection models. For this purpose, drone images of young palms (&lt; 5 year-old) from eight different estates were collected, annotated, and used to build a baseline detection model based on DETR. StyleGAN2 was trained on the extracted palms and then used to generate a series of synthetic palms, which were then inserted into tiles representing different environments. CycleGAN networks were trained for bidirectional translation between synthetic and real tiles, subsequently utilized to augment the authenticity of synthetic tiles. Both synthetic and real tiles were used to train the GAN-based detection model. The baseline model achieved precision and recall values of 95.8% and 97.2%. The GAN-based model achieved comparable result, with precision and recall values of 98.5% and 98.6%. In the challenge dataset 1 consisting older palms (&gt; 5 year-old), both models also achieved similar accuracies, with baseline model achieving precision and recall of 93.1% and 99.4%, and GAN-based model achieving 95.7% and 99.4%. As for the challenge dataset 2 consisting of storm affected palms, the baseline model achieved precision of 100% but recall was only 13%. The GAN-based model achieved a significantly better result, with a precision and recall values of 98.7% and 95.3%. This result demonstrates that images generated by GANs have the potential to enhance the accuracies of palm detection models.</p>","PeriodicalId":15158,"journal":{"name":"Journal of Big Data","volume":"25 1","pages":""},"PeriodicalIF":8.1,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AI sees beyond humans: automated diagnosis of myopia based on peripheral refraction map using interpretable deep learning 人工智能的视力超越人类:利用可解释深度学习,基于周边屈光图自动诊断近视
IF 8.1 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2024-09-08 DOI: 10.1186/s40537-024-00989-4
Yong Tang, Zhenghua Lin, Linjing Zhou, Weijia Wang, Longbo Wen, Yongli Zhou, Zongyuan Ge, Zhao Chen, Weiwei Dai, Zhikuan Yang, He Tang, Weizhong Lan

The question of whether artificial intelligence (AI) can surpass human capabilities is crucial in the application of AI in clinical medicine. To explore this, an interpretable deep learning (DL) model was developed to assess myopia status using retinal refraction maps obtained with a novel peripheral refractor. The DL model demonstrated promising performance, achieving an AUC of 0.9074 (95% CI 0.83–0.97), an accuracy of 0.8140 (95% CI 0.70–0.93), a sensitivity of 0.7500 (95% CI 0.51–0.90), and a specificity of 0.8519 (95% CI 0.68–0.94). Grad-CAM analysis provided interpretable visualization of the attention of DL model and revealed that the DL model utilized information from the central retina, similar to human readers. Additionally, the model considered information from vertical regions across the central retina, which human readers had overlooked. This finding suggests that AI can indeed surpass human capabilities, bolstering our confidence in the use of AI in clinical practice, especially in new scenarios where prior human knowledge is limited.

人工智能(AI)能否超越人类的能力,是将人工智能应用于临床医学的关键问题。为了探讨这个问题,我们开发了一个可解释的深度学习(DL)模型,利用新型周边屈光仪获得的视网膜屈光度图来评估近视状态。该深度学习模型表现出良好的性能,AUC 为 0.9074(95% CI 0.83-0.97),准确度为 0.8140(95% CI 0.70-0.93),灵敏度为 0.7500(95% CI 0.51-0.90),特异度为 0.8519(95% CI 0.68-0.94)。Grad-CAM 分析为 DL 模型的注意力提供了可解释的可视化,并显示 DL 模型利用了视网膜中央的信息,与人类读者类似。此外,该模型还考虑了来自视网膜中央垂直区域的信息,而人类读者却忽略了这些信息。这一发现表明,人工智能确实可以超越人类的能力,增强了我们在临床实践中使用人工智能的信心,尤其是在人类先前知识有限的新场景中。
{"title":"AI sees beyond humans: automated diagnosis of myopia based on peripheral refraction map using interpretable deep learning","authors":"Yong Tang, Zhenghua Lin, Linjing Zhou, Weijia Wang, Longbo Wen, Yongli Zhou, Zongyuan Ge, Zhao Chen, Weiwei Dai, Zhikuan Yang, He Tang, Weizhong Lan","doi":"10.1186/s40537-024-00989-4","DOIUrl":"https://doi.org/10.1186/s40537-024-00989-4","url":null,"abstract":"<p>The question of whether artificial intelligence (AI) can surpass human capabilities is crucial in the application of AI in clinical medicine. To explore this, an interpretable deep learning (DL) model was developed to assess myopia status using retinal refraction maps obtained with a novel peripheral refractor. The DL model demonstrated promising performance, achieving an AUC of 0.9074 (95% CI 0.83–0.97), an accuracy of 0.8140 (95% CI 0.70–0.93), a sensitivity of 0.7500 (95% CI 0.51–0.90), and a specificity of 0.8519 (95% CI 0.68–0.94). Grad-CAM analysis provided interpretable visualization of the attention of DL model and revealed that the DL model utilized information from the central retina, similar to human readers. Additionally, the model considered information from vertical regions across the central retina, which human readers had overlooked. This finding suggests that AI can indeed surpass human capabilities, bolstering our confidence in the use of AI in clinical practice, especially in new scenarios where prior human knowledge is limited.</p>","PeriodicalId":15158,"journal":{"name":"Journal of Big Data","volume":"23 1","pages":""},"PeriodicalIF":8.1,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient microservices offloading for cost optimization in diverse MEC cloud networks 在多样化 MEC 云网络中高效卸载微服务以优化成本
IF 8.1 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2024-09-04 DOI: 10.1186/s40537-024-00975-w
Abdul Rasheed Mahesar, Xiaoping Li, Dileep Kumar Sajnani

In recent years, mobile applications have proliferated across domains such as E-banking, Augmented Reality, E-Transportation, and E-Healthcare. These applications are often built using microservices, an architectural style where the application is composed of independently deployable services focusing on specific functionalities. Mobile devices cannot process these microservices locally, so traditionally, cloud-based frameworks using cost-efficient Virtual Machines (VMs) and edge servers have been used to offload these tasks. However, cloud frameworks suffer from extended boot times and high transmission overhead, while edge servers have limited computational resources. To overcome these challenges, this study introduces a Microservices Container-Based Mobile Edge Cloud Computing (MCBMEC) environment and proposes an innovative framework, Optimization Task Scheduling and Computational Offloading with Cost Awareness (OTSCOCA). This framework addresses Resource Matching, Task Sequencing, and Task Scheduling to enhance server utilization, reduce service latency, and improve service bootup times. Empirical results validate the efficacy of MCBMEC and OTSCOCA, demonstrating significant improvements in server efficiency, reduced service latency, faster service bootup times, and notable cost savings. These outcomes underscore the pivotal role of these methodologies in advancing mobile edge computing applications amidst the challenges of edge server limitations and traditional cloud-based approaches.

近年来,移动应用程序在电子银行、增强现实、电子交通和电子医疗等领域激增。这些应用通常使用微服务构建,微服务是一种架构风格,应用由可独立部署的服务组成,专注于特定功能。移动设备无法在本地处理这些微服务,因此传统上使用基于云的框架,利用具有成本效益的虚拟机(VM)和边缘服务器来卸载这些任务。然而,云框架存在启动时间长、传输开销大的问题,而边缘服务器的计算资源有限。为了克服这些挑战,本研究引入了基于微服务容器的移动边缘云计算(MCBMEC)环境,并提出了一个创新框架--具有成本意识的优化任务调度和计算卸载(OTSCOCA)。该框架涉及资源匹配、任务排序和任务调度,以提高服务器利用率、减少服务延迟并改善服务启动时间。实证结果验证了 MCBMEC 和 OTSCOCA 的功效,表明服务器效率显著提高,服务延迟减少,服务启动时间加快,成本明显降低。这些结果凸显了这些方法在推进移动边缘计算应用中的关键作用,而边缘服务器的局限性和传统的基于云的方法则是这些方法面临的挑战。
{"title":"Efficient microservices offloading for cost optimization in diverse MEC cloud networks","authors":"Abdul Rasheed Mahesar, Xiaoping Li, Dileep Kumar Sajnani","doi":"10.1186/s40537-024-00975-w","DOIUrl":"https://doi.org/10.1186/s40537-024-00975-w","url":null,"abstract":"<p>In recent years, mobile applications have proliferated across domains such as E-banking, Augmented Reality, E-Transportation, and E-Healthcare. These applications are often built using microservices, an architectural style where the application is composed of independently deployable services focusing on specific functionalities. Mobile devices cannot process these microservices locally, so traditionally, cloud-based frameworks using cost-efficient Virtual Machines (VMs) and edge servers have been used to offload these tasks. However, cloud frameworks suffer from extended boot times and high transmission overhead, while edge servers have limited computational resources. To overcome these challenges, this study introduces a Microservices Container-Based Mobile Edge Cloud Computing (MCBMEC) environment and proposes an innovative framework, Optimization Task Scheduling and Computational Offloading with Cost Awareness (OTSCOCA). This framework addresses Resource Matching, Task Sequencing, and Task Scheduling to enhance server utilization, reduce service latency, and improve service bootup times. Empirical results validate the efficacy of MCBMEC and OTSCOCA, demonstrating significant improvements in server efficiency, reduced service latency, faster service bootup times, and notable cost savings. These outcomes underscore the pivotal role of these methodologies in advancing mobile edge computing applications amidst the challenges of edge server limitations and traditional cloud-based approaches.</p>","PeriodicalId":15158,"journal":{"name":"Journal of Big Data","volume":"1 1","pages":""},"PeriodicalIF":8.1,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predicting startup success using two bias-free machine learning: resolving data imbalance using generative adversarial networks 利用两种无偏差机器学习预测初创企业的成功:利用生成式对抗网络解决数据不平衡问题
IF 8.1 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2024-09-03 DOI: 10.1186/s40537-024-00993-8
Jungryeol Park, Saesol Choi, Yituo Feng

The success of newly established companies holds significant implications for community development and economic growth. However, startups often grapple with heightened vulnerability to market volatility, which can lead to early-stage failures. This study aims to predict startup success by addressing biases in existing predictive models. Previous research has examined external factors such as market dynamics and internal elements like founder characteristics.While such efforts have contributed to understanding success mechanisms, challenges persist, including predictor and learning data biases. This study proposes a novel approach by constructing independent variables using early-stage information, incorporating founder attributes, and mitigating class imbalance through generative adversarial networks (GAN). Our proposed model aims to enhance investment decision-making efficiency and effectiveness, offering a valuable decision support system for various venture capital funds.

新成立公司的成功对社区发展和经济增长具有重要意义。然而,初创企业往往更容易受到市场波动的影响,从而导致早期阶段的失败。本研究旨在通过解决现有预测模型中的偏差来预测初创企业的成功。以往的研究考察了市场动态等外部因素和创始人特征等内部因素。虽然这些努力有助于了解成功机制,但挑战依然存在,包括预测和学习数据的偏差。本研究提出了一种新方法,即利用早期信息构建自变量,纳入创始人属性,并通过生成式对抗网络(GAN)缓解类别不平衡。我们提出的模型旨在提高投资决策的效率和效果,为各种风险投资基金提供有价值的决策支持系统。
{"title":"Predicting startup success using two bias-free machine learning: resolving data imbalance using generative adversarial networks","authors":"Jungryeol Park, Saesol Choi, Yituo Feng","doi":"10.1186/s40537-024-00993-8","DOIUrl":"https://doi.org/10.1186/s40537-024-00993-8","url":null,"abstract":"<p>The success of newly established companies holds significant implications for community development and economic growth. However, startups often grapple with heightened vulnerability to market volatility, which can lead to early-stage failures. This study aims to predict startup success by addressing biases in existing predictive models. Previous research has examined external factors such as market dynamics and internal elements like founder characteristics.While such efforts have contributed to understanding success mechanisms, challenges persist, including predictor and learning data biases. This study proposes a novel approach by constructing independent variables using early-stage information, incorporating founder attributes, and mitigating class imbalance through generative adversarial networks (GAN). Our proposed model aims to enhance investment decision-making efficiency and effectiveness, offering a valuable decision support system for various venture capital funds.</p>","PeriodicalId":15158,"journal":{"name":"Journal of Big Data","volume":"4 1","pages":""},"PeriodicalIF":8.1,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CTGAN-ENN: a tabular GAN-based hybrid sampling method for imbalanced and overlapped data in customer churn prediction CTGAN-ENN:一种基于表格 GAN 的混合采样方法,适用于客户流失预测中的不平衡和重叠数据
IF 8.1 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2024-09-02 DOI: 10.1186/s40537-024-00982-x
I Nyoman Mahayasa Adiputra, Paweena Wanchai

Class imbalance is one of many problems of customer churn datasets. One of the common problems is class overlap, where the data have a similar instance between classes. The prediction task of customer churn becomes more challenging when there is class overlap in the data training. In this research, we suggested a hybrid method based on tabular GANs, called CTGAN-ENN, to address class overlap and imbalanced data in datasets of customers that churn. We used five different customer churn datasets from an open platform. CTGAN is a tabular GAN-based oversampling to address class imbalance but has a class overlap problem. We combined CTGAN with the ENN under-sampling technique to overcome the class overlap. CTGAN-ENN reduced the number of class overlaps by each feature in all datasets. We investigated how effective CTGAN-ENN is in each machine learning technique. Based on our experiments, CTGAN-ENN achieved satisfactory results in KNN, GBM, XGB and LGB machine learning performance for customer churn predictions. We compared CTGAN-ENN with common over-sampling and hybrid sampling methods, and CTGAN-ENN achieved outperform results compared with other sampling methods and algorithm-level methods with cost-sensitive learning in several machine learning algorithms. We provide a time consumption algorithm between CTGAN and CTGAN-ENN. CTGAN-ENN achieved less time consumption than CTGAN. Our research work provides a new framework to handle customer churn prediction problems with several types of imbalanced datasets and can be useful in real-world data from customer churn prediction.

类不平衡是客户流失数据集的众多问题之一。其中一个常见问题是类重叠,即数据在类之间有相似的实例。当数据训练中存在类重叠时,客户流失的预测任务就变得更具挑战性。在这项研究中,我们提出了一种基于表格 GAN 的混合方法,称为 CTGAN-ENN,以解决客户流失数据集中的类重叠和不平衡数据问题。我们使用了来自开放平台的五个不同的客户流失数据集。CTGAN 是一种基于表格 GAN 的超采样方法,用于解决类不平衡问题,但也存在类重叠问题。我们将 CTGAN 与 ENN 下采样技术相结合,以克服类重叠问题。CTGAN-ENN 减少了所有数据集中每个特征的类重叠数量。我们研究了 CTGAN-ENN 在每种机器学习技术中的效果。根据我们的实验,CTGAN-ENN 在客户流失预测的 KNN、GBM、XGB 和 LGB 机器学习性能方面都取得了令人满意的结果。我们将 CTGAN-ENN 与常见的过度采样法和混合采样法进行了比较,在几种机器学习算法中,CTGAN-ENN 取得了优于其他采样法和具有成本敏感学习的算法级方法的结果。我们提供了 CTGAN 和 CTGAN-ENN 之间的耗时算法。与 CTGAN 相比,CTGAN-ENN 的耗时更少。我们的研究工作提供了一个新的框架来处理几类不平衡数据集的客户流失预测问题,并可用于客户流失预测的实际数据中。
{"title":"CTGAN-ENN: a tabular GAN-based hybrid sampling method for imbalanced and overlapped data in customer churn prediction","authors":"I Nyoman Mahayasa Adiputra, Paweena Wanchai","doi":"10.1186/s40537-024-00982-x","DOIUrl":"https://doi.org/10.1186/s40537-024-00982-x","url":null,"abstract":"<p>Class imbalance is one of many problems of customer churn datasets. One of the common problems is class overlap, where the data have a similar instance between classes. The prediction task of customer churn becomes more challenging when there is class overlap in the data training. In this research, we suggested a hybrid method based on tabular GANs, called CTGAN-ENN, to address class overlap and imbalanced data in datasets of customers that churn. We used five different customer churn datasets from an open platform. CTGAN is a tabular GAN-based oversampling to address class imbalance but has a class overlap problem. We combined CTGAN with the ENN under-sampling technique to overcome the class overlap. CTGAN-ENN reduced the number of class overlaps by each feature in all datasets. We investigated how effective CTGAN-ENN is in each machine learning technique. Based on our experiments, CTGAN-ENN achieved satisfactory results in KNN, GBM, XGB and LGB machine learning performance for customer churn predictions. We compared CTGAN-ENN with common over-sampling and hybrid sampling methods, and CTGAN-ENN achieved outperform results compared with other sampling methods and algorithm-level methods with cost-sensitive learning in several machine learning algorithms. We provide a time consumption algorithm between CTGAN and CTGAN-ENN. CTGAN-ENN achieved less time consumption than CTGAN. Our research work provides a new framework to handle customer churn prediction problems with several types of imbalanced datasets and can be useful in real-world data from customer churn prediction.</p>","PeriodicalId":15158,"journal":{"name":"Journal of Big Data","volume":"78 1","pages":""},"PeriodicalIF":8.1,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cartographies of warfare in the Indian subcontinent: Contextualizing archaeological and historical analysis through big data approaches 印度次大陆的战争地图:通过大数据方法对考古和历史分析进行语境分析
IF 8.1 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2024-08-29 DOI: 10.1186/s40537-024-00962-1
Monica L. Smith, Connor Newton

Some of the most notable human behavioral palimpsests result from warfare and its durable traces in the form of defensive architecture and strategic infrastructure. For premodern periods, this architecture is often understudied at the large scale, resulting in a lack of appreciation for the enormity of the costs and impacts of military spending over the course of human history. In this article, we compare the information gleaned from the study of the fortified cities of the Early Historic period of the Indian subcontinent (c. 3rd century BCE to 4th century CE) with the precolonial medieval era (9-17th centuries CE). Utilizing in-depth archaeological and historical studies along with local sightings and citizen-science blogs to create a comprehensive data set and map series in a “big-data” approach that makes use of heterogeneous data sets and presence-absence criteria, we discuss how the architecture of warfare shifted from an emphasis on urban defense in the Early Historic period to an emphasis on territorial offense and defense in the medieval period. Many medieval fortifications are known from only local reports and have minimal identifying information but can still be studied in the aggregate using a least-shared denominator approach to quantification and mapping.

战争及其以防御性建筑和战略基础设施形式留下的持久痕迹是一些最显著的人类行为古迹。对于近代以前的时期,这种大规模的建筑往往研究不足,导致人们对人类历史上军事开支的巨大代价和影响缺乏认识。在本文中,我们将对印度次大陆早期历史时期(约公元前 3 世纪至公元前 4 世纪)的设防城市和前殖民时期的中世纪(公元前 9-17 世纪)的设防城市进行比较研究。我们利用深入的考古和历史研究以及当地目击和公民科学博客,以 "大数据 "方法(即利用异构数据集和存在-不存在标准)创建了一个综合数据集和地图系列,讨论了战争建筑如何从早期历史时期强调城市防御转变为中世纪时期强调领土进攻和防御。许多中世纪防御工事仅从地方报告中得知,识别信息极少,但仍可使用最小公分母方法进行量化和制图,对其进行总体研究。
{"title":"Cartographies of warfare in the Indian subcontinent: Contextualizing archaeological and historical analysis through big data approaches","authors":"Monica L. Smith, Connor Newton","doi":"10.1186/s40537-024-00962-1","DOIUrl":"https://doi.org/10.1186/s40537-024-00962-1","url":null,"abstract":"<p>Some of the most notable human behavioral palimpsests result from warfare and its durable traces in the form of defensive architecture and strategic infrastructure. For premodern periods, this architecture is often understudied at the large scale, resulting in a lack of appreciation for the enormity of the costs and impacts of military spending over the course of human history. In this article, we compare the information gleaned from the study of the fortified cities of the Early Historic period of the Indian subcontinent (c. 3rd century BCE to 4th century CE) with the precolonial medieval era (9-17th centuries CE). Utilizing in-depth archaeological and historical studies along with local sightings and citizen-science blogs to create a comprehensive data set and map series in a “big-data” approach that makes use of heterogeneous data sets and presence-absence criteria, we discuss how the architecture of warfare shifted from an emphasis on urban defense in the Early Historic period to an emphasis on territorial offense and defense in the medieval period. Many medieval fortifications are known from only local reports and have minimal identifying information but can still be studied in the aggregate using a least-shared denominator approach to quantification and mapping.</p>","PeriodicalId":15158,"journal":{"name":"Journal of Big Data","volume":"14 1","pages":""},"PeriodicalIF":8.1,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automated subway touch button detection using image process 利用图像处理自动检测地铁触摸按钮
IF 8.1 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2024-08-29 DOI: 10.1186/s40537-024-00941-6
Junfeng An, Mengmeng Lu, Gang Li, Jiqiang Liu, Chongqing Wang

Subway button detection is paramount for passenger safety, yet the occurrence of inadvertent touches poses operational threats. Camera-based detection is indispensable for identifying touch occurrences, ascertaining person identity, and implementing scientific measures. Existing methods suffer from inaccuracies due to the small size of buttons, complex environments, and challenges such as occlusion. We present YOLOv8-DETR-P2-DCNv2-Dynamic-NWD-DA, which enhances occlusion awareness, reduces redundant annotations, and improves contextual feature extraction. The model integrates the RTDETRDecoder, P2 small target detection layer, DCNv2-Dynamic algorithm, and the NWD loss function for multiscale feature extraction. Dataset augmentation and the GAN algorithm refine the model, aligning feature distributions and enhancing precision by 6.5%, 5%, and 5.8% in precision, recall, and mAP50, respectively. These advancements denote significant improvements in key performance indicators.

地铁按钮检测对乘客安全至关重要,但不经意的触碰会对运行造成威胁。基于摄像头的检测对于识别触摸事件、确定人员身份和实施科学措施是不可或缺的。由于按钮尺寸小、环境复杂以及遮挡等挑战,现有方法存在误差。我们提出了 YOLOv8-DETR-P2-DCNv2-Dynamic-NWD-DA,它增强了遮挡意识,减少了冗余注释,并改进了上下文特征提取。该模型集成了 RTDETRD 解码器、P2 小目标检测层、DCNv2-动态算法和用于多尺度特征提取的 NWD 损失函数。数据集增强和 GAN 算法完善了模型,对齐了特征分布,在精度、召回率和 mAP50 方面分别提高了 6.5%、5% 和 5.8%。这些进步表明关键性能指标有了显著提高。
{"title":"Automated subway touch button detection using image process","authors":"Junfeng An, Mengmeng Lu, Gang Li, Jiqiang Liu, Chongqing Wang","doi":"10.1186/s40537-024-00941-6","DOIUrl":"https://doi.org/10.1186/s40537-024-00941-6","url":null,"abstract":"<p>Subway button detection is paramount for passenger safety, yet the occurrence of inadvertent touches poses operational threats. Camera-based detection is indispensable for identifying touch occurrences, ascertaining person identity, and implementing scientific measures. Existing methods suffer from inaccuracies due to the small size of buttons, complex environments, and challenges such as occlusion. We present YOLOv8-DETR-P2-DCNv2-Dynamic-NWD-DA, which enhances occlusion awareness, reduces redundant annotations, and improves contextual feature extraction. The model integrates the RTDETRDecoder, P2 small target detection layer, DCNv2-Dynamic algorithm, and the NWD loss function for multiscale feature extraction. Dataset augmentation and the GAN algorithm refine the model, aligning feature distributions and enhancing precision by 6.5%, 5%, and 5.8% in precision, recall, and mAP50, respectively. These advancements denote significant improvements in key performance indicators.</p>","PeriodicalId":15158,"journal":{"name":"Journal of Big Data","volume":"9 1","pages":""},"PeriodicalIF":8.1,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142224577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cybersecurity vulnerabilities and solutions in Ethiopian university websites 埃塞俄比亚大学网站的网络安全漏洞和解决方案
IF 8.1 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2024-08-23 DOI: 10.1186/s40537-024-00980-z
Ali Yimam Eshetu, Endris Abdu Mohammed, Ayodeji Olalekan Salau

This study investigates the causes and countermeasures of cybercrime vulnerabilities, specifically focusing on selected 16 Ethiopian university websites. This study uses a cybersecurity awareness survey, and automated vulnerability assessment and penetration testing (VAPT) technique tools, namely, Nmap, Nessus, and Vega, to identify potential security threats and vulnerabilities. The assessment was performed according to the ISO/IEC 27001 series of standards, ensuring a comprehensive and globally recognized approach to information security. The results of this study provide valuable insights into the current state of cybersecurity in Ethiopian universities and reveals a range of issues, from outdated software and poor password management to a lack of encryption and inadequate access control. Vega vulnerability assessment reports 11,286 total findings, and Nessus identified a total of 1749 vulnerabilities across all the websites of the institutions examined. Based on these findings, the study proposes counteractive measures tailored to the specific needs of each identified defect. These recommendations aim to strengthen the security posture of the university websites, thereby protecting sensitive data and maintaining the trust of students, staff, and other stakeholders. The study emphasizes the need for proactive cybersecurity measures in the realm of higher education and presents a strategic plan for universities to improve their digital security.

本研究调查了网络犯罪漏洞的原因和对策,特别关注选定的 16 个埃塞俄比亚大学网站。本研究使用网络安全意识调查以及自动漏洞评估和渗透测试(VAPT)技术工具,即 Nmap、Nessus 和 Vega,来识别潜在的安全威胁和漏洞。评估是根据 ISO/IEC 27001 系列标准进行的,以确保采用全球公认的全面信息安全方法。这项研究的结果为了解埃塞俄比亚大学的网络安全现状提供了有价值的见解,并揭示了从软件过时、密码管理不善到缺乏加密和访问控制不足等一系列问题。Vega 漏洞评估报告共发现 11286 个漏洞,Nessus 在受检机构的所有网站上共发现 1749 个漏洞。根据这些发现,研究针对每个已发现缺陷的具体需求提出了应对措施。这些建议旨在加强大学网站的安全态势,从而保护敏感数据,维护学生、教职员工和其他利益相关者的信任。本研究强调了在高等教育领域采取积极主动的网络安全措施的必要性,并提出了大学提高数字安全的战略计划。
{"title":"Cybersecurity vulnerabilities and solutions in Ethiopian university websites","authors":"Ali Yimam Eshetu, Endris Abdu Mohammed, Ayodeji Olalekan Salau","doi":"10.1186/s40537-024-00980-z","DOIUrl":"https://doi.org/10.1186/s40537-024-00980-z","url":null,"abstract":"<p>This study investigates the causes and countermeasures of cybercrime vulnerabilities, specifically focusing on selected 16 Ethiopian university websites. This study uses a cybersecurity awareness survey, and automated vulnerability assessment and penetration testing (VAPT) technique tools, namely, Nmap, Nessus, and Vega, to identify potential security threats and vulnerabilities. The assessment was performed according to the ISO/IEC 27001 series of standards, ensuring a comprehensive and globally recognized approach to information security. The results of this study provide valuable insights into the current state of cybersecurity in Ethiopian universities and reveals a range of issues, from outdated software and poor password management to a lack of encryption and inadequate access control. Vega vulnerability assessment reports 11,286 total findings, and Nessus identified a total of 1749 vulnerabilities across all the websites of the institutions examined. Based on these findings, the study proposes counteractive measures tailored to the specific needs of each identified defect. These recommendations aim to strengthen the security posture of the university websites, thereby protecting sensitive data and maintaining the trust of students, staff, and other stakeholders. The study emphasizes the need for proactive cybersecurity measures in the realm of higher education and presents a strategic plan for universities to improve their digital security.</p>","PeriodicalId":15158,"journal":{"name":"Journal of Big Data","volume":"9 1","pages":""},"PeriodicalIF":8.1,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Big Data
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1