Immunotherapy is a promising and safer alternative to conventional cancer therapies. It involves adaptive T-cell therapy, cancer vaccines, monoclonal antibodies, immune checkpoint blockade (ICB), and chimeric antigen receptor (CAR) based therapies. However, most of these modalities encounter restrictions in solid tumours owing to a dense, highly hypoxic and immune-suppressive microenvironment as well as the heterogeneity of tumour antigens. The elevated intra-tumoural pressure and mutational rates within fastgrowing solid tumours present challenges in efficient drug targeting and delivery. The tumour microenvironment is a dynamic niche infiltrated by a variety of immune cells, most of which are macrophages. Since they form a part of the innate immune system, targeting macrophages has become a plausible immunotherapeutic approach. In this review, we discuss several versatile approaches (both at pre-clinical and clinical stages) such as the direct killing of tumour-associated macrophages, reprogramming pro-tumour macrophages to anti-tumour phenotypes, inhibition of macrophage recruitment into the tumour microenvironment, novel CAR macrophages, and genetically engineered macrophages that have been devised thus far. These strategies comprise a strong and adaptable macrophage-toolkit in the ongoing fight against cancer and by understanding their significance, we may unlock the full potential of these immune cells in cancer therapy.
免疫疗法是传统癌症疗法的一种前景广阔且更安全的替代疗法。它包括适应性 T 细胞疗法、癌症疫苗、单克隆抗体、免疫检查点阻断(ICB)和基于嵌合抗原受体(CAR)的疗法。然而,由于实体瘤的微环境致密、高度缺氧、免疫抑制以及肿瘤抗原的异质性,这些疗法在实体瘤中大多受到限制。在快速生长的实体瘤中,瘤内压力和突变率的升高给高效药物靶向和递送带来了挑战。肿瘤微环境是一个由各种免疫细胞浸润的动态龛位,其中大部分是巨噬细胞。由于巨噬细胞是先天性免疫系统的一部分,因此靶向巨噬细胞已成为一种可行的免疫治疗方法。在这篇综述中,我们将讨论几种多用途方法(包括临床前和临床阶段),如直接杀死肿瘤相关巨噬细胞、将原肿瘤巨噬细胞重编程为抗肿瘤表型、抑制巨噬细胞招募进入肿瘤微环境、新型 CAR 巨噬细胞和基因工程巨噬细胞等。通过了解这些策略的意义,我们可以充分挖掘这些免疫细胞在癌症治疗中的潜力。
{"title":"Harnessing the innate immune system by revolutionizing macrophage-mediated cancer immunotherapy.","authors":"Gayatri Reghu, Praveen Kumar Vemula, Sarita Ganapathy Bhat, Sreeja Narayanan","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Immunotherapy is a promising and safer alternative to conventional cancer therapies. It involves adaptive T-cell therapy, cancer vaccines, monoclonal antibodies, immune checkpoint blockade (ICB), and chimeric antigen receptor (CAR) based therapies. However, most of these modalities encounter restrictions in solid tumours owing to a dense, highly hypoxic and immune-suppressive microenvironment as well as the heterogeneity of tumour antigens. The elevated intra-tumoural pressure and mutational rates within fastgrowing solid tumours present challenges in efficient drug targeting and delivery. The tumour microenvironment is a dynamic niche infiltrated by a variety of immune cells, most of which are macrophages. Since they form a part of the innate immune system, targeting macrophages has become a plausible immunotherapeutic approach. In this review, we discuss several versatile approaches (both at pre-clinical and clinical stages) such as the direct killing of tumour-associated macrophages, reprogramming pro-tumour macrophages to anti-tumour phenotypes, inhibition of macrophage recruitment into the tumour microenvironment, novel CAR macrophages, and genetically engineered macrophages that have been devised thus far. These strategies comprise a strong and adaptable macrophage-toolkit in the ongoing fight against cancer and by understanding their significance, we may unlock the full potential of these immune cells in cancer therapy.</p>","PeriodicalId":15171,"journal":{"name":"Journal of Biosciences","volume":"49 ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10961329/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141305971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The migration and dispersal of organisms is fascinating from many perspectives and, in the case of crop plants, intersects with the movement of human beings. As they explore new areas, agricultural peoples carry seeds of crops, which move and may establish ('diffuse') where they go. In order to understand the movement of the crop across regions, we need to understand the pattern and rate of diffusion of the crop, as well as that of the people involved, both those who carried it and those who adopted it. What determines whether a particular crop will establish in a new region with a different climate and other environmental factors (e.g., precipitation), likely necessitating genetic change through natural or artificial selection (e.g., Rendo´n-Anaya et al. 2017)? The extent to which the rate of diffusion is determined by evolutionary and environmental processes, on the one hand, and human migratory processes, on the other, is a complex question that has not been resolved even for as intensively studied a crop as maize (Stoneking et al. 2023).
{"title":"Mungbean in Central Asia: It went there from East Asia, not South Asia.","authors":"Geeta R, E Roshini Nayar","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The migration and dispersal of organisms is fascinating from many perspectives and, in the case of crop plants, intersects with the movement of human beings. As they explore new areas, agricultural peoples carry seeds of crops, which move and may establish ('diffuse') where they go. In order to understand the movement of the crop across regions, we need to understand the pattern and rate of diffusion of the crop, as well as that of the people involved, both those who carried it and those who adopted it. What determines whether a particular crop will establish in a new region with a different climate and other environmental factors (e.g., precipitation), likely necessitating genetic change through natural or artificial selection (e.g., Rendo´n-Anaya et al. 2017)? The extent to which the rate of diffusion is determined by evolutionary and environmental processes, on the one hand, and human migratory processes, on the other, is a complex question that has not been resolved even for as intensively studied a crop as maize (Stoneking et al. 2023).</p>","PeriodicalId":15171,"journal":{"name":"Journal of Biosciences","volume":"49 ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139575444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Increasing soil and underground water salinization with decreasing availability of fresh water has become a potential threat to sustainable crop production in arid and semi-arid areas globally. Introduction and evaluation of salt-tolerant halophytic crops is one of the sustainable ways to preserve productivity in saline ecosystems. This study was aimed to screen quinoa germplasms under high-sodium adsorption ratio (SAR) saline stress. Thirteen quinoa germplasms were evaluated under four levels [best available water (BAW), 8, 16, and 24 dSm-1] of high-SAR saline water irrigation. The evaluation was carried out based on growth, yield, and ionic content parameters along with statistical tools such as multivariate analysis, salt tolerance indices, and correlation. The results showed that the salinity levels of 16 and 24 dSm-1 resulted in increase of chlorophyll content relative to BAWand 8 dSm-1. The germplasm CSQ2 recorded the highest proline content (163.7 mg g-1 FW) at 24 dSm-1. Increasing levels of salinity reduced relative water content in plant leaves, and the germplasm CSQ2 showed minimal reduction of 4% at 24 dSm-1. Na+ and K+ contents in the plants increased with increasing salinity levels, while the K+/Na+ ratio decreased. The grain yield of quinoa germplasms ranged between 3.5 and 14.1 g plant-1. The germplasm EC507740 recorded the highest grain yield (7.0 g plant-1) followed by CSQ1 and CSQ2 at a maximum stress of 24 dSm-1. Principal component analysis (PCA) and correlation elucidated that Na+ content in plants was negatively correlated with all the studied traits except SPAD, proline content, and K+ content. The different salt tolerance indices indicated that the germplasms EC507740, CSQ1, CSQ2, EC507738, and IC411825 were more stable at high-SAR salinity, while PCA showed the germplasms EC507740 and CSQ2 as the most salt-tolerant germplasms.
{"title":"Screening of quinoa (<i>Chenopodium quinoa</i> Willd.) germplasms under high-SAR saline water on the basis of growth, yield, and multivariate analysis.","authors":"Kailash Prajapat, Satish Kumar Sanwal, Parbodh Chander Sharma","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Increasing soil and underground water salinization with decreasing availability of fresh water has become a potential threat to sustainable crop production in arid and semi-arid areas globally. Introduction and evaluation of salt-tolerant halophytic crops is one of the sustainable ways to preserve productivity in saline ecosystems. This study was aimed to screen quinoa germplasms under high-sodium adsorption ratio (SAR) saline stress. Thirteen quinoa germplasms were evaluated under four levels [best available water (BAW), 8, 16, and 24 dSm<sup>-1</sup>] of high-SAR saline water irrigation. The evaluation was carried out based on growth, yield, and ionic content parameters along with statistical tools such as multivariate analysis, salt tolerance indices, and correlation. The results showed that the salinity levels of 16 and 24 dSm<sup>-1</sup> resulted in increase of chlorophyll content relative to BAWand 8 dSm<sup>-1</sup>. The germplasm CSQ2 recorded the highest proline content (163.7 mg g<sup>-1</sup> FW) at 24 dSm<sup>-1</sup>. Increasing levels of salinity reduced relative water content in plant leaves, and the germplasm CSQ2 showed minimal reduction of 4% at 24 dSm<sup>-1</sup>. Na<sup>+</sup> and K<sup>+</sup> contents in the plants increased with increasing salinity levels, while the K<sup>+</sup>/Na<sup>+</sup> ratio decreased. The grain yield of quinoa germplasms ranged between 3.5 and 14.1 g plant<sup>-1</sup>. The germplasm EC507740 recorded the highest grain yield (7.0 g plant<sup>-1</sup>) followed by CSQ1 and CSQ2 at a maximum stress of 24 dSm<sup>-1</sup>. Principal component analysis (PCA) and correlation elucidated that Na<sup>+</sup> content in plants was negatively correlated with all the studied traits except SPAD, proline content, and K<sup>+</sup> content. The different salt tolerance indices indicated that the germplasms EC507740, CSQ1, CSQ2, EC507738, and IC411825 were more stable at high-SAR salinity, while PCA showed the germplasms EC507740 and CSQ2 as the most salt-tolerant germplasms.</p>","PeriodicalId":15171,"journal":{"name":"Journal of Biosciences","volume":"49 ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139575446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Josepheena Joseph, Sanjib Bal Samant, Kapuganti Jagadis Gupta
Mitochondrial alternative oxidase (AOX) is an important protein that can help in regulating reactive oxygen species and nitric oxide in plants. The role of AOX in regulation of nitro-oxidative stress in chickpea is not known. Using germinating chickpea as a model system, we investigated the role of AOX in nitro-oxidative stress tolerance. NaCl treatment was used as an inducer of nitro-oxidative stress. Treatment of germinating seeds with 150 mM NaCl led to reduced germination and radicle growth. The AOX inhibitor SHAM caused further inhibition of germination, and the AOX inducer pyruvate improved growth of the radicle under NaCl stress. Isolated mitochondria from germinated seeds under salt stress not only increased AOX capacity but also enhanced AOX protein expression. Measurement of superoxide levels revealed that AOX inhibition by SHAM can enhance superoxide levels, whereas the AOX inducer pyruvate reduced superoxide levels. Measurement of NO by gas phase chemiluminescence revealed enhanced NO generation in response to NaCl treatment. Upon NaCl treatment there was enhanced tyrosine nitration, which is an indicator of nitrosative stress response. Taken together, our results revealed that AOX induced under salinity stress in germinating chickpea can help in mitigating nitro-oxidative stress, thereby improving germination.
{"title":"Mitochondrial alternative oxidase pathway helps in nitrooxidative stress tolerance in germinating chickpea.","authors":"Josepheena Joseph, Sanjib Bal Samant, Kapuganti Jagadis Gupta","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Mitochondrial alternative oxidase (AOX) is an important protein that can help in regulating reactive oxygen species and nitric oxide in plants. The role of AOX in regulation of nitro-oxidative stress in chickpea is not known. Using germinating chickpea as a model system, we investigated the role of AOX in nitro-oxidative stress tolerance. NaCl treatment was used as an inducer of nitro-oxidative stress. Treatment of germinating seeds with 150 mM NaCl led to reduced germination and radicle growth. The AOX inhibitor SHAM caused further inhibition of germination, and the AOX inducer pyruvate improved growth of the radicle under NaCl stress. Isolated mitochondria from germinated seeds under salt stress not only increased AOX capacity but also enhanced AOX protein expression. Measurement of superoxide levels revealed that AOX inhibition by SHAM can enhance superoxide levels, whereas the AOX inducer pyruvate reduced superoxide levels. Measurement of NO by gas phase chemiluminescence revealed enhanced NO generation in response to NaCl treatment. Upon NaCl treatment there was enhanced tyrosine nitration, which is an indicator of nitrosative stress response. Taken together, our results revealed that AOX induced under salinity stress in germinating chickpea can help in mitigating nitro-oxidative stress, thereby improving germination.</p>","PeriodicalId":15171,"journal":{"name":"Journal of Biosciences","volume":"49 ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140898409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Munib Khanyari, Rodrigo Oyanedel, Abhirup Khara, Manvi Sharma, E J Milner-Gulland, Kulbhushansingh R Suryawanshi, Hannah Rose Vineer, Eric R Morgan
Disease cross-transmission between wild and domestic ungulates can negatively impact livelihoods and wildlife conservation. In Pin valley, migratory sheep and goats share pastures seasonally with the resident Asiatic ibex (Capra sibirica), leading to potential disease cross-transmission. Focussing on gastro-intestinal nematodes (GINs) as determinants of health in ungulates, we hypothesized that infection on pastures would increase over summer from contamination by migrating livestock. Consequently, interventions in livestock that are well-timed should reduce infection pressure for ibex. Using a parasite life-cycle model, that predicts infective larval availability, we investigated GIN transmission dynamics and evaluated potential interventions. Migratory livestock were predicted to contribute most infective larvae onto shared pastures due to higher density and parasite levels, driving infections in both livestock and ibex. The model predicted a c.30-day antiparasitic intervention towards the end of the livestock's time in Pin would be most effective at reducing GINs in both hosts. Albeit with the caveats of not being able to provide evidence of interspecific parasite transmission due to the inability to identify parasite species, this case demonstrates the usefulness of our predictive model for investigating parasite transmission in landscapes where domestic and wild ungulates share pastures. Additionally, it suggests management options for further investigation.
{"title":"Predicting and reducing potential parasite infection between migratory livestock and resident Asiatic ibex of Pin valley, India.","authors":"Munib Khanyari, Rodrigo Oyanedel, Abhirup Khara, Manvi Sharma, E J Milner-Gulland, Kulbhushansingh R Suryawanshi, Hannah Rose Vineer, Eric R Morgan","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Disease cross-transmission between wild and domestic ungulates can negatively impact livelihoods and wildlife conservation. In Pin valley, migratory sheep and goats share pastures seasonally with the resident Asiatic ibex (<i>Capra sibirica</i>), leading to potential disease cross-transmission. Focussing on gastro-intestinal nematodes (GINs) as determinants of health in ungulates, we hypothesized that infection on pastures would increase over summer from contamination by migrating livestock. Consequently, interventions in livestock that are well-timed should reduce infection pressure for ibex. Using a parasite life-cycle model, that predicts infective larval availability, we investigated GIN transmission dynamics and evaluated potential interventions. Migratory livestock were predicted to contribute most infective larvae onto shared pastures due to higher density and parasite levels, driving infections in both livestock and ibex. The model predicted a <i>c.</i>30-day antiparasitic intervention towards the end of the livestock's time in Pin would be most effective at reducing GINs in both hosts. Albeit with the caveats of not being able to provide evidence of interspecific parasite transmission due to the inability to identify parasite species, this case demonstrates the usefulness of our predictive model for investigating parasite transmission in landscapes where domestic and wild ungulates share pastures. Additionally, it suggests management options for further investigation.</p>","PeriodicalId":15171,"journal":{"name":"Journal of Biosciences","volume":"49 ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140898417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Clinical trial registries are a vital part of the infrastructure of a robust clinical research ecosystem, itself essential for biomedical translational research. We describe what clinical trial registries are, provide a brief history of the major registries, list the major registries today, mention some of the flaws in these registries, comment on the economics of trial registries, give details of the Indian registry, Clinical Trials Registry - India, and catalogue three examples of research done with data in the Indian registry.
{"title":"Clinical trial registries: The good, and the not so good.","authors":"Gayatri Saberwal","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Clinical trial registries are a vital part of the infrastructure of a robust clinical research ecosystem, itself essential for biomedical translational research. We describe what clinical trial registries are, provide a brief history of the major registries, list the major registries today, mention some of the flaws in these registries, comment on the economics of trial registries, give details of the Indian registry, Clinical Trials Registry - India, and catalogue three examples of research done with data in the Indian registry.</p>","PeriodicalId":15171,"journal":{"name":"Journal of Biosciences","volume":"49 ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142466263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M S Figueredo, M Kearney, M Zuza, U Loser, A Rago, A Fabra, M L Tonelli
Peanut is susceptible to many diseases; among them, peanut smut disease caused by Thecaphora frezzii is the most damaging, causing yield losses of 30%. Fungicide treatment is not effective to control this disease. In this scenario, biological control would be an alternative to diminish the disease. Systemic resistance induced by a biotic agent is known to be effective against a broad spectrum of pathogens. In this study we evaluated the effect of different inoculation strategies of Bacillus sp. CHEP5, a peanut native strain, on peanut smut incidence and severity in field experiments. Peroxidase activity and accumulation of phenolic compounds were measured as changes associated with induced defensive traits. After three consecutive field trials, we found that Bacillus sp. CHEP5 inoculation protects peanut from T. frezzii because incidence and severity were reduced in two field trials. Furthermore, bacterial inoculation in the furrow followed by foliar application around the date of peg development would be the best strategy to control the disease. In addition, a correlation was found between increase in plant phenolic content and decrease in smut disease parameters. Thereafter, we concluded that Bacillus sp. CHEP5 may reduce smut as a result of plant defence response induction.
{"title":"Induction of defence response in peanut elicited by <i>Bacillus</i> sp. CHEP5: A biological strategy for control of smut disease caused by <i>Thecaphora frezzii</i> in the field.","authors":"M S Figueredo, M Kearney, M Zuza, U Loser, A Rago, A Fabra, M L Tonelli","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Peanut is susceptible to many diseases; among them, peanut smut disease caused by <i>Thecaphora frezzii</i> is the most damaging, causing yield losses of 30%. Fungicide treatment is not effective to control this disease. In this scenario, biological control would be an alternative to diminish the disease. Systemic resistance induced by a biotic agent is known to be effective against a broad spectrum of pathogens. In this study we evaluated the effect of different inoculation strategies of <i>Bacillus</i> sp. CHEP5, a peanut native strain, on peanut smut incidence and severity in field experiments. Peroxidase activity and accumulation of phenolic compounds were measured as changes associated with induced defensive traits. After three consecutive field trials, we found that <i>Bacillus</i> sp. CHEP5 inoculation protects peanut from <i>T. frezzii</i> because incidence and severity were reduced in two field trials. Furthermore, bacterial inoculation in the furrow followed by foliar application around the date of peg development would be the best strategy to control the disease. In addition, a correlation was found between increase in plant phenolic content and decrease in smut disease parameters. Thereafter, we concluded that <i>Bacillus</i> sp. CHEP5 may reduce smut as a result of plant defence response induction.</p>","PeriodicalId":15171,"journal":{"name":"Journal of Biosciences","volume":"49 ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142466265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ildikó Jócsák, Helga Lukács, Éva Varga-Visi, Katalin Somfalvi-Tóth, Sándor Keszthelyi
The objective of this study was to characterize the effects of barley powdery mildew infection on wheat via the evolution and dynamics of chloroplasts and oxidative processes based on in vivo measurements of ultra-weak photon emission, parallel measurement of chlorophyll and ascorbic acid content, and molecular identification of the pathogen. The results showed the temporal dynamics of the evolution of ultra-weak photon emission signals that were evidently different for healthy and powdery mildew-infested wheat leaves. In the dark, the ceasing of delayed fluorescence signal made it possible to visualize the ultra-weak luminescence signal as well. Both delayed fluorescence and ultra-weak luminescence signals were characteristic of stress symptoms induced by powdery mildew that was further strengthened by the changes of chlorophyll and ascorbic acid content as typical stress analytical parameters. The presented data and parameterization enabled the identification of stress induction due to powdery mildew infestation in wheat, which should be investigated in detail in the future for fine-tuning our measurements, even by using other species and increasing the length of the measurement in order to increase its specificity. The changes in R2 values are suitable for monitoring the changes of plant stress response. The measurement of fluorescence and luminescence leads to a greater comprehension of the underlying photon emission-related processes, both in general and in the case of powdery mildew infestation.
{"title":"Identification and investigation of barley powdery mildew (<i>Blumeria graminis f. sp. tritici</i>) infection in winter wheat with conventional stress reactions and non-invasive biophoton emission parameters.","authors":"Ildikó Jócsák, Helga Lukács, Éva Varga-Visi, Katalin Somfalvi-Tóth, Sándor Keszthelyi","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The objective of this study was to characterize the effects of barley powdery mildew infection on wheat via the evolution and dynamics of chloroplasts and oxidative processes based on <i>in vivo</i> measurements of ultra-weak photon emission, parallel measurement of chlorophyll and ascorbic acid content, and molecular identification of the pathogen. The results showed the temporal dynamics of the evolution of ultra-weak photon emission signals that were evidently different for healthy and powdery mildew-infested wheat leaves. In the dark, the ceasing of delayed fluorescence signal made it possible to visualize the ultra-weak luminescence signal as well. Both delayed fluorescence and ultra-weak luminescence signals were characteristic of stress symptoms induced by powdery mildew that was further strengthened by the changes of chlorophyll and ascorbic acid content as typical stress analytical parameters. The presented data and parameterization enabled the identification of stress induction due to powdery mildew infestation in wheat, which should be investigated in detail in the future for fine-tuning our measurements, even by using other species and increasing the length of the measurement in order to increase its specificity. The changes in R<sup>2</sup> values are suitable for monitoring the changes of plant stress response. The measurement of fluorescence and luminescence leads to a greater comprehension of the underlying photon emission-related processes, both in general and in the case of powdery mildew infestation.</p>","PeriodicalId":15171,"journal":{"name":"Journal of Biosciences","volume":"49 ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139086975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Liliana Brankova, Elena Shopova, Sergei Ivanov, Yoana Kizheva, Zoltan Urshev, Iliyana Rasheva, Vladimir Aleksandrov, Lyudmila Dimitrova, Melani Dimitrova, Petya Hristova
Xanthomonas euvesicatoria is a major cause of bacterial spot disease in various crops. The present study was focused on the pathosystem pepper (Capsicum annuum L.) - X. euvesicatoria 269p (wild strain). The infectious process was studied using several different modes of in vivo inoculation under controlled conditions. The spread of the pathogen in different parts of the plants was monitored by a new qPCR procedure developed for the detection of X. euvesicatoria, as well as by re-isolation of viable bacterial cells. Photosynthesis, the number of viable pathogens, oxidative stress markers, activities of the main antioxidant enzymes, and levels of nonenzymatic antioxidants in the novel single-leaf model system were studied. The most important observation is that the invasion of the pathogen causes local infection and the dissemination of bacteria to the healthy parts of the host is blocked. The plants limit bacterial colonization around the entry points. Oxidative burst and alterations in antioxidant defenses are detected in infectious leaf lesions. Localized ROS overproduction resembles a hypersensitive response, but several differences can be observed. We assumed that pepper plants are more likely to manifest an intermediate phenotype, similar to lesions simulating disease or leaf flecking. By localizing the infection, possibly involving oxidative stress, the plant survives. However, the same applies to bacteria. The pathogen multiplies at the infection spots and is transmitted to other plants. Our conclusion is that the intermediate phenotype in the studied pathosystem is an example of long and successful co-evolution for both species.
{"title":"Involvement of oxidative stress in localization of bacterial spot infection in pepper plants.","authors":"Liliana Brankova, Elena Shopova, Sergei Ivanov, Yoana Kizheva, Zoltan Urshev, Iliyana Rasheva, Vladimir Aleksandrov, Lyudmila Dimitrova, Melani Dimitrova, Petya Hristova","doi":"","DOIUrl":"","url":null,"abstract":"<p><p><i>Xanthomonas euvesicatoria</i> is a major cause of bacterial spot disease in various crops. The present study was focused on the pathosystem pepper (<i>Capsicum annuum</i> L.) - <i>X. euvesicatoria</i> 269p (wild strain). The infectious process was studied using several different modes of <i>in vivo</i> inoculation under controlled conditions. The spread of the pathogen in different parts of the plants was monitored by a new qPCR procedure developed for the detection of <i>X. euvesicatoria</i>, as well as by re-isolation of viable bacterial cells. Photosynthesis, the number of viable pathogens, oxidative stress markers, activities of the main antioxidant enzymes, and levels of nonenzymatic antioxidants in the novel single-leaf model system were studied. The most important observation is that the invasion of the pathogen causes local infection and the dissemination of bacteria to the healthy parts of the host is blocked. The plants limit bacterial colonization around the entry points. Oxidative burst and alterations in antioxidant defenses are detected in infectious leaf lesions. Localized ROS overproduction resembles a hypersensitive response, but several differences can be observed. We assumed that pepper plants are more likely to manifest an intermediate phenotype, similar to lesions simulating disease or leaf flecking. By localizing the infection, possibly involving oxidative stress, the plant survives. However, the same applies to bacteria. The pathogen multiplies at the infection spots and is transmitted to other plants. Our conclusion is that the intermediate phenotype in the studied pathosystem is an example of long and successful co-evolution for both species.</p>","PeriodicalId":15171,"journal":{"name":"Journal of Biosciences","volume":"49 ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139086977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Anthropocene is posing extraordinary challenges for global agriculture. Agri-food production is increasingly impacted by concurrent biotic and abiotic stressors, climate-triggered pests or diseases, (pesticide) resistance breakdown and the unrelenting appearance of invasive biota. Farmers have relied upon simple, addon constitutive crop defenses and synthetic pesticides for decades, but those tools prove ever more defunct. Here, we argue that dynamic, pluralistic and adaptable crop defenses can safeguard harvests in the face of erratic pest threats. When transitioning towards such nature-based crop defenses, plants prove an infinite source of inspiration. Inducible and/or indirect defenses that rely upon trichomes, sugar rewards, substrate-borne vibrations, plant volatiles, root exudates or allelochemicals have become the center of scientists' attention. The ensuing plant health innovations regularly rely upon the action of resident beneficial organisms, are low-cost, practicable and environmentally sound, and custom-made for more resilient forms of agriculture. By thus harnessing on-farm biodiversity and agroecological processes, agri-food production can be intensified without disregard of human or environmental health, or 'One Health'.
{"title":"Transitioning towards dynamic, nature-based crop defenses.","authors":"Kris A G Wyckhuys, Xiao-Wei Wang, Maged Elkahky","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The Anthropocene is posing extraordinary challenges for global agriculture. Agri-food production is increasingly impacted by concurrent biotic and abiotic stressors, climate-triggered pests or diseases, (pesticide) resistance breakdown and the unrelenting appearance of invasive biota. Farmers have relied upon simple, addon constitutive crop defenses and synthetic pesticides for decades, but those tools prove ever more defunct. Here, we argue that dynamic, pluralistic and adaptable crop defenses can safeguard harvests in the face of erratic pest threats. When transitioning towards such nature-based crop defenses, plants prove an infinite source of inspiration. Inducible and/or indirect defenses that rely upon trichomes, sugar rewards, substrate-borne vibrations, plant volatiles, root exudates or allelochemicals have become the center of scientists' attention. The ensuing plant health innovations regularly rely upon the action of resident beneficial organisms, are low-cost, practicable and environmentally sound, and custom-made for more resilient forms of agriculture. By thus harnessing on-farm biodiversity and agroecological processes, agri-food production can be intensified without disregard of human or environmental health, or 'One Health'.</p>","PeriodicalId":15171,"journal":{"name":"Journal of Biosciences","volume":"49 ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142813331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}