Pub Date : 2024-05-25DOI: 10.1007/s12038-024-00442-x
Gunjan Purohit, Akila Ramesh, Anant B Patel, Jyotsna Dhawan
Adult muscle tissue largely comprised of differentiated myofibers also harbors quiescent muscle-resident stem cells (MuSCs) that are responsible for its maintenance, repair and regeneration. Emerging evidence suggests that quiescent MuSCs exhibit a specific metabolic state, which is regulated during physiological and pathological alterations. However, a detailed understanding of the metabolic state of quiescent MuSCs and its alteration during activation and repair is lacking. Direct profiling of MuSCs in vivo is challenging because the cells are rare and dispersed, while isolation and enrichment leads to their activation and loss of quiescence. In this study, we employed 1H-nuclear magnetic resonance (NMR) spectroscopy to profile metabolites in an established culture model of quiescent MuSC-derived myoblasts and compared with activated, proliferative and differentiated muscle cells to determine the state-specific metabolome. We report that the proliferating and differentiated cells are highly enriched in metabolites involved in energy generation, the quiescent state is enriched in metabolites related to phospholipid catabolism (glycerophosphocholine and choline) and depleted for phosphocholine which is enriched in proliferating cells. We propose that the ratio of these metabolites may be useful as a biomarker of MuSC quiescence.
{"title":"NMR-based comparative metabolomics of quiescent muscle cells","authors":"Gunjan Purohit, Akila Ramesh, Anant B Patel, Jyotsna Dhawan","doi":"10.1007/s12038-024-00442-x","DOIUrl":"https://doi.org/10.1007/s12038-024-00442-x","url":null,"abstract":"<p>Adult muscle tissue largely comprised of differentiated myofibers also harbors quiescent muscle-resident stem cells (MuSCs) that are responsible for its maintenance, repair and regeneration. Emerging evidence suggests that quiescent MuSCs exhibit a specific metabolic state, which is regulated during physiological and pathological alterations. However, a detailed understanding of the metabolic state of quiescent MuSCs and its alteration during activation and repair is lacking. Direct profiling of MuSCs <i>in vivo</i> is challenging because the cells are rare and dispersed, while isolation and enrichment leads to their activation and loss of quiescence. In this study, we employed <sup>1</sup>H-nuclear magnetic resonance<b> (</b>NMR) spectroscopy to profile metabolites in an established culture model of quiescent MuSC-derived myoblasts and compared with activated, proliferative and differentiated muscle cells to determine the state-specific metabolome. We report that the proliferating and differentiated cells are highly enriched in metabolites involved in energy generation, the quiescent state is enriched in metabolites related to phospholipid catabolism (glycerophosphocholine and choline) and depleted for phosphocholine which is enriched in proliferating cells. We propose that the ratio of these metabolites may be useful as a biomarker of MuSC quiescence.</p>","PeriodicalId":15171,"journal":{"name":"Journal of Biosciences","volume":"68 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141154000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A high level of disorder in many viral proteins is a direct consequence of their small genomes, which makes interaction with multiple binding partners a necessity for infection and pathogenicity. A segment of the flaviviral capsid protein (C), also known as the molecular recognition feature (MoRF), undergoes a disorder-to-order transition upon binding to several protein partners. To understand their role in pathogenesis, MoRFs were identified and their occurrence across different flaviviral capsids were studied. Despite lack of sequence similarities, docking studies of Cs with the host proteins indicate conserved interactions involving MoRFs across members of phylogenetic subclades. Additionally, it was observed from the protein–protein networks that some MoRFs preferentially bind proteins that are involved in specialized functions such as ribosome biogenesis. The findings point to the importance of MoRFs in the flaviviral life cycle, with important consequences for disease progression and suppression of the host immune system. Potentially, they might have impacted the way flaviviruses evolved to infect varied hosts using multiple vectors.
{"title":"Intrinsic disorder in flaviviral capsid proteins and its role in pathogenesis","authors":"Anirudh Sundar, Pavithra Umashankar, Priyanka Sankar, Kavitha Ramasamy, Sangita Venkataraman","doi":"10.1007/s12038-024-00439-6","DOIUrl":"https://doi.org/10.1007/s12038-024-00439-6","url":null,"abstract":"<p>A high level of disorder in many viral proteins is a direct consequence of their small genomes, which makes interaction with multiple binding partners a necessity for infection and pathogenicity. A segment of the flaviviral capsid protein (C), also known as the molecular recognition feature (MoRF), undergoes a disorder-to-order transition upon binding to several protein partners. To understand their role in pathogenesis, MoRFs were identified and their occurrence across different flaviviral capsids were studied. Despite lack of sequence similarities, docking studies of Cs with the host proteins indicate conserved interactions involving MoRFs across members of phylogenetic subclades. Additionally, it was observed from the protein–protein networks that some MoRFs preferentially bind proteins that are involved in specialized functions such as ribosome biogenesis. The findings point to the importance of MoRFs in the flaviviral life cycle, with important consequences for disease progression and suppression of the host immune system. Potentially, they might have impacted the way flaviviruses evolved to infect varied hosts using multiple vectors.</p>","PeriodicalId":15171,"journal":{"name":"Journal of Biosciences","volume":"207 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141061386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-07DOI: 10.1007/s12038-023-00416-5
Devlina Sarkar, Sudip Kundu
Metabolism is the key cellular process of plant physiology. Understanding metabolism and its dynamical behavior under different conditions may help plant biotechnologists to design new cultivars with desired goals. Computational systems biochemistry and incorporation of different omics data unravelled active metabolism and its variations in plants. In this review, we mainly focus on the basics of flux balance analysis (FBA), elementary flux mode analysis (EFMA), and some advanced computational tools. We describe some important results that were obtained using these tools. Limitations and challenges are also discussed.
{"title":"Systems biology of plant metabolic interactions","authors":"Devlina Sarkar, Sudip Kundu","doi":"10.1007/s12038-023-00416-5","DOIUrl":"https://doi.org/10.1007/s12038-023-00416-5","url":null,"abstract":"<p>Metabolism is the key cellular process of plant physiology. Understanding metabolism and its dynamical behavior under different conditions may help plant biotechnologists to design new cultivars with desired goals. Computational systems biochemistry and incorporation of different omics data unravelled active metabolism and its variations in plants. In this review, we mainly focus on the basics of flux balance analysis (FBA), elementary flux mode analysis (EFMA), and some advanced computational tools. We describe some important results that were obtained using these tools. Limitations and challenges are also discussed.</p>","PeriodicalId":15171,"journal":{"name":"Journal of Biosciences","volume":"77 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140883385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-03DOI: 10.1007/s12038-024-00424-z
Josepheena Joseph, Sanjib Bal Samant, Kapuganti Jagadis Gupta
Mitochondrial alternative oxidase (AOX) is an important protein that can help in regulating reactive oxygen species and nitric oxide in plants. The role of AOX in regulation of nitro-oxidative stress in chickpea is not known. Using germinating chickpea as a model system, we investigated the role of AOX in nitro-oxidative stress tolerance. NaCl treatment was used as an inducer of nitro-oxidative stress. Treatment of germinating seeds with 150 mM NaCl led to reduced germination and radicle growth. The AOX inhibitor SHAM caused further inhibition of germination, and the AOX inducer pyruvate improved growth of the radicle under NaCl stress. Isolated mitochondria from germinated seeds under salt stress not only increased AOX capacity but also enhanced AOX protein expression. Measurement of superoxide levels revealed that AOX inhibition by SHAM can enhance superoxide levels, whereas the AOX inducer pyruvate reduced superoxide levels. Measurement of NO by gas phase chemiluminescence revealed enhanced NO generation in response to NaCl treatment. Upon NaCl treatment there was enhanced tyrosine nitration, which is an indicator of nitrosative stress response. Taken together, our results revealed that AOX induced under salinity stress in germinating chickpea can help in mitigating nitro-oxidative stress, thereby improving germination.
{"title":"Mitochondrial alternative oxidase pathway helps in nitro-oxidative stress tolerance in germinating chickpea","authors":"Josepheena Joseph, Sanjib Bal Samant, Kapuganti Jagadis Gupta","doi":"10.1007/s12038-024-00424-z","DOIUrl":"https://doi.org/10.1007/s12038-024-00424-z","url":null,"abstract":"<p>Mitochondrial alternative oxidase (AOX) is an important protein that can help in regulating reactive oxygen species and nitric oxide in plants. The role of AOX in regulation of nitro-oxidative stress in chickpea is not known. Using germinating chickpea as a model system, we investigated the role of AOX in nitro-oxidative stress tolerance. NaCl treatment was used as an inducer of nitro-oxidative stress. Treatment of germinating seeds with 150 mM NaCl led to reduced germination and radicle growth. The AOX inhibitor SHAM caused further inhibition of germination, and the AOX inducer pyruvate improved growth of the radicle under NaCl stress. Isolated mitochondria from germinated seeds under salt stress not only increased AOX capacity but also enhanced AOX protein expression. Measurement of superoxide levels revealed that AOX inhibition by SHAM can enhance superoxide levels, whereas the AOX inducer pyruvate reduced superoxide levels. Measurement of NO by gas phase chemiluminescence revealed enhanced NO generation in response to NaCl treatment. Upon NaCl treatment there was enhanced tyrosine nitration, which is an indicator of nitrosative stress response. Taken together, our results revealed that AOX induced under salinity stress in germinating chickpea can help in mitigating nitro-oxidative stress, thereby improving germination.</p>","PeriodicalId":15171,"journal":{"name":"Journal of Biosciences","volume":"26 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140883317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-03DOI: 10.1007/s12038-024-00419-w
T M Jeevan, Dayal Devadas, A K Jaiswar
Fish of the genus Hypselobarbus (Bleeker 1860) are widely dispersed in the rivers of the Western Ghats in India and endemic to southern Indian peninsular freshwaters. These are small- to medium-sized fishes of the family Cyprinidae. Although fish with deformed bodies or body parts are rare in natural waters, this article deals with four abnormal specimens of Hypselobarbus curmuca (Hamilton 1807) collected from the rivers Tunga, Bhadra, and Kali during 2022. The abnormalities observed in four different individuals are pughead deformity, pelvic fin deformity, pectoral fin deformity, and enlarged scales. The morphological comparison of normal individuals of Hypselobarbus curmuca (Hamilton 1807) with abnormal specimens revealed variation. Using the MT-COI gene, species identity was confirmed and the mean genetic divergence between the normal and abnormal specimens was estimated to be less than 1%.
{"title":"Multiple anomalies in wild-caught fish species Curmuca barb Hypselobarbus curmuca (Hamilton 1807) (Cyprinidae: Cypriniformes) from the Western Ghats of India","authors":"T M Jeevan, Dayal Devadas, A K Jaiswar","doi":"10.1007/s12038-024-00419-w","DOIUrl":"https://doi.org/10.1007/s12038-024-00419-w","url":null,"abstract":"<p>Fish of the genus <i>Hypselobarbus</i> (Bleeker 1860) are widely dispersed in the rivers of the Western Ghats in India and endemic to southern Indian peninsular freshwaters. These are small- to medium-sized fishes of the family Cyprinidae. Although fish with deformed bodies or body parts are rare in natural waters, this article deals with four abnormal specimens of <i>Hypselobarbus curmuca</i> (Hamilton 1807) collected from the rivers Tunga, Bhadra, and Kali during 2022. The abnormalities observed in four different individuals are pughead deformity, pelvic fin deformity, pectoral fin deformity, and enlarged scales. The morphological comparison of normal individuals of <i>Hypselobarbus curmuca</i> (Hamilton 1807) with abnormal specimens revealed variation. Using the <i>MT-COI</i> gene, species identity was confirmed and the mean genetic divergence between the normal and abnormal specimens was estimated to be less than 1%.</p>","PeriodicalId":15171,"journal":{"name":"Journal of Biosciences","volume":"42 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140883559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lung cancer (LC) is the leading cause of cancer-associated deaths worldwide, among which non-small-cell lung cancer (NSCLC) accounts for 80%. Stromal cell-derived factor-1 (SDF-1) inhibition results in a significant depletion of NSCLC metastasis. Additionally, SDF-1 is the only natural chemokine known to bind and activate the receptor CXCR4. Thus, we attempted to clarify the molecular mechanism of SDF-1 underlying NSCLC progression. Transwell migration, adhesion, and G-LISA assays were used to assess megakaryocytic chemotaxis in vitro and in vivo in terms of megakaryocytic migration, adherence, and RhoA activation, respectively. Western blotting was used to assess PI3K/Akt-associated protein abundances in MEG-01 cells and primary megakaryocytes under the indicated treatment. A hematology analyzer and flow cytometry were used to assess platelet counts in peripheral blood and newly formed platelet counts in Lewis LC mice under different treatments. Immunochemistry and flow cytometry were used to measure CD41+ megakaryocyte numbers in Lewis LC mouse tissue under different treatments. ELISA was used to measure serum TPO levels, and H&E staining was used to detect NSCLC metastasis. SDF-1 receptor knockdown suppressed megakaryocytic chemotaxis in Lewis LC mice. SDF-1 receptor inhibition suppressed megakaryocytic chemotaxis via the PI3K/Akt pathway. SDF-1 receptor knockdown suppressed CD41+ megakaryocyte numbers in vivo through PI3K/Akt signaling. SDF-1 receptor inhibition suppressed CD41+ megakaryocytes to hinder NSCLC metastasis. SDF-1 facilitates NSCLC metastasis by enhancing the chemoattraction of megakaryocytes via the PI3K/Akt signaling pathway, which may provide a potential new direction for seeking therapeutic plans for NSCLC.
{"title":"SDF-1 promotes metastasis of NSCLC by enhancing chemoattraction of megakaryocytes through the PI3K/Akt signaling pathway","authors":"Yiguo Ai, Changhong Wan, Zijian Chen, Yansheng Wang, Wen Zhao, Weizhe Huang","doi":"10.1007/s12038-023-00393-9","DOIUrl":"https://doi.org/10.1007/s12038-023-00393-9","url":null,"abstract":"<p>Lung cancer (LC) is the leading cause of cancer-associated deaths worldwide, among which non-small-cell lung cancer (NSCLC) accounts for 80%. Stromal cell-derived factor-1 (SDF-1) inhibition results in a significant depletion of NSCLC metastasis. Additionally, SDF-1 is the only natural chemokine known to bind and activate the receptor CXCR4. Thus, we attempted to clarify the molecular mechanism of SDF-1 underlying NSCLC progression. Transwell migration, adhesion, and G-LISA assays were used to assess megakaryocytic chemotaxis <i>in vitro</i> and <i>in vivo</i> in terms of megakaryocytic migration, adherence, and RhoA activation, respectively. Western blotting was used to assess PI3K/Akt-associated protein abundances in MEG-01 cells and primary megakaryocytes under the indicated treatment. A hematology analyzer and flow cytometry were used to assess platelet counts in peripheral blood and newly formed platelet counts in Lewis LC mice under different treatments. Immunochemistry and flow cytometry were used to measure CD41+ megakaryocyte numbers in Lewis LC mouse tissue under different treatments. ELISA was used to measure serum TPO levels, and H&E staining was used to detect NSCLC metastasis. SDF-1 receptor knockdown suppressed megakaryocytic chemotaxis in Lewis LC mice. SDF-1 receptor inhibition suppressed megakaryocytic chemotaxis via the PI3K/Akt pathway. SDF-1 receptor knockdown suppressed CD41+ megakaryocyte numbers <i>in vivo</i> through PI3K/Akt signaling. SDF-1 receptor inhibition suppressed CD41+ megakaryocytes to hinder NSCLC metastasis. SDF-1 facilitates NSCLC metastasis by enhancing the chemoattraction of megakaryocytes via the PI3K/Akt signaling pathway, which may provide a potential new direction for seeking therapeutic plans for NSCLC.</p>","PeriodicalId":15171,"journal":{"name":"Journal of Biosciences","volume":"91 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140883249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bacterial species referred to as magnetotactic bacteria (MTB) biomineralize iron oxides and iron sulphides inside the cell. Bacteria can arrange themselves passively along geomagnetic field lines with the aid of these iron components known as magnetosomes. In this study, magnetosome nanoparticles, which were obtained from the taxonomically identified MTB isolate Providencia sp. PRB-1, were characterized and their antibacterial activity was evaluated. An in vitro test showed that magnetosome nanoparticles significantly inhibited the growth of Staphylococcus sp., Pseudomonas aeruginosa, and Klebsiella pneumoniae. Magnetosomes were found to contain cuboidal iron crystals with an average size of 42 nm measured by particle size analysis and scanning electron microscope analysis. The energy dispersive X-ray examination revealed that Fe and O were present in the extracted magnetosomes. The extracted magnetosome nanoparticles displayed maximum absorption at 260 nm in the UV-Vis spectrum. The distinct magnetite peak in the Fourier transform infrared (FTIR) spectroscopy spectra was observed at 574.75 cm−1. More research is needed into the intriguing prospect of biogenic magnetosome nanoparticles for antibacterial applications.
{"title":"Discovery of antibacterial biogenic magnetosome nanoparticles from Providencia sp. MTBPRB-1: Screening, purification and characterization","authors":"Arumugam Rajalakshmi, Manickam Ramesh, Rengarajan Sai Thanga Abirami, Kuppuswamy Kavitha, Gopal Suresh, Vadivel Prabakaran, Rengarajulu Puvanakrishnan, Balasubramanian Ramesh","doi":"10.1007/s12038-024-00440-z","DOIUrl":"https://doi.org/10.1007/s12038-024-00440-z","url":null,"abstract":"<p>Bacterial species referred to as magnetotactic bacteria (MTB) biomineralize iron oxides and iron sulphides inside the cell. Bacteria can arrange themselves passively along geomagnetic field lines with the aid of these iron components known as magnetosomes. In this study, magnetosome nanoparticles, which were obtained from the taxonomically identified MTB isolate <i>Providencia</i> sp. PRB-1, were characterized and their antibacterial activity was evaluated. An <i>in vitro</i> test showed that magnetosome nanoparticles significantly inhibited the growth of <i>Staphylococcus</i> sp.<i>, Pseudomonas aeruginosa,</i> and <i>Klebsiella pneumoniae.</i> Magnetosomes were found to contain cuboidal iron crystals with an average size of 42 nm measured by particle size analysis and scanning electron microscope analysis. The energy dispersive X-ray examination revealed that Fe and O were present in the extracted magnetosomes. The extracted magnetosome nanoparticles displayed maximum absorption at 260 nm in the UV-Vis spectrum. The distinct magnetite peak in the Fourier transform infrared (FTIR) spectroscopy spectra was observed at 574.75 cm<sup>−1</sup>. More research is needed into the intriguing prospect of biogenic magnetosome nanoparticles for antibacterial applications.</p>","PeriodicalId":15171,"journal":{"name":"Journal of Biosciences","volume":"25 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140883384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-10DOI: 10.1007/s12038-024-00433-y
Munib Khanyari, Rodrigo Oyanedel, Abhirup Khara, Manvi Sharma, E J Milner-Gulland, Kulbhushansingh R Suryawanshi, Hannah Rose Vineer, Eric R Morgan
Disease cross-transmission between wild and domestic ungulates can negatively impact livelihoods and wildlife conservation. In Pin valley, migratory sheep and goats share pastures seasonally with the resident Asiatic ibex (Capra sibirica), leading to potential disease cross-transmission. Focussing on gastro-intestinal nematodes (GINs) as determinants of health in ungulates, we hypothesized that infection on pastures would increase over summer from contamination by migrating livestock. Consequently, interventions in livestock that are well-timed should reduce infection pressure for ibex. Using a parasite life-cycle model, that predicts infective larval availability, we investigated GIN transmission dynamics and evaluated potential interventions. Migratory livestock were predicted to contribute most infective larvae onto shared pastures due to higher density and parasite levels, driving infections in both livestock and ibex. The model predicted a c.30-day anti-parasitic intervention towards the end of the livestock’s time in Pin would be most effective at reducing GINs in both hosts. Albeit with the caveats of not being able to provide evidence of interspecific parasite transmission due to the inability to identify parasite species, this case demonstrates the usefulness of our predictive model for investigating parasite transmission in landscapes where domestic and wild ungulates share pastures. Additionally, it suggests management options for further investigation.
{"title":"Predicting and reducing potential parasite infection between migratory livestock and resident Asiatic ibex of Pin valley, India","authors":"Munib Khanyari, Rodrigo Oyanedel, Abhirup Khara, Manvi Sharma, E J Milner-Gulland, Kulbhushansingh R Suryawanshi, Hannah Rose Vineer, Eric R Morgan","doi":"10.1007/s12038-024-00433-y","DOIUrl":"https://doi.org/10.1007/s12038-024-00433-y","url":null,"abstract":"<p>Disease cross-transmission between wild and domestic ungulates can negatively impact livelihoods and wildlife conservation. In Pin valley, migratory sheep and goats share pastures seasonally with the resident Asiatic ibex (<i>Capra sibirica</i>), leading to potential disease cross-transmission. Focussing on gastro-intestinal nematodes (GINs) as determinants of health in ungulates, we hypothesized that infection on pastures would increase over summer from contamination by migrating livestock. Consequently, interventions in livestock that are well-timed should reduce infection pressure for ibex. Using a parasite life-cycle model, that predicts infective larval availability, we investigated GIN transmission dynamics and evaluated potential interventions. Migratory livestock were predicted to contribute most infective larvae onto shared pastures due to higher density and parasite levels, driving infections in both livestock and ibex. The model predicted a <i>c.</i>30-day anti-parasitic intervention towards the end of the livestock’s time in Pin would be most effective at reducing GINs in both hosts. Albeit with the caveats of not being able to provide evidence of interspecific parasite transmission due to the inability to identify parasite species, this case demonstrates the usefulness of our predictive model for investigating parasite transmission in landscapes where domestic and wild ungulates share pastures. Additionally, it suggests management options for further investigation.</p>","PeriodicalId":15171,"journal":{"name":"Journal of Biosciences","volume":"65 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-08DOI: 10.1007/s12038-023-00409-4
Jinchuan Zhao, Ping Yang, Li Lu, Tao Yi, Yunfeng Li, Wei Mao, Qin Zhou, Ke Lin
We investigated the relationship between neutrophil apoptosis and endoplasmic reticulum stress (ERS) in sepsis and its mechanism. A prospective cohort study was conducted by recruiting a total of 58 patients with sepsis. Peripheral blood samples were collected on 1, 3, 5 and 7 days after admission to the ICU. The expressions of endoplasmic reticulum specific glucose regulatory protein 78 (GRP78), C/EBP homologous protein (CHOP), apoptosis signal-regulating kinase 1 (ASK1), Bcl-2-like 11 (BIM), death receptor 5 (DR5), c-Jun N-terminal kinases (JNK) and p38 were detected by Western blot and PCR. The subcellular location of CHOP and GRP78 was observed by immunofluorescence analysis. Spearman correlation was used to analyze the correlation between the expression of chop protein and the apoptosis rate of peripheral blood neutrophils. Healthy volunteers in the same period were selected as the healthy control group. The expression of GRP78 protein was significantly elevated on the first day of ICU admission and showed a decreasing trend on the third, fifth and seventh day, but was significantly higher than the corresponding healthy control group. The expression of CHOP protein reached the highest level on the third day. The expression of chop protein in each group was significantly higher than that in the corresponding healthy control group. Immunofluorescence staining clearly showed that the CHOP protein accumulated in the nucleus, with an elevation in the intensity of GRP78. The neutrophil apoptosis rate of sepsis patients on the 1st, 3rd, 5th and 7th day of ICU stay was significantly higher than that of the healthy control group, with the highest apoptosis rate on the 3rd day, and then decreased gradually. CHOP protein expression level was significantly positively correlated with neutrophil apoptosis rate in sepsis patients. Endoplasmic reticulum stress occurs in neutrophils during the development of sepsis. GRP78 protein and CHOP protein may be involved in the pathological process of neutrophil apoptosis in sepsis.
{"title":"A study on expression of GRP78 and CHOP in neutrophil endoplasmic reticulum and their relationship with neutrophil apoptosis in the development of sepsis","authors":"Jinchuan Zhao, Ping Yang, Li Lu, Tao Yi, Yunfeng Li, Wei Mao, Qin Zhou, Ke Lin","doi":"10.1007/s12038-023-00409-4","DOIUrl":"https://doi.org/10.1007/s12038-023-00409-4","url":null,"abstract":"<p>We investigated the relationship between neutrophil apoptosis and endoplasmic reticulum stress (ERS) in sepsis and its mechanism. A prospective cohort study was conducted by recruiting a total of 58 patients with sepsis. Peripheral blood samples were collected on 1, 3, 5 and 7 days after admission to the ICU. The expressions of endoplasmic reticulum specific glucose regulatory protein 78 (GRP78), C/EBP homologous protein (CHOP), apoptosis signal-regulating kinase 1 (ASK1), Bcl-2-like 11 (BIM), death receptor 5 (DR5), c-Jun N-terminal kinases (JNK) and p38 were detected by Western blot and PCR. The subcellular location of CHOP and GRP78 was observed by immunofluorescence analysis. Spearman correlation was used to analyze the correlation between the expression of chop protein and the apoptosis rate of peripheral blood neutrophils. Healthy volunteers in the same period were selected as the healthy control group. The expression of GRP78 protein was significantly elevated on the first day of ICU admission and showed a decreasing trend on the third, fifth and seventh day, but was significantly higher than the corresponding healthy control group. The expression of CHOP protein reached the highest level on the third day. The expression of chop protein in each group was significantly higher than that in the corresponding healthy control group. Immunofluorescence staining clearly showed that the CHOP protein accumulated in the nucleus, with an elevation in the intensity of GRP78. The neutrophil apoptosis rate of sepsis patients on the 1st, 3rd, 5th and 7th day of ICU stay was significantly higher than that of the healthy control group, with the highest apoptosis rate on the 3rd day, and then decreased gradually. CHOP protein expression level was significantly positively correlated with neutrophil apoptosis rate in sepsis patients. Endoplasmic reticulum stress occurs in neutrophils during the development of sepsis. GRP78 protein and CHOP protein may be involved in the pathological process of neutrophil apoptosis in sepsis.</p>","PeriodicalId":15171,"journal":{"name":"Journal of Biosciences","volume":"15 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-29DOI: 10.1007/s12038-024-00436-9
Marek Vydra, Jozef Kováčik
Plant biology, mainly plant anatomy, is a less attractive area for students at high school and university, but not much research has been devoted to improve this field. We therefore researched into the teaching of root, stem and leaf anatomy combined with the preparation of native microscopic slides and histochemical reaction using two selected dyes (classic phloroglucinol test combined with textile dye ‘Duha green’ to visualize xylem and phloem, respectively). The use of reagents in teaching had a positive effect on students’ knowledge (control/experimental class) of root (+70%), stem (+70%) and leaf anatomy (+130%) as well as vascular and mechanical tissues (+170%), leading to an overall improvement of knowledge by ca. 100%. Students’ ability to identify individual tissues on microscopic slides increased and they also understood the functions of individual tissues after self-preparing and staining slides. However, we identified that some aspects were still problematic for students after the experimental education (e.g. identification of tissue providing secondary growth, significance of sclerenchyma and transpiration). We also attach correct answers for the anatomy test and worksheets used for practical exercises as motivation for wider use to improve students’ knowledge of plant anatomy.
{"title":"Visual plant anatomy: From science to education and vice versa","authors":"Marek Vydra, Jozef Kováčik","doi":"10.1007/s12038-024-00436-9","DOIUrl":"https://doi.org/10.1007/s12038-024-00436-9","url":null,"abstract":"<p>Plant biology, mainly plant anatomy, is a less attractive area for students at high school and university, but not much research has been devoted to improve this field. We therefore researched into the teaching of root, stem and leaf anatomy combined with the preparation of native microscopic slides and histochemical reaction using two selected dyes (classic phloroglucinol test combined with textile dye ‘Duha green’ to visualize xylem and phloem, respectively). The use of reagents in teaching had a positive effect on students’ knowledge (control/experimental class) of root (+70%), stem (+70%) and leaf anatomy (+130%) as well as vascular and mechanical tissues (+170%), leading to an overall improvement of knowledge by ca. 100%. Students’ ability to identify individual tissues on microscopic slides increased and they also understood the functions of individual tissues after self-preparing and staining slides. However, we identified that some aspects were still problematic for students after the experimental education (e.g. identification of tissue providing secondary growth, significance of sclerenchyma and transpiration). We also attach correct answers for the anatomy test and worksheets used for practical exercises as motivation for wider use to improve students’ knowledge of plant anatomy.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":15171,"journal":{"name":"Journal of Biosciences","volume":"28 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140322376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}