Pub Date : 2024-09-13DOI: 10.1016/j.jocmr.2024.101098
Jie Xiang, Rajiv Ramasawmy, Felicia Seemann, Dana C Peters, Adrienne E Campbell-Washburn
Background: There is a growing interest in the development and application of mid-field (0.55T) for cardiac MR, including flow imaging. However, aortic flow imaging at 0.55T has limited SNR, especially in diastolic phases where there is reduced inflow-driven contrast for spoiled gradient echo (GRE) sequences. The low SNR can limit the accuracy of flow and regurgitant fraction measurements.
Methods: In this work, we developed a 2D phase contrast (PC) acquisition with balanced steady state free precession (bSSFP), termed PC-SSFP, for flow imaging and quantification at 0.55T. This PC-SSFP approach precisely nulls the 0th and 1st gradient moments at both the TE and TR, except for the flow-encoded acquisition, for which the 1st gradient moment at the TE is determined by the VENC. Our proposed sequence was tested in both phantoms and in healthy volunteers (n=11), to measure aortic flow. In volunteers, both a breath-hold and a free-breathing protocol, with averaging to increase SNR, were obtained. Total flow, peak flow, cardiac output and SNR were compared for PC-SSFP and PC-GRE. Stroke volumes were also measured and compared to planimetry method.
Results: In a phantom, SNR was significantly higher using PC-SSFP compared to PC-GRE (25.5±9.6 vs 8.2±2.9), and the velocity measurements agreed well (R = 1.00). In healthy subjects, for both breath-hold (bh) and free-breathing (fb) protocols, PC-SSFP measured accurate peak flow (fb: R = 0.99, bh: R = 0.96) and cardiac output (fb: R = 0.98, bh: R = 0.88), compared to PC-GRE, accurate stroke volume (fb: R = 0.94, bh: R = 0.97), compared to planimetry measurement, and offered constant high SNR (fb: 28±9 vs 18±6, bh: 24±7 vs 11±3) over the cardiac cycle in 11 subjects.
Conclusion: PC-SSFP is a more reliable evaluation tool for aortic flow quantification, when compared to the conventional PC-GRE method at 0.55T, providing higher SNR, and thus potentially more accurate flows.
背景:人们对中场(0.55T)心脏磁共振成像(包括血流成像)的开发和应用越来越感兴趣。然而,0.55T 下的主动脉血流成像信噪比有限,尤其是在舒张期,因为在舒张期,破坏梯度回波(GRE)序列的流入驱动对比度降低。低信噪比会限制血流和反流分数测量的准确性:在这项工作中,我们开发了一种二维相位对比(PC)采集与平衡稳态自由前冲(bSSFP),称为 PC-SSFP,用于在 0.55T 下进行血流成像和量化。这种PC-SSFP方法可精确地使TE和TR上的第0和第1梯度矩为零,但血流编码采集除外,其TE上的第1梯度矩由VENC决定。我们提出的序列在模型和健康志愿者(n=11)中进行了测试,以测量主动脉血流。在志愿者中,我们采用了屏气和自由呼吸两种方案,并进行了平均以提高信噪比。对 PC-SSFP 和 PC-GRE 的总流量、峰值流量、心输出量和信噪比进行了比较。还测量了卒中量,并与平面测量法进行了比较:结果:在模型中,PC-SSFP 的信噪比明显高于 PC-GRE(25.5±9.6 vs 8.2±2.9),速度测量结果一致(R = 1.00)。在健康受试者中,无论是屏气(bh)还是自由呼吸(fb)方案,PC-SSFP 都能准确测量峰值流量(fb:R = 0.99,bh:R = 0.96)和心输出量(fb:R = 0.98,bh:R = 0.与 PC-GRE 相比,PC-SSFP 更准确(fb: R = 0.94,bh: R = 0.97);与平扫测量相比,PC-SSFP 更准确(fb: R = 0.99,bh: R = 0.96);与 PC-GRE 相比,PC-SSFP 在 11 名受试者的整个心动周期中提供恒定的高信噪比(fb: 28±9 vs 18±6, bh: 24±7 vs 11±3):PC-SSFP在0.55T下与传统的PC-GRE方法相比,是一种更可靠的主动脉血流量化评估工具,能提供更高的信噪比,从而可能获得更准确的血流。
{"title":"bSSFP Phase Contrast (PC-SSFP) at 0.55T Applied to Aortic Flow.","authors":"Jie Xiang, Rajiv Ramasawmy, Felicia Seemann, Dana C Peters, Adrienne E Campbell-Washburn","doi":"10.1016/j.jocmr.2024.101098","DOIUrl":"https://doi.org/10.1016/j.jocmr.2024.101098","url":null,"abstract":"<p><strong>Background: </strong>There is a growing interest in the development and application of mid-field (0.55T) for cardiac MR, including flow imaging. However, aortic flow imaging at 0.55T has limited SNR, especially in diastolic phases where there is reduced inflow-driven contrast for spoiled gradient echo (GRE) sequences. The low SNR can limit the accuracy of flow and regurgitant fraction measurements.</p><p><strong>Methods: </strong>In this work, we developed a 2D phase contrast (PC) acquisition with balanced steady state free precession (bSSFP), termed PC-SSFP, for flow imaging and quantification at 0.55T. This PC-SSFP approach precisely nulls the 0<sup>th</sup> and 1<sup>st</sup> gradient moments at both the TE and TR, except for the flow-encoded acquisition, for which the 1<sup>st</sup> gradient moment at the TE is determined by the VENC. Our proposed sequence was tested in both phantoms and in healthy volunteers (n=11), to measure aortic flow. In volunteers, both a breath-hold and a free-breathing protocol, with averaging to increase SNR, were obtained. Total flow, peak flow, cardiac output and SNR were compared for PC-SSFP and PC-GRE. Stroke volumes were also measured and compared to planimetry method.</p><p><strong>Results: </strong>In a phantom, SNR was significantly higher using PC-SSFP compared to PC-GRE (25.5±9.6 vs 8.2±2.9), and the velocity measurements agreed well (R = 1.00). In healthy subjects, for both breath-hold (bh) and free-breathing (fb) protocols, PC-SSFP measured accurate peak flow (fb: R = 0.99, bh: R = 0.96) and cardiac output (fb: R = 0.98, bh: R = 0.88), compared to PC-GRE, accurate stroke volume (fb: R = 0.94, bh: R = 0.97), compared to planimetry measurement, and offered constant high SNR (fb: 28±9 vs 18±6, bh: 24±7 vs 11±3) over the cardiac cycle in 11 subjects.</p><p><strong>Conclusion: </strong>PC-SSFP is a more reliable evaluation tool for aortic flow quantification, when compared to the conventional PC-GRE method at 0.55T, providing higher SNR, and thus potentially more accurate flows.</p>","PeriodicalId":15221,"journal":{"name":"Journal of Cardiovascular Magnetic Resonance","volume":" ","pages":"101098"},"PeriodicalIF":4.2,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142288034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-11DOI: 10.1016/j.jocmr.2024.101092
Sofie Tilborghs,Tiffany Liang,Stavroula Raptis,Ayako Ishikita,Werner Budts,Tom Dresselaers,Jan Bogaert,Frederik Maes,Rachel M Wald,Alexander Van De Bruaene
BACKGROUNDDeep learning is the state-of-the-art approach for automated segmentation of the left ventricle (LV) and right ventricle (RV) in cardiac magnetic resonance (CMR) images. However, these models have been mostly trained and validated using CMR datasets of structurally normal hearts or cases with acquired cardiac disease, and are therefore not well-suited to handle cases with congenital cardiac disease such as tetralogy of Fallot (TOF). We aimed to develop and validate a dedicated model with improved performance for LV and RV cavity and myocardium quantification in patients with repaired TOF.METHODSWe trained a 3D convolutional neural network (CNN) with 5-fold cross-validation using manually delineated end-diastolic (ED) and end-systolic (ES) short-axis image stacks obtained from either a public dataset containing patients with no or acquired cardiac pathology (n=100), an institutional dataset of TOF patients (n=96), or both datasets mixed. Our method allows for missing labels in the training images to accommodate for different ED and ES phases for LV and RV as is commonly the case in TOF. The best performing model was applied to all frames of a separate test set of TOF cases (n=36) and ED and ES phases were automatically determined for LV and RV separately. The model was evaluated against the performance of a commercial software (suiteHEART®, NeoSoft, Pewaukee, Wisconsin, US).RESULTSTraining on the mixture of both datasets yielded the best agreement with the manual ground truth for the TOF cases, achieving a median DICE similarity coefficient of (93.8%, 89.8%) for LV cavity and of (92.9%, 90.9%) for RV cavity at (ED, ES) respectively, and of 80.9% and 61.8% for LV and RV myocardium at ED. The offset in automated ED and ES frame selection was 0.56 and 0.89 frames on average for LV and RV respectively. No statistically significant differences were found between our model and the commercial software for LV quantification (two-sided Wilcoxon signed rank test, p<5%), while RV quantification was significantly improved with our model achieving a mean absolute error of 12ml for RV cavity compared to 36ml for the commercial software.CONCLUSIONWe developed and validated a fully automatic segmentation and quantification approach for LV and RV, including RV mass, in patients with repaired TOF. Compared to a commercial software, our approach is superior for RV quantification indicating its potential in clinical practice.
背景深度学习是在心脏磁共振(CMR)图像中自动分割左心室(LV)和右心室(RV)的最先进方法。然而,这些模型大多是使用结构正常的心脏或后天性心脏病病例的 CMR 数据集进行训练和验证的,因此不太适合处理法洛氏四联症(TOF)等先天性心脏病病例。我们的目的是开发并验证一种专用模型,该模型在对修复过的 TOF 患者进行左心室和左心室腔及心肌定量分析时性能更佳。方法:我们使用手动绘制的舒张末期(ED)和收缩末期(ES)短轴图像堆栈,对三维卷积神经网络(CNN)进行了 5 次交叉验证训练,这些图像堆栈分别取自包含无或获得性心脏病理学患者的公共数据集(n=100)、TOF 患者的机构数据集(n=96)或两个数据集的混合数据集。我们的方法允许训练图像中的缺失标签,以适应左心室和左心室不同的 ED 和 ES 阶段,这在 TOF 中很常见。将性能最好的模型应用于 TOF 病例(n=36)单独测试集的所有帧,并分别自动确定左心室和右心室的 ED 和 ES 阶段。结果在两个数据集的混合物上进行训练后,TOF 病例与人工基本真相的一致性最佳,LV 和 RV 的中位 DICE 相似系数分别为(93.8%、89.8%)。8%,89.8%),在(ED,ES)的左心室腔和左心室腔的相似系数中位数分别为(92.9%,90.9%),在ED的左心室和左心室心肌的相似系数中位数分别为80.9%和61.8%。对左心室和右心室而言,ED 和 ES 自动帧选择的偏移量平均分别为 0.56 帧和 0.89 帧。在 LV 定量方面,我们的模型与商业软件之间没有发现明显的统计学差异(双侧 Wilcoxon 符号秩检验,P<5%),而 RV 定量则有明显改善,我们的模型对 RV 腔的平均绝对误差为 12 毫升,而商业软件为 36 毫升。与商业软件相比,我们的方法在 RV 定量方面更胜一筹,显示了其在临床实践中的潜力。
{"title":"Automated biventricular quantification in patients with repaired tetralogy of Fallot using a 3D deep learning segmentation model.","authors":"Sofie Tilborghs,Tiffany Liang,Stavroula Raptis,Ayako Ishikita,Werner Budts,Tom Dresselaers,Jan Bogaert,Frederik Maes,Rachel M Wald,Alexander Van De Bruaene","doi":"10.1016/j.jocmr.2024.101092","DOIUrl":"https://doi.org/10.1016/j.jocmr.2024.101092","url":null,"abstract":"BACKGROUNDDeep learning is the state-of-the-art approach for automated segmentation of the left ventricle (LV) and right ventricle (RV) in cardiac magnetic resonance (CMR) images. However, these models have been mostly trained and validated using CMR datasets of structurally normal hearts or cases with acquired cardiac disease, and are therefore not well-suited to handle cases with congenital cardiac disease such as tetralogy of Fallot (TOF). We aimed to develop and validate a dedicated model with improved performance for LV and RV cavity and myocardium quantification in patients with repaired TOF.METHODSWe trained a 3D convolutional neural network (CNN) with 5-fold cross-validation using manually delineated end-diastolic (ED) and end-systolic (ES) short-axis image stacks obtained from either a public dataset containing patients with no or acquired cardiac pathology (n=100), an institutional dataset of TOF patients (n=96), or both datasets mixed. Our method allows for missing labels in the training images to accommodate for different ED and ES phases for LV and RV as is commonly the case in TOF. The best performing model was applied to all frames of a separate test set of TOF cases (n=36) and ED and ES phases were automatically determined for LV and RV separately. The model was evaluated against the performance of a commercial software (suiteHEART®, NeoSoft, Pewaukee, Wisconsin, US).RESULTSTraining on the mixture of both datasets yielded the best agreement with the manual ground truth for the TOF cases, achieving a median DICE similarity coefficient of (93.8%, 89.8%) for LV cavity and of (92.9%, 90.9%) for RV cavity at (ED, ES) respectively, and of 80.9% and 61.8% for LV and RV myocardium at ED. The offset in automated ED and ES frame selection was 0.56 and 0.89 frames on average for LV and RV respectively. No statistically significant differences were found between our model and the commercial software for LV quantification (two-sided Wilcoxon signed rank test, p<5%), while RV quantification was significantly improved with our model achieving a mean absolute error of 12ml for RV cavity compared to 36ml for the commercial software.CONCLUSIONWe developed and validated a fully automatic segmentation and quantification approach for LV and RV, including RV mass, in patients with repaired TOF. Compared to a commercial software, our approach is superior for RV quantification indicating its potential in clinical practice.","PeriodicalId":15221,"journal":{"name":"Journal of Cardiovascular Magnetic Resonance","volume":"64 1","pages":"101092"},"PeriodicalIF":6.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-11DOI: 10.1016/j.jocmr.2024.101091
Hannah M Jacobs,Jonathan H Soslow,Matthew D Cornicelli,Shae A Merves,Ruchira Garg,Mehul D Patel,Arpit Agarwal,Nilanjana Misra,Michael P DiLorenzo,M Jay Campbell,Jeremy Steele,Jennifer Co-Vu,Joshua D Robinson,Simon Lee,Jason N Johnson
BACKGROUNDCardiovascular magnetic resonance (CMR) is used to diagnose myocarditis in adults and children based on the original Lake Louise Criteria (LLC) and more recently the revised LLC. The major change included in the revised LLC was the incorporation of parametric mapping, which significantly increases the sensitivity and specificity of diagnosis. Subsequently, scientific statements have recommended the use of parametric mapping in the diagnosis of myocarditis in children. However, there are some challenges to parametric mapping that are unique to the pediatric population. Our goal is to characterize clinical CMR and parametric mapping practice patterns for diagnosis of myocarditis in pediatric centers.METHODSThe Cardiovascular Magnetic Resonance Evaluation in Return to Athletes for Myocarditis in COVID-19 and Immunization Consortium created a REDCap survey to evaluate clinical practice patterns for diagnosis of myocarditis in pediatrics. This survey was distributed to the Society for Cardiovascular Magnetic Resonance community.RESULTS59 responses from 51 centers were received, with only one response from each center being utilized. Only 35% of centers (37% of North America, 31% of international) reported using CMR routinely in all patients with a suspicion for myocarditis. Diagnostic uncertainty was noted as the most important reason for CMR, while cost was noted as the least important consideration. The majority of centers reported using the revised LLC (37/51, 72%) compared to original LLC (7/51, 14%) or a hybrid criteria (6/51, 12%). When looking at the use of parametric mapping, only 5/47 (11%) for T1 mapping and 11/49 (22%) for T2 mapping reported having scanner-specific pediatric normative data.CONCLUSIONRoutine CMR imaging for diagnosis of myocarditis in pediatrics is infrequently performed at surveyed centers despite the focus on a group of non-invasive cardiac imagers. While the majority reported using parametric mapping, few centers reporting having pediatric scanner-specific normative data. This highlights an important gap in the utilization of CMR that may aid in the diagnosis of myocardial disease.
{"title":"Practice Patterns of Cardiovascular Magnetic Resonance Use in the Diagnosis of Pediatric Myocarditis: A Survey-Based Study.","authors":"Hannah M Jacobs,Jonathan H Soslow,Matthew D Cornicelli,Shae A Merves,Ruchira Garg,Mehul D Patel,Arpit Agarwal,Nilanjana Misra,Michael P DiLorenzo,M Jay Campbell,Jeremy Steele,Jennifer Co-Vu,Joshua D Robinson,Simon Lee,Jason N Johnson","doi":"10.1016/j.jocmr.2024.101091","DOIUrl":"https://doi.org/10.1016/j.jocmr.2024.101091","url":null,"abstract":"BACKGROUNDCardiovascular magnetic resonance (CMR) is used to diagnose myocarditis in adults and children based on the original Lake Louise Criteria (LLC) and more recently the revised LLC. The major change included in the revised LLC was the incorporation of parametric mapping, which significantly increases the sensitivity and specificity of diagnosis. Subsequently, scientific statements have recommended the use of parametric mapping in the diagnosis of myocarditis in children. However, there are some challenges to parametric mapping that are unique to the pediatric population. Our goal is to characterize clinical CMR and parametric mapping practice patterns for diagnosis of myocarditis in pediatric centers.METHODSThe Cardiovascular Magnetic Resonance Evaluation in Return to Athletes for Myocarditis in COVID-19 and Immunization Consortium created a REDCap survey to evaluate clinical practice patterns for diagnosis of myocarditis in pediatrics. This survey was distributed to the Society for Cardiovascular Magnetic Resonance community.RESULTS59 responses from 51 centers were received, with only one response from each center being utilized. Only 35% of centers (37% of North America, 31% of international) reported using CMR routinely in all patients with a suspicion for myocarditis. Diagnostic uncertainty was noted as the most important reason for CMR, while cost was noted as the least important consideration. The majority of centers reported using the revised LLC (37/51, 72%) compared to original LLC (7/51, 14%) or a hybrid criteria (6/51, 12%). When looking at the use of parametric mapping, only 5/47 (11%) for T1 mapping and 11/49 (22%) for T2 mapping reported having scanner-specific pediatric normative data.CONCLUSIONRoutine CMR imaging for diagnosis of myocarditis in pediatrics is infrequently performed at surveyed centers despite the focus on a group of non-invasive cardiac imagers. While the majority reported using parametric mapping, few centers reporting having pediatric scanner-specific normative data. This highlights an important gap in the utilization of CMR that may aid in the diagnosis of myocardial disease.","PeriodicalId":15221,"journal":{"name":"Journal of Cardiovascular Magnetic Resonance","volume":"93 1","pages":"101091"},"PeriodicalIF":6.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BACKGROUNDHyperpolarized [1-13C]pyruvate magnetic resonance imaging (HP MRI) visualizes key steps in myocardial metabolism. The present study aimed to examine patients with heart (HF) using HP MRI.METHODSA cross-sectional study of patients with HF and healthy controls using HP MRI. Metabolic imaging was obtained using a cardiac-gated spectral-spatial excitation with spiral read-out acquisition. The metabolite signal was analyzed for lactate, bicarbonate, and the alanine signal. Metabolite signal was normalized to the total carbon signal (TC). At the one-year follow-up, echocardiography was performed in all patients and HP MRI in two patients.RESULTSWe included six patients with ischemic heart disease (IHD), six with dilated cardiomyopathy and six healthy controls. In patients, left ventricular ejection fraction (LVEF) correlated with lactate/bicarbonate (r = -0.6, p = 0.03) and lactate/TC (r = -0.7, p = 0.01). In patients with LVEF < 30%, lactate/TC was increased (p = 0.01) and bicarbonate/TC reduced (p = 0.03). Circumferential strain correlated with metabolite ratios: lactate/bicarbonate, r = 0.87 (p = 0.0002); lactate/TC, r = 0.85 (p = 0.0005); bicarbonate/TC, r = -0.82 (p = 0.001). In patients with IHD, a strong correlation was found between baseline metabolite ratios and the change in LVEF at follow-up: lactate/bicarbonate (p = 0.001); lactate/TC (p = 0.011); and bicarbonate/TC (p = 0.012).CONCLUSIONSThis study highlighted the ability of HP MRI to detect changes in metabolism in HF. HP MRI has potential for metabolic phenotyping of patients with HF and for predicting treatment response.TRIAL REGISTRATIONEUDRACT, 2018-003533-15. Registered 4 December 2018, https://www.clinicaltrialsregister.eu/ctr-search/search?query=2018-003533-15.
{"title":"Hyperpolarized [1-13C]pyruvate Magnetic Resonance Imaging Identifies Metabolic Phenotypes in Patients with Heart Failure.","authors":"Steen Hylgaard Joergensen,Esben Soevsoe S Hansen,Nikolaj Bøgh,Lotte Bonde Bertelsen,Rasmus Stilling Tougaard,Peter Bisgaard Staehr,Christoffer Laustsen,Henrik Wiggers","doi":"10.1016/j.jocmr.2024.101095","DOIUrl":"https://doi.org/10.1016/j.jocmr.2024.101095","url":null,"abstract":"BACKGROUNDHyperpolarized [1-13C]pyruvate magnetic resonance imaging (HP MRI) visualizes key steps in myocardial metabolism. The present study aimed to examine patients with heart (HF) using HP MRI.METHODSA cross-sectional study of patients with HF and healthy controls using HP MRI. Metabolic imaging was obtained using a cardiac-gated spectral-spatial excitation with spiral read-out acquisition. The metabolite signal was analyzed for lactate, bicarbonate, and the alanine signal. Metabolite signal was normalized to the total carbon signal (TC). At the one-year follow-up, echocardiography was performed in all patients and HP MRI in two patients.RESULTSWe included six patients with ischemic heart disease (IHD), six with dilated cardiomyopathy and six healthy controls. In patients, left ventricular ejection fraction (LVEF) correlated with lactate/bicarbonate (r = -0.6, p = 0.03) and lactate/TC (r = -0.7, p = 0.01). In patients with LVEF < 30%, lactate/TC was increased (p = 0.01) and bicarbonate/TC reduced (p = 0.03). Circumferential strain correlated with metabolite ratios: lactate/bicarbonate, r = 0.87 (p = 0.0002); lactate/TC, r = 0.85 (p = 0.0005); bicarbonate/TC, r = -0.82 (p = 0.001). In patients with IHD, a strong correlation was found between baseline metabolite ratios and the change in LVEF at follow-up: lactate/bicarbonate (p = 0.001); lactate/TC (p = 0.011); and bicarbonate/TC (p = 0.012).CONCLUSIONSThis study highlighted the ability of HP MRI to detect changes in metabolism in HF. HP MRI has potential for metabolic phenotyping of patients with HF and for predicting treatment response.TRIAL REGISTRATIONEUDRACT, 2018-003533-15. Registered 4 December 2018, https://www.clinicaltrialsregister.eu/ctr-search/search?query=2018-003533-15.","PeriodicalId":15221,"journal":{"name":"Journal of Cardiovascular Magnetic Resonance","volume":"12 1","pages":"101095"},"PeriodicalIF":6.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Myocardial fibrosis is a common feature in various cardiac diseases. It causes adverse cardiac remodeling and is associated with poor clinical outcomes. Late gadolinium enhancement (LGE) and extracellular volume fraction (ECV) are the standard magnetic resonance imaging techniques for detecting focal and diffuse myocardial fibrosis. However, these contrast-enhanced techniques require the administration of gadolinium contrast agents, which is not applicable to patients with gadolinium contraindications. To eliminate the need for contrast agents, we developed and applied an endogenous free-breathing T1ρ dispersion imaging technique (FB-MultiMap) for diagnosing diffuse myocardial fibrosis in a cohort with suspected cardiomyopathies.
Methods: The proposed FB-MultiMap technique, enabling T2, T1ρ, and their difference (myocardial fibrosis index [mFI]) quantification in a single scan was developed in phantoms and 15 healthy subjects. In the clinical study, 55 patients with suspected cardiomyopathies were imaged using FB-MultiMap, conventional native T1 mapping, LGE, and ECV imaging. The accuracy of the endogenous parameters for predicting increased ECV was evaluated using receiver operating characteristic curve analysis. In addition, the correlation of native T1, T1ρ, and mFI with ECV was, respectively, assessed using Pearson correlation coefficients.
Results: FB-MultiMap showed a good agreement with conventional separate breath-hold mapping techniques in phantoms and healthy subjects. Considering all the patients, T1ρ was more accurate than mFI and native T1 for predicting increased ECV, with area under the curve (AUC) values of 0.91, 0.79, and 0.75, respectively, and showed a stronger correlation with ECV (correlation coefficient r: 0.72 vs 0.52 vs 0.40). In the subset of 47 patients with normal T2 values, the diagnostic performance of mFI was significantly strengthened (AUC = 0.90, r = 0.83), outperforming T1ρ and native T1.
Conclusion: The proposed free-breathing T1ρ dispersion imaging technique enabling simultaneous quantification of T2, T1ρ, and mFI in a single scan has shown great potential for diagnosing diffuse myocardial fibrosis in patients with complex cardiomyopathies without contrast agents.
{"title":"Free-breathing non-contrast T1ρ dispersion magnetic resonance imaging of myocardial interstitial fibrosis in comparison with extracellular volume fraction.","authors":"Qinfang Miao, Sha Hua, Yiwen Gong, Zhenfeng Lyu, Pengfang Qian, Chun Liu, Wei Jin, Peng Hu, Haikun Qi","doi":"10.1016/j.jocmr.2024.101093","DOIUrl":"10.1016/j.jocmr.2024.101093","url":null,"abstract":"<p><strong>Background: </strong>Myocardial fibrosis is a common feature in various cardiac diseases. It causes adverse cardiac remodeling and is associated with poor clinical outcomes. Late gadolinium enhancement (LGE) and extracellular volume fraction (ECV) are the standard magnetic resonance imaging techniques for detecting focal and diffuse myocardial fibrosis. However, these contrast-enhanced techniques require the administration of gadolinium contrast agents, which is not applicable to patients with gadolinium contraindications. To eliminate the need for contrast agents, we developed and applied an endogenous free-breathing T1ρ dispersion imaging technique (FB-MultiMap) for diagnosing diffuse myocardial fibrosis in a cohort with suspected cardiomyopathies.</p><p><strong>Methods: </strong>The proposed FB-MultiMap technique, enabling T2, T1ρ, and their difference (myocardial fibrosis index [mFI]) quantification in a single scan was developed in phantoms and 15 healthy subjects. In the clinical study, 55 patients with suspected cardiomyopathies were imaged using FB-MultiMap, conventional native T1 mapping, LGE, and ECV imaging. The accuracy of the endogenous parameters for predicting increased ECV was evaluated using receiver operating characteristic curve analysis. In addition, the correlation of native T1, T1ρ, and mFI with ECV was, respectively, assessed using Pearson correlation coefficients.</p><p><strong>Results: </strong>FB-MultiMap showed a good agreement with conventional separate breath-hold mapping techniques in phantoms and healthy subjects. Considering all the patients, T1ρ was more accurate than mFI and native T1 for predicting increased ECV, with area under the curve (AUC) values of 0.91, 0.79, and 0.75, respectively, and showed a stronger correlation with ECV (correlation coefficient r: 0.72 vs 0.52 vs 0.40). In the subset of 47 patients with normal T2 values, the diagnostic performance of mFI was significantly strengthened (AUC = 0.90, r = 0.83), outperforming T1ρ and native T1.</p><p><strong>Conclusion: </strong>The proposed free-breathing T1ρ dispersion imaging technique enabling simultaneous quantification of T2, T1ρ, and mFI in a single scan has shown great potential for diagnosing diffuse myocardial fibrosis in patients with complex cardiomyopathies without contrast agents.</p>","PeriodicalId":15221,"journal":{"name":"Journal of Cardiovascular Magnetic Resonance","volume":" ","pages":"101093"},"PeriodicalIF":5.4,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142154201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-05DOI: 10.1016/j.jocmr.2024.101090
Manuel A Morales, Scott Johnson, Patrick Pierce, Reza Nezafat
Background: Cardiovascular magnetic resonance (CMR) chemical shift encoding (CSE) enables myocardial fat imaging. We sought to develop a deep learning network (fast chemical shift encoding [FastCSE]) to accelerate CSE.
Methods: FastCSE was built on a super-resolution generative adversarial network extended to enhance complex-valued image sharpness. FastCSE enhances each echo image independently before water-fat separation. FastCSE was trained with retrospectively identified cines from 1519 patients (56 ± 16 years; 866 men) referred for clinical 3T CMR. In a prospective study of 16 participants (58 ± 19 years; 7 females) and 5 healthy individuals (32 ± 17 years; 5 females), dual-echo CSE images were collected with 1.5 × 1.5 mm2, 2.5 × 1.5 mm2, and 3.8 × 1.9 mm2 resolution using generalized autocalibrating partially parallel acquisition (GRAPPA). FastCSE was applied to images collected with resolution of 2.5 × 1.5 mm2 and 3.8 × 1.9 mm2 to restore sharpness. Fat images obtained from two-point Dixon reconstruction were evaluated using a quantitative blur metric and analyzed with a five-way analysis of variance.
Results: FastCSE successfully reconstructed CSE images inline. FastCSE acquisition, with a resolution of 2.5 × 1.5 mm2 and 3.8 × 1.9 mm2, reduced the number of breath-holds without impacting visualization of fat by approximately 1.5-fold and 3-fold compared to GRAPPA acquisition with a resolution of 1.5 × 1.5 mm2, from 3.0 ± 0.8 breath-holds to 2.0 ± 0.2 and 1.1 ± 0.4 breath-holds, respectively. FastCSE improved image sharpness and removed ringing artifacts in GRAPPA fat images acquired with a resolution of 2.5 × 1.5 mm2 (0.32 ± 0.03 vs 0.35 ± 0.04, P < 0.001) and 3.8 × 1.9 mm2 (0.32 ± 0.03 vs 0.43 ± 0.06, P < 0.001). Blurring in FastCSE images was similar to blurring in images with 1.5 × 1.5 mm2 resolution (0.32 ± 0.03 vs 0.31 ± 0.03, P = 0.57; 0.32 ± 0.03 vs 0.31 ± 0.03, P = 0.66).
Conclusion: We showed that a deep learning-accelerated CSE technique based on complex-valued resolution enhancement can reduce the number of breath-holds in CSE imaging without impacting the visualization of fat. FastCSE showed similar image sharpness compared to a standardized parallel imaging method.
{"title":"Accelerated chemical shift encoded cardiovascular magnetic resonance imaging with use of a resolution enhancement network.","authors":"Manuel A Morales, Scott Johnson, Patrick Pierce, Reza Nezafat","doi":"10.1016/j.jocmr.2024.101090","DOIUrl":"10.1016/j.jocmr.2024.101090","url":null,"abstract":"<p><strong>Background: </strong>Cardiovascular magnetic resonance (CMR) chemical shift encoding (CSE) enables myocardial fat imaging. We sought to develop a deep learning network (fast chemical shift encoding [FastCSE]) to accelerate CSE.</p><p><strong>Methods: </strong>FastCSE was built on a super-resolution generative adversarial network extended to enhance complex-valued image sharpness. FastCSE enhances each echo image independently before water-fat separation. FastCSE was trained with retrospectively identified cines from 1519 patients (56 ± 16 years; 866 men) referred for clinical 3T CMR. In a prospective study of 16 participants (58 ± 19 years; 7 females) and 5 healthy individuals (32 ± 17 years; 5 females), dual-echo CSE images were collected with 1.5 × 1.5 mm<sup>2</sup>, 2.5 × 1.5 mm<sup>2</sup>, and 3.8 × 1.9 mm<sup>2</sup> resolution using generalized autocalibrating partially parallel acquisition (GRAPPA). FastCSE was applied to images collected with resolution of 2.5 × 1.5 mm<sup>2</sup> and 3.8 × 1.9 mm<sup>2</sup> to restore sharpness. Fat images obtained from two-point Dixon reconstruction were evaluated using a quantitative blur metric and analyzed with a five-way analysis of variance.</p><p><strong>Results: </strong>FastCSE successfully reconstructed CSE images inline. FastCSE acquisition, with a resolution of 2.5 × 1.5 mm<sup>2</sup> and 3.8 × 1.9 mm<sup>2</sup>, reduced the number of breath-holds without impacting visualization of fat by approximately 1.5-fold and 3-fold compared to GRAPPA acquisition with a resolution of 1.5 × 1.5 mm<sup>2</sup>, from 3.0 ± 0.8 breath-holds to 2.0 ± 0.2 and 1.1 ± 0.4 breath-holds, respectively. FastCSE improved image sharpness and removed ringing artifacts in GRAPPA fat images acquired with a resolution of 2.5 × 1.5 mm<sup>2</sup> (0.32 ± 0.03 vs 0.35 ± 0.04, P < 0.001) and 3.8 × 1.9 mm<sup>2</sup> (0.32 ± 0.03 vs 0.43 ± 0.06, P < 0.001). Blurring in FastCSE images was similar to blurring in images with 1.5 × 1.5 mm<sup>2</sup> resolution (0.32 ± 0.03 vs 0.31 ± 0.03, P = 0.57; 0.32 ± 0.03 vs 0.31 ± 0.03, P = 0.66).</p><p><strong>Conclusion: </strong>We showed that a deep learning-accelerated CSE technique based on complex-valued resolution enhancement can reduce the number of breath-holds in CSE imaging without impacting the visualization of fat. FastCSE showed similar image sharpness compared to a standardized parallel imaging method.</p>","PeriodicalId":15221,"journal":{"name":"Journal of Cardiovascular Magnetic Resonance","volume":" ","pages":"101090"},"PeriodicalIF":5.4,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142145724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-30DOI: 10.1016/j.jocmr.2024.101089
Renske Merton, Daan Bosshardt, Gustav J Strijkers, Aart J Nederveen, Eric M Schrauben, Pim van Ooij
Purpose: To apply a free-running three-dimensional (3D) cine balanced steady state free precession (bSSFP) cardiovascular magnetic resonance (CMR) framework in combination with artificial intelligence (AI) segmentations to quantify time-resolved aortic displacement, diameter and diameter change.
Methods: In this prospective study, we implemented a free-running 3D cine bSSFP sequence with scan time of approximately 4 min facilitated by pseudo-spiral Cartesian undersampling and compressed-sensing reconstruction. Automated segmentation of the aorta in all cardiac timeframes was applied through the use of nnU-Net. Dynamic 3D motion maps were created for three repeated scans per volunteer, leading to the detailed quantification of aortic motion, as well as the measurement and change in diameter of the ascending aorta.
Results: A total of 14 adult healthy volunteers (median age, 28 years (interquartile range [IQR]: 26.0-31.3), 6 females) were included. Automated segmentation compared to manual segmentation of the aorta test set showed a Dice score of 0.93 ± 0.02. The median (IQR) over all volunteers for the largest maximum and mean ascending aorta (AAo) displacement in the first scan was 13.0 (4.4) mm and 5.6 (2.4) mm, respectively. Peak mean diameter in the AAo was 25.9 (2.2) mm and peak mean diameter change was 1.4 (0.5) mm. The maximum individual variability over the three repeated scans of maximum and mean AAo displacement was 3.9 (1.6) mm and 2.2 (0.8) mm, respectively. The maximum individual variability of mean diameter and diameter change were 1.2 (0.5) mm and 0.9 (0.4) mm.
Conclusion: A free-running 3D cine bSSFP CMR scan with a scan time of four minutes combined with an automated nnU-net segmentation consistently captured the aorta's cardiac motion-related 4D displacement, diameter, and diameter change.
{"title":"Assessing aortic motion with automated 3D cine balanced steady state free precession cardiovascular magnetic resonance segmentation.","authors":"Renske Merton, Daan Bosshardt, Gustav J Strijkers, Aart J Nederveen, Eric M Schrauben, Pim van Ooij","doi":"10.1016/j.jocmr.2024.101089","DOIUrl":"10.1016/j.jocmr.2024.101089","url":null,"abstract":"<p><strong>Purpose: </strong>To apply a free-running three-dimensional (3D) cine balanced steady state free precession (bSSFP) cardiovascular magnetic resonance (CMR) framework in combination with artificial intelligence (AI) segmentations to quantify time-resolved aortic displacement, diameter and diameter change.</p><p><strong>Methods: </strong>In this prospective study, we implemented a free-running 3D cine bSSFP sequence with scan time of approximately 4 min facilitated by pseudo-spiral Cartesian undersampling and compressed-sensing reconstruction. Automated segmentation of the aorta in all cardiac timeframes was applied through the use of nnU-Net. Dynamic 3D motion maps were created for three repeated scans per volunteer, leading to the detailed quantification of aortic motion, as well as the measurement and change in diameter of the ascending aorta.</p><p><strong>Results: </strong>A total of 14 adult healthy volunteers (median age, 28 years (interquartile range [IQR]: 26.0-31.3), 6 females) were included. Automated segmentation compared to manual segmentation of the aorta test set showed a Dice score of 0.93 ± 0.02. The median (IQR) over all volunteers for the largest maximum and mean ascending aorta (AAo) displacement in the first scan was 13.0 (4.4) mm and 5.6 (2.4) mm, respectively. Peak mean diameter in the AAo was 25.9 (2.2) mm and peak mean diameter change was 1.4 (0.5) mm. The maximum individual variability over the three repeated scans of maximum and mean AAo displacement was 3.9 (1.6) mm and 2.2 (0.8) mm, respectively. The maximum individual variability of mean diameter and diameter change were 1.2 (0.5) mm and 0.9 (0.4) mm.</p><p><strong>Conclusion: </strong>A free-running 3D cine bSSFP CMR scan with a scan time of four minutes combined with an automated nnU-net segmentation consistently captured the aorta's cardiac motion-related 4D displacement, diameter, and diameter change.</p>","PeriodicalId":15221,"journal":{"name":"Journal of Cardiovascular Magnetic Resonance","volume":" ","pages":"101089"},"PeriodicalIF":5.4,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142107824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-28DOI: 10.1016/j.jocmr.2024.101088
Lydia Dux-Santoy, Aroa Ruiz-Muñoz, Andrea Guala, Laura Galian-Gay, Rubén Fernandez-Galera, Filipa Valente, Guillem Casas, Ruperto Oliveró, Marta Ferrer-Cornet, Mireia Bragulat-Arévalo, Alejandro Carrasco-Poves, Juan Garrido-Oliver, Alberto Morales-Galán, Kevin M Johnson, Oliver Wieben, Ignacio Ferreira-González, Arturo Evangelista, Jose Rodriguez-Palomares, Gisela Teixidó-Turà
Background: Patients with syndromic heritable thoracic aortic diseases (sHTAD) who underwent prophylactic aortic root replacement are at high risk of distal aortic events, but the underlying mechanisms remain unclear. This prospective, longitudinal study evaluates the impact of valve-sparing aortic root replacement (VSARR) on aortic fluid dynamics and biomechanics in these patients.
Methods: Sixteen patients with Marfan or Loeys-Dietz syndrome underwent two time-resolved three-dimensional phase-contrast cardiovascular magnetic resonance (4D flow CMR) studies before (sHTAD-preSx) and after VSARR (sHTAD-postSx). Two matched cohorts of 40 healthy volunteers (HV) and 16 sHTAD patients without indication for aortic root replacement (sHTAD-NSx) with available 4D flow CMR were included for comparison. In-plane rotational flow (IRF), systolic flow reversal ratio (SFRR), wall shear stress (WSS), pulse wave velocity (PWV), and aortic strain were analyzed in the ascending (AscAo) and descending aorta (DescAo).
Results: All patients with sHTAD presented altered hemodynamics and increased stiffness (p < 0.05) compared to HV, both in the AscAo (median PWV 7.4 in sHTAD-NSx; 6.8 in sHTAD-preSx; 4.9 m/s in HV) and DescAo (median PWV 9.1 in sHTAD-NSx; 8.1 in sHTAD-preSx; 6.3 m/s in HV). Patients awaiting VSARR had markedly reduced in-plane (median IRF -2.2 vs 10.4 cm2/s in HV, p = 0.001), but increased through-plane flow rotation (median SFRR 7.8 vs 3.8% in HV, p = 0.002), and decreased WSS (0.36 vs 0.47 N/m2 in HV, p = 0.004) in the proximal DescAo. After VSARR, proximal DescAo IRF (p = 0.010) and circumferential WSS increased (p = 0.011), no longer differing from HV, but SFRR, axial WSS and stiffness remained altered. Patients in which aortic tortuosity was reduced after surgery showed greater post-surgical increase in IRF compared to those in which tortuosity increased (median IRF increase 18.1 vs 3.3 cm2/s, p = 0.047). Most AscAo flow alterations were restored to physiological values after VSARR.
Conclusion: In patients with sHTAD, VSARR partially restores downstream fluid dynamics to physiological levels. However, some flow disturbances and increased stiffness persist in the proximal DescAo. Further longitudinal studies are needed to evaluate whether persistent alterations contribute to post-surgical risk.
{"title":"Impact of valve-sparing aortic root replacement on aortic fluid dynamics and biomechanics in patients with syndromic heritable thoracic aortic disease.","authors":"Lydia Dux-Santoy, Aroa Ruiz-Muñoz, Andrea Guala, Laura Galian-Gay, Rubén Fernandez-Galera, Filipa Valente, Guillem Casas, Ruperto Oliveró, Marta Ferrer-Cornet, Mireia Bragulat-Arévalo, Alejandro Carrasco-Poves, Juan Garrido-Oliver, Alberto Morales-Galán, Kevin M Johnson, Oliver Wieben, Ignacio Ferreira-González, Arturo Evangelista, Jose Rodriguez-Palomares, Gisela Teixidó-Turà","doi":"10.1016/j.jocmr.2024.101088","DOIUrl":"10.1016/j.jocmr.2024.101088","url":null,"abstract":"<p><strong>Background: </strong>Patients with syndromic heritable thoracic aortic diseases (sHTAD) who underwent prophylactic aortic root replacement are at high risk of distal aortic events, but the underlying mechanisms remain unclear. This prospective, longitudinal study evaluates the impact of valve-sparing aortic root replacement (VSARR) on aortic fluid dynamics and biomechanics in these patients.</p><p><strong>Methods: </strong>Sixteen patients with Marfan or Loeys-Dietz syndrome underwent two time-resolved three-dimensional phase-contrast cardiovascular magnetic resonance (4D flow CMR) studies before (sHTAD-preSx) and after VSARR (sHTAD-postSx). Two matched cohorts of 40 healthy volunteers (HV) and 16 sHTAD patients without indication for aortic root replacement (sHTAD-NSx) with available 4D flow CMR were included for comparison. In-plane rotational flow (IRF), systolic flow reversal ratio (SFRR), wall shear stress (WSS), pulse wave velocity (PWV), and aortic strain were analyzed in the ascending (AscAo) and descending aorta (DescAo).</p><p><strong>Results: </strong>All patients with sHTAD presented altered hemodynamics and increased stiffness (p < 0.05) compared to HV, both in the AscAo (median PWV 7.4 in sHTAD-NSx; 6.8 in sHTAD-preSx; 4.9 m/s in HV) and DescAo (median PWV 9.1 in sHTAD-NSx; 8.1 in sHTAD-preSx; 6.3 m/s in HV). Patients awaiting VSARR had markedly reduced in-plane (median IRF -2.2 vs 10.4 cm<sup>2</sup>/s in HV, p = 0.001), but increased through-plane flow rotation (median SFRR 7.8 vs 3.8% in HV, p = 0.002), and decreased WSS (0.36 vs 0.47 N/m<sup>2</sup> in HV, p = 0.004) in the proximal DescAo. After VSARR, proximal DescAo IRF (p = 0.010) and circumferential WSS increased (p = 0.011), no longer differing from HV, but SFRR, axial WSS and stiffness remained altered. Patients in which aortic tortuosity was reduced after surgery showed greater post-surgical increase in IRF compared to those in which tortuosity increased (median IRF increase 18.1 vs 3.3 cm<sup>2</sup>/s, p = 0.047). Most AscAo flow alterations were restored to physiological values after VSARR.</p><p><strong>Conclusion: </strong>In patients with sHTAD, VSARR partially restores downstream fluid dynamics to physiological levels. However, some flow disturbances and increased stiffness persist in the proximal DescAo. Further longitudinal studies are needed to evaluate whether persistent alterations contribute to post-surgical risk.</p>","PeriodicalId":15221,"journal":{"name":"Journal of Cardiovascular Magnetic Resonance","volume":" ","pages":"101088"},"PeriodicalIF":4.2,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142107825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-25DOI: 10.1016/j.jocmr.2024.101087
Hafisyatul Zainal, Andreas Rolf, Hui Zhou, Moises Vasquez, Felicitas Escher, Till Keller, Mariuca Vasa-Nicotera, Andreas M Zeiher, Heinz-Peter Schultheiss, Eike Nagel, Valentina O Puntmann
Aims: Myocardial inflammation is increasingly detected noninvasively by tissue mapping with cardiovascular magnetic resonance (CMR). Intraindividual agreement with endomyocardial biopsy (EMB) or markers of myocardial injury, high-sensitive cardiac troponin (hs-cTnT) in patients with clinically suspected viral myocarditis is incompletely understood.
Methods: Prospective multicenter study of consecutive patients with clinically suspected myocarditis who underwent blood testing for hs-cTnT, CMR, and EMB as a part of diagnostic workup. EMB was considered positive based on immunohistological criteria in line with the European Society of Cardiology (ESC) definitions. CMR diagnoses employed tissue mapping using sequence-specific cut-off for native T1 and T2 mapping; active inflammation was defined as T1 ≥2 standard deviation (SD) and T2 ≥2 SD above the mean of normal range. Hs-cTnT of greater than 13.9 ng/L was considered significant.
Results: A total of 114 patients (age (mean ± SD) 54 ± 16, 65% males) were included, of which 79 (69%) had positive EMB criteria, 64 (56%) CMR criteria, and a total of 58 (51%) positive troponin. Agreement between EMB and CMR diagnostic criteria was poor (CMR vs ESC: area under the curve (AUC): 0.51 (0.39-0.62)). The agreement between a significant hs-cTnT rise and CMR-based diagnosis of myocarditis was good (AUC: 0.84 (0.68-0.92); p < 0.001), but poor for EMB (0.50 (0.40-0.61). Hs-cTnT was significantly associated with native T1 and T2, high-sensitive C-reactive protein, and N-terminal pro-hormone brain natriuretic peptide (r = 0.37, r = 0.35, r = 0.30, r = 0.25; p < 0.001), but not immunohistochemical criteria or viral presence.
Conclusion: In clinically suspected viral myocarditis, all diagnostic approaches reflect the pathophysiological elements of myocardial inflammation; however, the differing underlying drivers only partially overlap. The EMB and CMR diagnostic algorithms are neither interchangeable in terms of interpretation of myocardial inflammation nor in their relationship with myocardial injury.
{"title":"Comparison of diagnostic algorithms in clinically suspected viral myocarditis: Agreement between cardiovascular magnetic resonance, endomyocardial biopsy, and troponin T.","authors":"Hafisyatul Zainal, Andreas Rolf, Hui Zhou, Moises Vasquez, Felicitas Escher, Till Keller, Mariuca Vasa-Nicotera, Andreas M Zeiher, Heinz-Peter Schultheiss, Eike Nagel, Valentina O Puntmann","doi":"10.1016/j.jocmr.2024.101087","DOIUrl":"10.1016/j.jocmr.2024.101087","url":null,"abstract":"<p><strong>Aims: </strong>Myocardial inflammation is increasingly detected noninvasively by tissue mapping with cardiovascular magnetic resonance (CMR). Intraindividual agreement with endomyocardial biopsy (EMB) or markers of myocardial injury, high-sensitive cardiac troponin (hs-cTnT) in patients with clinically suspected viral myocarditis is incompletely understood.</p><p><strong>Methods: </strong>Prospective multicenter study of consecutive patients with clinically suspected myocarditis who underwent blood testing for hs-cTnT, CMR, and EMB as a part of diagnostic workup. EMB was considered positive based on immunohistological criteria in line with the European Society of Cardiology (ESC) definitions. CMR diagnoses employed tissue mapping using sequence-specific cut-off for native T1 and T2 mapping; active inflammation was defined as T1 ≥2 standard deviation (SD) and T2 ≥2 SD above the mean of normal range. Hs-cTnT of greater than 13.9 ng/L was considered significant.</p><p><strong>Results: </strong>A total of 114 patients (age (mean ± SD) 54 ± 16, 65% males) were included, of which 79 (69%) had positive EMB criteria, 64 (56%) CMR criteria, and a total of 58 (51%) positive troponin. Agreement between EMB and CMR diagnostic criteria was poor (CMR vs ESC: area under the curve (AUC): 0.51 (0.39-0.62)). The agreement between a significant hs-cTnT rise and CMR-based diagnosis of myocarditis was good (AUC: 0.84 (0.68-0.92); p < 0.001), but poor for EMB (0.50 (0.40-0.61). Hs-cTnT was significantly associated with native T1 and T2, high-sensitive C-reactive protein, and N-terminal pro-hormone brain natriuretic peptide (r = 0.37, r = 0.35, r = 0.30, r = 0.25; p < 0.001), but not immunohistochemical criteria or viral presence.</p><p><strong>Conclusion: </strong>In clinically suspected viral myocarditis, all diagnostic approaches reflect the pathophysiological elements of myocardial inflammation; however, the differing underlying drivers only partially overlap. The EMB and CMR diagnostic algorithms are neither interchangeable in terms of interpretation of myocardial inflammation nor in their relationship with myocardial injury.</p>","PeriodicalId":15221,"journal":{"name":"Journal of Cardiovascular Magnetic Resonance","volume":" ","pages":"101087"},"PeriodicalIF":5.4,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565394/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-23DOI: 10.1016/j.jocmr.2024.101084
Mohamad Khattab, Jennifer Kwan, Deya Alkhatib, Miles Shen, Sagar Desai, Emmanuel Akintoye, Steffen Huber, Lauren Baldassarre
{"title":"Removed: \"Kiosk 8Q-FA-03-Gedatolisib Associated Acute Myocarditis in a Patient with Breast Adenocarcinoma\" [Journal of Cardiovascular Magnetic Resonance 26 (2024) 100856].","authors":"Mohamad Khattab, Jennifer Kwan, Deya Alkhatib, Miles Shen, Sagar Desai, Emmanuel Akintoye, Steffen Huber, Lauren Baldassarre","doi":"10.1016/j.jocmr.2024.101084","DOIUrl":"https://doi.org/10.1016/j.jocmr.2024.101084","url":null,"abstract":"","PeriodicalId":15221,"journal":{"name":"Journal of Cardiovascular Magnetic Resonance","volume":" ","pages":"101084"},"PeriodicalIF":4.2,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142055700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}