GNE myopathy is a rare genetic neuromuscular disease that is caused due to mutations in the GNE gene responsible for sialic acid biosynthesis. Foot drop is the most common initial symptom observed in GNE myopathy patients. There is slow progressive muscle weakness in the lower and upper extremities while the quadriceps muscles are usually spared. The exact pathophysiology of the disease is unknown. Besides sialic acid biosynthesis, recent studies suggest either direct or indirect involvement of GNE in other cellular functions such as protein aggregation, apoptosis, ER stress, cell migration, HSP70 chaperone activity, autophagy, muscle atrophy, and myogenesis. Both animal and in vitro cell-based model systems are generated to elucidate the mechanism of GNE myopathy and evaluate the efficacy of therapies. The many therapeutic avenues explored include supplementation with sialic acid derivatives or precursors and gene therapy. Recent studies suggest other therapeutic options such as modulators of HSP70 chaperone (BGP-15), cofilin activator (CGA), and ligands like IGF-1 that may help to rescue cellular defects due to GNE dysfunction. This review provides an overview of the pathophysiology associated with GNE function in the cell and promising therapeutic leads to be explored for future drug development.
{"title":"Understanding pathophysiology of GNE myopathy and current progress towards drug development","authors":"Fluencephila Mashangva, Shagun Singh, Jyoti Oswalia, Ranjana Arya","doi":"10.1007/s12038-023-00414-7","DOIUrl":"https://doi.org/10.1007/s12038-023-00414-7","url":null,"abstract":"<p>GNE myopathy is a rare genetic neuromuscular disease that is caused due to mutations in the <i>GNE</i> gene responsible for sialic acid biosynthesis. Foot drop is the most common initial symptom observed in GNE myopathy patients. There is slow progressive muscle weakness in the lower and upper extremities while the quadriceps muscles are usually spared. The exact pathophysiology of the disease is unknown. Besides sialic acid biosynthesis, recent studies suggest either direct or indirect involvement of GNE in other cellular functions such as protein aggregation, apoptosis, ER stress, cell migration, HSP70 chaperone activity, autophagy, muscle atrophy, and myogenesis. Both animal and <i>in vitro</i> cell-based model systems are generated to elucidate the mechanism of GNE myopathy and evaluate the efficacy of therapies. The many therapeutic avenues explored include supplementation with sialic acid derivatives or precursors and gene therapy. Recent studies suggest other therapeutic options such as modulators of HSP70 chaperone (BGP-15), cofilin activator (CGA), and ligands like IGF-1 that may help to rescue cellular defects due to GNE dysfunction. This review provides an overview of the pathophysiology associated with GNE function in the cell and promising therapeutic leads to be explored for future drug development.</p>","PeriodicalId":15171,"journal":{"name":"Journal of Biosciences","volume":"2 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139919656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-19DOI: 10.1007/s12038-023-00415-6
V Rajesh Iyer, P Praveen, Bhagyashree D Kaduskar, Shivranjani C Moharir, Rakesh K Mishra
The medical emergency of COVID-19 brought to the forefront mRNA vaccine technology where the mRNA vaccine candidates mRNA-1273 and BNT162b2 displayed superlative and more than 90% efficacy in protecting against SARS-CoV2 infections. Rare genetic disorders are rare individually, but collectively they are common and represent a medical emergency. In mRNA biotherapeutic technology, administration of a therapeutic protein-encoding mRNA-nanoparticle formulation allows for in vivo production of therapeutic proteins to functionally complement the protein functions lacking in rare disease patients. The platform nature of mRNA biotherapeutic technology propels rare disease drug discovery and, owing to the scalable and synthetic nature of mRNA manufacturing, empowers parallel product development using a universal production pipeline. This review focuses on the advantages of mRNA biotherapeutic technology over current therapies for rare diseases and provides summaries for the proof-of-concept preclinical studies performed to demonstrate the potential of mRNA biotherapeutic technology. Apart from preclinical studies, this review also spotlights the clinical trials currently being conducted for mRNA biotherapeutic candidates. Currently, seven mRNA biotherapeutic candidates have entered clinical trials for rare diseases, and of them, 3 candidates entered in the year 2023 alone. The rapid pace of clinical development promises a future where, as with mRNA vaccines for COVID-19, mRNA biotherapeutic technology would combat an emergency of rare genetic disorders.
{"title":"mRNA biotherapeutics landscape for rare genetic disorders","authors":"V Rajesh Iyer, P Praveen, Bhagyashree D Kaduskar, Shivranjani C Moharir, Rakesh K Mishra","doi":"10.1007/s12038-023-00415-6","DOIUrl":"https://doi.org/10.1007/s12038-023-00415-6","url":null,"abstract":"<p>The medical emergency of COVID-19 brought to the forefront mRNA vaccine technology where the mRNA vaccine candidates mRNA-1273 and BNT162b2 displayed superlative and more than 90% efficacy in protecting against SARS-CoV2 infections. Rare genetic disorders are rare individually, but collectively they are common and represent a medical emergency. In mRNA biotherapeutic technology, administration of a therapeutic protein-encoding mRNA-nanoparticle formulation allows for <i>in vivo</i> production of therapeutic proteins to functionally complement the protein functions lacking in rare disease patients. The platform nature of mRNA biotherapeutic technology propels rare disease drug discovery and, owing to the scalable and synthetic nature of mRNA manufacturing, empowers parallel product development using a universal production pipeline. This review focuses on the advantages of mRNA biotherapeutic technology over current therapies for rare diseases and provides summaries for the proof-of-concept preclinical studies performed to demonstrate the potential of mRNA biotherapeutic technology. Apart from preclinical studies, this review also spotlights the clinical trials currently being conducted for mRNA biotherapeutic candidates. Currently, seven mRNA biotherapeutic candidates have entered clinical trials for rare diseases, and of them, 3 candidates entered in the year 2023 alone. The rapid pace of clinical development promises a future where, as with mRNA vaccines for COVID-19, mRNA biotherapeutic technology would combat an emergency of rare genetic disorders.</p>","PeriodicalId":15171,"journal":{"name":"Journal of Biosciences","volume":"6 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139919673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rare diseases (RD) pose significant challenges for healthcare systems globally, necessitating the establishment of disease registries to facilitate research, diagnosis, and treatment. This article explores the development of a comprehensive national RD registry for India, informed by insights gained through interactions with experts from India and the Asia-Pacific Economic Cooperation (APEC) region. The social and technological challenges involved in creating and maintaining a national RDs registry are highlighted. Moreover, the roles and responsibilities of different stakeholders are discussed. Additionally, the RD-RAP (Registry and Analytics Platform) framework is also discussed, which is an analytics-based RD registry model with multi-stakeholder end-user utility. Although developed for the APEC region, the RD-RAP framework holds promise in the Indian context. This article discusses the key features of the RD-RAP framework that are relevant and applicable to the Indian setting. By leveraging these insights, this research aimed to provide valuable guidance for the development and operation of a comprehensive national RD registry in India.
{"title":"Lessons from the Rare Diseases Registry and Analytics Platform framework for development of a national rare diseases registry for India","authors":"Pragya Chaube, Avani Lankapalli, Mohua Chakraborty Choudhury","doi":"10.1007/s12038-024-00426-x","DOIUrl":"https://doi.org/10.1007/s12038-024-00426-x","url":null,"abstract":"<p>Rare diseases (RD) pose significant challenges for healthcare systems globally, necessitating the establishment of disease registries to facilitate research, diagnosis, and treatment. This article explores the development of a comprehensive national RD registry for India, informed by insights gained through interactions with experts from India and the Asia-Pacific Economic Cooperation (APEC) region. The social and technological challenges involved in creating and maintaining a national RDs registry are highlighted. Moreover, the roles and responsibilities of different stakeholders are discussed. Additionally, the RD-RAP (Registry and Analytics Platform) framework is also discussed, which is an analytics-based RD registry model with multi-stakeholder end-user utility. Although developed for the APEC region, the RD-RAP framework holds promise in the Indian context. This article discusses the key features of the RD-RAP framework that are relevant and applicable to the Indian setting. By leveraging these insights, this research aimed to provide valuable guidance for the development and operation of a comprehensive national RD registry in India.</p>","PeriodicalId":15171,"journal":{"name":"Journal of Biosciences","volume":"34 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139919530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rare genetic diseases are a group of life-threatening disorders affecting significant populations worldwide and posing substantial challenges to healthcare systems globally. India, with its vast population, is also no exception. The country harbors millions of individuals affected by these fatal disorders, which often result from mutations in a single gene. The emergence of CRISPR-Cas9 technology, however, has ushered in a new era of hope in genetic therapies. CRISPR-based treatments hold the potential to precisely edit and correct disease-causing mutations, offering tailored solutions for rare genetic diseases in India. This review explores the landscape of rare genetic diseases in India along with national policies and major challenges, and examines the implications of CRISPR-based therapies for potential cure. It delves into the potential of this technology in providing personalized and effective treatments. However, alongside these promising prospects, some ethical considerations, regulatory challenges, and concerns about the accessibility of CRISPR therapies are also discussed since addressing these issues is crucial for harnessing the full power of CRISPR in tackling rare genetic diseases in India. By taking a multidisciplinary approach that combines scientific advancements, ethical principles, and regulatory frameworks, these complexities can be reconciled, paving the way for innovative and impactful healthcare solutions for rare diseases in India.
{"title":"Rare genetic disorders in India: Current status, challenges, and CRISPR-based therapy","authors":"Pallabi Bhattacharyya, Kanikah Mehndiratta, Souvik Maiti, Debojyoti Chakraborty","doi":"10.1007/s12038-023-00413-8","DOIUrl":"https://doi.org/10.1007/s12038-023-00413-8","url":null,"abstract":"<p>Rare genetic diseases are a group of life-threatening disorders affecting significant populations worldwide and posing substantial challenges to healthcare systems globally. India, with its vast population, is also no exception. The country harbors millions of individuals affected by these fatal disorders, which often result from mutations in a single gene. The emergence of CRISPR-Cas9 technology, however, has ushered in a new era of hope in genetic therapies. CRISPR-based treatments hold the potential to precisely edit and correct disease-causing mutations, offering tailored solutions for rare genetic diseases in India. This review explores the landscape of rare genetic diseases in India along with national policies and major challenges, and examines the implications of CRISPR-based therapies for potential cure. It delves into the potential of this technology in providing personalized and effective treatments. However, alongside these promising prospects, some ethical considerations, regulatory challenges, and concerns about the accessibility of CRISPR therapies are also discussed since addressing these issues is crucial for harnessing the full power of CRISPR in tackling rare genetic diseases in India. By taking a multidisciplinary approach that combines scientific advancements, ethical principles, and regulatory frameworks, these complexities can be reconciled, paving the way for innovative and impactful healthcare solutions for rare diseases in India.</p>","PeriodicalId":15171,"journal":{"name":"Journal of Biosciences","volume":"128 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139919687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mycobacterium tuberculosis (M. tb) employs an extensive network of more than 90 toxin–antitoxin systems, and among them, VapC toxins are the most abundant. While most VapCs function as classical RNases with toxic effects, a significant number of them do not exhibit toxicity. However, these non-toxic VapCs may retain specific RNA binding abilities as seen in case of VapC16, leading to ribosome stalling at specific codons and reprofiling M. tb's proteome to aid in the bacterium's survival under different stressful conditions within the host. Here, we challenge the conventional classification of all VapC toxins as RNases and highlight the complexity of M. tb's strategies for survival and adaptation during infection.
{"title":"Are all VapC toxins of Mycobacterium tuberculosis endowed with enigmatic RNase activity?","authors":"Sheeba Zarin, Anwar Alam, Seyed Ehtesham Hasnain, Nasreen Zafar Ehtesham","doi":"10.1007/s12038-024-00420-3","DOIUrl":"https://doi.org/10.1007/s12038-024-00420-3","url":null,"abstract":"<p><i>Mycobacterium tuberculosis</i> (<i>M. tb</i>) employs an extensive network of more than 90 toxin–antitoxin systems, and among them, VapC toxins are the most abundant. While most VapCs function as classical RNases with toxic effects, a significant number of them do not exhibit toxicity. However, these non-toxic VapCs may retain specific RNA binding abilities as seen in case of VapC16, leading to ribosome stalling at specific codons and reprofiling <i>M. tb</i>'s proteome to aid in the bacterium's survival under different stressful conditions within the host. Here, we challenge the conventional classification of all VapC toxins as RNases and highlight the complexity of <i>M. tb</i>'s strategies for survival and adaptation during infection.</p>","PeriodicalId":15171,"journal":{"name":"Journal of Biosciences","volume":"6 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139919677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rare diseases, also known as orphan diseases, are diseases with low occurrence in the population. Developing orphan drugs is challenging because of inadequate financial and scientific resources and insufficient subjects to run clinical trials. With advances in genome sequencing technologies, emergence of cell and gene therapies, and the latest developments in regulatory pathways, some orphan drugs that have curative potential have been approved. In India, due to its large population and resource crunch, developing orphan drugs is phenomenally challenging. After adopting the Orphan Drug Act, the US-FDA has continuously made advances in regulatory pathways for orphan drugs. Particularly, n-of-one clinical trials have been successful in some cases. India has recently adopted policies that have impacted the long-neglected rare-disease ecosystem; however, there is no clear regulatory path for orphan drug development in India. We have proposed a multi-pronged approach involving close collaboration between the government, regulatory bodies, industries, and patient advocacy groups to boost orphan drug development in India. We believe that rapidly evolving technologies and business models can enable better and faster development of novel orphan drugs in India and other resource-constrained countries.
{"title":"Orphan drug development: Challenges, regulation, and success stories","authors":"Narendra Chirmule, Huije Feng, Esha Cyril, Vihang Vivek Ghalsasi, Mohua Chakraborty Choudhury","doi":"10.1007/s12038-024-00425-y","DOIUrl":"https://doi.org/10.1007/s12038-024-00425-y","url":null,"abstract":"<p>Rare diseases, also known as orphan diseases, are diseases with low occurrence in the population. Developing orphan drugs is challenging because of inadequate financial and scientific resources and insufficient subjects to run clinical trials. With advances in genome sequencing technologies, emergence of cell and gene therapies, and the latest developments in regulatory pathways, some orphan drugs that have curative potential have been approved. In India, due to its large population and resource crunch, developing orphan drugs is phenomenally challenging. After adopting the Orphan Drug Act, the US-FDA has continuously made advances in regulatory pathways for orphan drugs. Particularly, n-of-one clinical trials have been successful in some cases. India has recently adopted policies that have impacted the long-neglected rare-disease ecosystem; however, there is no clear regulatory path for orphan drug development in India. We have proposed a multi-pronged approach involving close collaboration between the government, regulatory bodies, industries, and patient advocacy groups to boost orphan drug development in India. We believe that rapidly evolving technologies and business models can enable better and faster development of novel orphan drugs in India and other resource-constrained countries.</p>","PeriodicalId":15171,"journal":{"name":"Journal of Biosciences","volume":"35 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139919675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-19DOI: 10.1007/s12038-024-00430-1
Anjana Kar, P Sundaravadivel, Ashwin Dalal
Rare genetic diseases are rare by themselves with prevalence of 1 in 25,000, but collectively they are a significant cause of morbidity and mortality. Till date, collectively there are more than 9,000 rare diseases documented, which impose a devastating impact on patients, their families, and the healthcare system, including enormous societal burden. Obtaining a conclusive diagnosis for a patient with a rare genetic disease can be long and gruelling. For some patients it takes months or years to receive a definite diagnosis, and around 50% of the patients remain undiagnosed even with expert clinical and advanced high-end laboratory investigations. Owing to the large population and practice of consanguinity the Indian population is a pool of indigenous variants and unreported phenotypes or diseases. A mission program on pediatric rare diseases is an unparalleled initiative to study unique clinical conditions via the use of latest state-of-art technologies and with the combination of a mulit-omics approach. Our initiative will not only provide diagnosis to patients with rare disease but also build a platform for translational research for rare disease screening, management, and treatment.
{"title":"Rare genetic diseases in India: Steps toward a nationwide mission program","authors":"Anjana Kar, P Sundaravadivel, Ashwin Dalal","doi":"10.1007/s12038-024-00430-1","DOIUrl":"https://doi.org/10.1007/s12038-024-00430-1","url":null,"abstract":"<p>Rare genetic diseases are rare by themselves with prevalence of 1 in 25,000, but collectively they are a significant cause of morbidity and mortality. Till date, collectively there are more than 9,000 rare diseases documented, which impose a devastating impact on patients, their families, and the healthcare system, including enormous societal burden. Obtaining a conclusive diagnosis for a patient with a rare genetic disease can be long and gruelling. For some patients it takes months or years to receive a definite diagnosis, and around 50% of the patients remain undiagnosed even with expert clinical and advanced high-end laboratory investigations. Owing to the large population and practice of consanguinity the Indian population is a pool of indigenous variants and unreported phenotypes or diseases. A mission program on pediatric rare diseases is an unparalleled initiative to study unique clinical conditions via the use of latest state-of-art technologies and with the combination of a mulit-omics approach. Our initiative will not only provide diagnosis to patients with rare disease but also build a platform for translational research for rare disease screening, management, and treatment.</p>","PeriodicalId":15171,"journal":{"name":"Journal of Biosciences","volume":"31 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139919674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-19DOI: 10.1007/s12038-024-00428-9
Ritoprova Sen, Cuckoo Teresa Jetto, Ravi Manjithaya
Mitochondrial DNA depletion syndromes (MDS) encompass a wide spectrum of rare genetic disorders caused by severe reduction in mitochondrial DNA (mtDNA), and exhibit heterogenous phenotypes classified as myopathic, encephalomyopathic, hepatocerebral, and neurogastrointestinal. Prognosis for such a spectrum of diseases is poor and is majorly dependent on symptomatic treatment and nutritional supplementation. Understanding the mechanistic aspect of mtDNA depletion can help bring forth a new era of medicine, moving beyond symptomatic treatment and focusing more on organelle-targeted therapies. In this review, we highlight some of the proposed mechanistic bases of mtDNA depletion and the latest therapeutic measures used to treat MDS.
线粒体 DNA 缺失综合征(MDS)是由线粒体 DNA(mtDNA)严重减少引起的一种广泛的罕见遗传性疾病,表现为肌病、脑肌病、肝脑病和神经胃肠病等多种表型。这类疾病的预后很差,主要依赖对症治疗和营养补充。了解mtDNA耗竭的机理有助于开创医学新纪元,超越对症治疗,更加关注细胞器靶向疗法。在这篇综述中,我们将重点介绍mtDNA耗竭的一些机理基础以及用于治疗MDS的最新疗法。
{"title":"Decoding the mitochondria without a code: mechanistic insights into mitochondrial DNA depletion syndromes","authors":"Ritoprova Sen, Cuckoo Teresa Jetto, Ravi Manjithaya","doi":"10.1007/s12038-024-00428-9","DOIUrl":"https://doi.org/10.1007/s12038-024-00428-9","url":null,"abstract":"<p>Mitochondrial DNA depletion syndromes (MDS) encompass a wide spectrum of rare genetic disorders caused by severe reduction in mitochondrial DNA (mtDNA), and exhibit heterogenous phenotypes classified as myopathic, encephalomyopathic, hepatocerebral, and neurogastrointestinal. Prognosis for such a spectrum of diseases is poor and is majorly dependent on symptomatic treatment and nutritional supplementation. Understanding the mechanistic aspect of mtDNA depletion can help bring forth a new era of medicine, moving beyond symptomatic treatment and focusing more on organelle-targeted therapies. In this review, we highlight some of the proposed mechanistic bases of mtDNA depletion and the latest therapeutic measures used to treat MDS.</p>","PeriodicalId":15171,"journal":{"name":"Journal of Biosciences","volume":"238 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139919617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-16DOI: 10.1007/s12038-023-00411-w
Divya Rao, Munia Ganguli
Rare muscular disorders (RMDs) are disorders that affect a small percentage of the population. The disorders which are attributed to genetic mutations often manifest in the form of progressive weakness and atrophy of skeletal and heart muscles. RMDs includes disorders such as Duchenne muscular dystrophy (DMD), GNE myopathy, spinal muscular atrophy (SMA), limb girdle muscular dystrophy, and so on. Due to the infrequent occurrence of these disorders, development of therapeutic approaches elicits less attention compared with other more prevalent diseases. However, in recent times, improved understanding of pathogenesis has led to greater advances in developing therapeutic options to treat such diseases. Exon skipping, gene augmentation, and gene editing have taken the spotlight in drug development for rare neuromuscular disorders. The recent innovation in targeting and repairing mutations with the advent of CRISPR technology has in fact opened new possibilities in the development of gene therapy approaches for these disorders. Although these treatments show satisfactory therapeutic effects, the susceptibility to degradation, instability, and toxicity limits their application. So, an appropriate delivery vector is required for the delivery of these cargoes. Viral vectors are considered potential delivery systems for gene therapy; however, the associated concurrent immunogenic response and other limitations have paved the way for the applications of other non-viral systems like lipids, polymers, cell-penetrating peptides (CPPs), and other organic and inorganic materials. This review will focus on non-viral vectors for the delivery of therapeutic cargoes in order to treat muscular dystrophies.
{"title":"Non-viral delivery of nucleic acid for treatment of rare diseases of the muscle","authors":"Divya Rao, Munia Ganguli","doi":"10.1007/s12038-023-00411-w","DOIUrl":"https://doi.org/10.1007/s12038-023-00411-w","url":null,"abstract":"<p>Rare muscular disorders (RMDs) are disorders that affect a small percentage of the population. The disorders which are attributed to genetic mutations often manifest in the form of progressive weakness and atrophy of skeletal and heart muscles. RMDs includes disorders such as Duchenne muscular dystrophy (DMD), GNE myopathy, spinal muscular atrophy (SMA), limb girdle muscular dystrophy, and so on. Due to the infrequent occurrence of these disorders, development of therapeutic approaches elicits less attention compared with other more prevalent diseases. However, in recent times, improved understanding of pathogenesis has led to greater advances in developing therapeutic options to treat such diseases. Exon skipping, gene augmentation, and gene editing have taken the spotlight in drug development for rare neuromuscular disorders. The recent innovation in targeting and repairing mutations with the advent of CRISPR technology has in fact opened new possibilities in the development of gene therapy approaches for these disorders. Although these treatments show satisfactory therapeutic effects, the susceptibility to degradation, instability, and toxicity limits their application. So, an appropriate delivery vector is required for the delivery of these cargoes. Viral vectors are considered potential delivery systems for gene therapy; however, the associated concurrent immunogenic response and other limitations have paved the way for the applications of other non-viral systems like lipids, polymers, cell-penetrating peptides (CPPs), and other organic and inorganic materials. This review will focus on non-viral vectors for the delivery of therapeutic cargoes in order to treat muscular dystrophies.</p>","PeriodicalId":15171,"journal":{"name":"Journal of Biosciences","volume":"4 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139756880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Diseases of the human nervous system are an important cause of morbidity and mortality worldwide. These disorders arise out of multiple aetiologies of which rare genetic mutations in genes vital to nervous system development and function are an important cause. The diagnosis of such rare disorders is challenging due to the close overlap of clinical presentations with other diseases that are not of genetic origin. Further, understanding the mechanisms by which mutations lead to altered brain structure and function is also challenging, given that the brain is not readily accessible for tissue biopsy. However, recent developments in modern technologies have opened up new opportunities for the analysis of rare genetic disorders of the brain. In this review, we discuss these developments and strategies by which they can be applied effectively for better understanding of rare diseases of the brain. This will lead to the development of new clinical strategies to manage brain disorders.
{"title":"Challenges and opportunities for discovering the biology of rare genetic diseases of the brain","authors":"Padinjat Raghu, Yojet Sharma, Aswathy Bhuvanendran Nair Suseela Devi, Harini Krishnan","doi":"10.1007/s12038-023-00408-5","DOIUrl":"https://doi.org/10.1007/s12038-023-00408-5","url":null,"abstract":"<p>Diseases of the human nervous system are an important cause of morbidity and mortality worldwide. These disorders arise out of multiple aetiologies of which rare genetic mutations in genes vital to nervous system development and function are an important cause. The diagnosis of such rare disorders is challenging due to the close overlap of clinical presentations with other diseases that are not of genetic origin. Further, understanding the mechanisms by which mutations lead to altered brain structure and function is also challenging, given that the brain is not readily accessible for tissue biopsy. However, recent developments in modern technologies have opened up new opportunities for the analysis of rare genetic disorders of the brain. In this review, we discuss these developments and strategies by which they can be applied effectively for better understanding of rare diseases of the brain. This will lead to the development of new clinical strategies to manage brain disorders.</p>","PeriodicalId":15171,"journal":{"name":"Journal of Biosciences","volume":"203 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139756930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}