Pub Date : 2024-06-21DOI: 10.1016/j.jocmr.2024.101050
Daniel A Castellanos, Emily M Bucholz, Katherine Bai, Jesse J Esch, David Hoganson, Stephen P Sanders, Raja Shaikh, Sunil J Ghelani, David N Schidlow
Background: Disordered lymphatic drainage is common in congenital heart diseases (CHD), but thoracic duct (TD) drainage patterns in heterotaxy have not been described in detail. This study sought to describe terminal TD sidedness in heterotaxy and its associations with other anatomic variables.
Methods: This was a retrospective, single-center study of patients with heterotaxy who underwent cardiovascular magnetic resonance imaging at a single center between July 1, 2019 and May 15, 2023. Patients with (1) asplenia (right isomerism), (2) polysplenia (left isomerism) and (3) pulmonary/abdominal situs inversus (PASI) plus CHD were included. Terminal TD sidedness was described as left-sided, right-sided, or bilateral.
Results: Of 115 eligible patients, the terminal TD was visualized in 56 (49 %). The terminal TD was left-sided in 25 patients, right-sided in 29, and bilateral in two. On univariate analysis, terminal TD sidedness was associated with atrial situs (p = 0.006), abdominal situs (p = 0.042), type of heterotaxy (p = 0.036), the presence of pulmonary obstruction (p = 0.041), superior vena cava sidedness (p = 0.005), and arch sidedness (p < 0.001). On multivariable analysis, only superior vena cava and aortic arch sidedness were independently associated with terminal TD sidedness.
Conclusions: Terminal TD sidedness is highly variable in patients with heterotaxy. Superior vena cava and arch sidedness are independently associated with terminal TD sidedness. Type of heterotaxy was not independently associated with terminal TD sidedness. This data improves the understanding of anatomic variation in patients with heterotaxy and may be useful for planning for lymphatic interventions.
{"title":"Thoracic duct drainage patterns in heterotaxy.","authors":"Daniel A Castellanos, Emily M Bucholz, Katherine Bai, Jesse J Esch, David Hoganson, Stephen P Sanders, Raja Shaikh, Sunil J Ghelani, David N Schidlow","doi":"10.1016/j.jocmr.2024.101050","DOIUrl":"10.1016/j.jocmr.2024.101050","url":null,"abstract":"<p><strong>Background: </strong>Disordered lymphatic drainage is common in congenital heart diseases (CHD), but thoracic duct (TD) drainage patterns in heterotaxy have not been described in detail. This study sought to describe terminal TD sidedness in heterotaxy and its associations with other anatomic variables.</p><p><strong>Methods: </strong>This was a retrospective, single-center study of patients with heterotaxy who underwent cardiovascular magnetic resonance imaging at a single center between July 1, 2019 and May 15, 2023. Patients with (1) asplenia (right isomerism), (2) polysplenia (left isomerism) and (3) pulmonary/abdominal situs inversus (PASI) plus CHD were included. Terminal TD sidedness was described as left-sided, right-sided, or bilateral.</p><p><strong>Results: </strong>Of 115 eligible patients, the terminal TD was visualized in 56 (49 %). The terminal TD was left-sided in 25 patients, right-sided in 29, and bilateral in two. On univariate analysis, terminal TD sidedness was associated with atrial situs (p = 0.006), abdominal situs (p = 0.042), type of heterotaxy (p = 0.036), the presence of pulmonary obstruction (p = 0.041), superior vena cava sidedness (p = 0.005), and arch sidedness (p < 0.001). On multivariable analysis, only superior vena cava and aortic arch sidedness were independently associated with terminal TD sidedness.</p><p><strong>Conclusions: </strong>Terminal TD sidedness is highly variable in patients with heterotaxy. Superior vena cava and arch sidedness are independently associated with terminal TD sidedness. Type of heterotaxy was not independently associated with terminal TD sidedness. This data improves the understanding of anatomic variation in patients with heterotaxy and may be useful for planning for lymphatic interventions.</p>","PeriodicalId":15221,"journal":{"name":"Journal of Cardiovascular Magnetic Resonance","volume":" ","pages":"101050"},"PeriodicalIF":4.2,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11283042/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141442760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-13DOI: 10.1016/j.jocmr.2024.101049
Kelly P H Nies, Mueez Aizaz, Dianne H K van Dam-Nolen, Timothy C D Goring, Tobien A H C M L Schreuder, Narender P van Orshoven, Alida A Postma, Daniel Bos, Jeroen Hendrikse, Paul Nederkoorn, Rob van der Geest, Robert J van Oostenbrugge, Werner H Mess, M Eline Kooi
Background: The Plaque At RISK (PARISK) study demonstrated that patients with a carotid plaque with intraplaque hemorrhage (IPH) have an increased risk of recurrent ipsilateral ischemic cerebrovascular events. It was previously reported that symptomatic carotid plaques with IPH showed higher IPH signal intensity ratios (SIR) and larger IPH volumes than asymptomatic plaques. We explored whether IPH SIR and IPH volume are associated with future ipsilateral ischemic cerebrovascular events beyond the presence of IPH.
Methods: Transient ischemic attack and ischemic stroke patients with mild-to-moderate carotid stenosis and an ipsilateral IPH-positive carotid plaque (n = 89) from the PARISK study were included. The clinical endpoint was a new ipsilateral ischemic cerebrovascular event during 5 years of follow-up, while the imaging-based endpoint was a new ipsilateral brain infarct on brain magnetic resonance imaging (MRI) after 2 years (n = 69). Trained observers delineated IPH, a hyperintense region compared to surrounding muscle tissue on hyper T1-weighted magnetic resonance images. The IPH SIR was the maximal signal intensity in the IPH region divided by the mean signal intensity of adjacent muscle tissue. The associations between IPH SIR or volume and the clinical and imaging-based endpoint were investigated using Cox proportional hazard models and logistic regression, respectively.
Results: During 5.1 (interquartile range: 3.1-5.6) years of follow-up, 21 ipsilateral cerebrovascular ischemic events were identified. Twelve new ipsilateral brain infarcts were identified on the 2-year neuro MRI. There was no association for IPH SIR or IPH volume with the clinical endpoint (hazard ratio (HR): 0.89 [95% confidence interval: 0.67-1.10] and HR: 0.91 [0.69-1.19] per 100-µL increase, respectively) nor with the imaging-based endpoint (odds ratio (OR): 1.04 [0.75-1.45] and OR: 1.21 [0.87-1.68] per 100-µL increase, respectively).
Conclusion: IPH SIR and IPH volume were not associated with future ipsilateral ischemic cerebrovascular events. Therefore, quantitative assessment of IPH of SIR and volume does not seem to provide additional value beyond the presence of IPH for stroke risk assessment.
Trial registration: The PARISK study was registered on ClinicalTrials.gov with ID NCT01208025 on September 21, 2010 (https://clinicaltrials.gov/study/NCT01208025).
{"title":"Signal intensity and volume of carotid intraplaque hemorrhage on magnetic resonance imaging and the risk of ipsilateral cerebrovascular events: The Plaque At RISK (PARISK) study.","authors":"Kelly P H Nies, Mueez Aizaz, Dianne H K van Dam-Nolen, Timothy C D Goring, Tobien A H C M L Schreuder, Narender P van Orshoven, Alida A Postma, Daniel Bos, Jeroen Hendrikse, Paul Nederkoorn, Rob van der Geest, Robert J van Oostenbrugge, Werner H Mess, M Eline Kooi","doi":"10.1016/j.jocmr.2024.101049","DOIUrl":"10.1016/j.jocmr.2024.101049","url":null,"abstract":"<p><strong>Background: </strong>The Plaque At RISK (PARISK) study demonstrated that patients with a carotid plaque with intraplaque hemorrhage (IPH) have an increased risk of recurrent ipsilateral ischemic cerebrovascular events. It was previously reported that symptomatic carotid plaques with IPH showed higher IPH signal intensity ratios (SIR) and larger IPH volumes than asymptomatic plaques. We explored whether IPH SIR and IPH volume are associated with future ipsilateral ischemic cerebrovascular events beyond the presence of IPH.</p><p><strong>Methods: </strong>Transient ischemic attack and ischemic stroke patients with mild-to-moderate carotid stenosis and an ipsilateral IPH-positive carotid plaque (n = 89) from the PARISK study were included. The clinical endpoint was a new ipsilateral ischemic cerebrovascular event during 5 years of follow-up, while the imaging-based endpoint was a new ipsilateral brain infarct on brain magnetic resonance imaging (MRI) after 2 years (n = 69). Trained observers delineated IPH, a hyperintense region compared to surrounding muscle tissue on hyper T<sub>1</sub>-weighted magnetic resonance images. The IPH SIR was the maximal signal intensity in the IPH region divided by the mean signal intensity of adjacent muscle tissue. The associations between IPH SIR or volume and the clinical and imaging-based endpoint were investigated using Cox proportional hazard models and logistic regression, respectively.</p><p><strong>Results: </strong>During 5.1 (interquartile range: 3.1-5.6) years of follow-up, 21 ipsilateral cerebrovascular ischemic events were identified. Twelve new ipsilateral brain infarcts were identified on the 2-year neuro MRI. There was no association for IPH SIR or IPH volume with the clinical endpoint (hazard ratio (HR): 0.89 [95% confidence interval: 0.67-1.10] and HR: 0.91 [0.69-1.19] per 100-µL increase, respectively) nor with the imaging-based endpoint (odds ratio (OR): 1.04 [0.75-1.45] and OR: 1.21 [0.87-1.68] per 100-µL increase, respectively).</p><p><strong>Conclusion: </strong>IPH SIR and IPH volume were not associated with future ipsilateral ischemic cerebrovascular events. Therefore, quantitative assessment of IPH of SIR and volume does not seem to provide additional value beyond the presence of IPH for stroke risk assessment.</p><p><strong>Trial registration: </strong>The PARISK study was registered on ClinicalTrials.gov with ID NCT01208025 on September 21, 2010 (https://clinicaltrials.gov/study/NCT01208025).</p>","PeriodicalId":15221,"journal":{"name":"Journal of Cardiovascular Magnetic Resonance","volume":" ","pages":"101049"},"PeriodicalIF":4.2,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11282977/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141327538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-13DOI: 10.1016/j.jocmr.2024.101048
Pierre Daudé, Thomas Troalen, Adèle L C Mackowiak, Emilien Royer, Davide Piccini, Jérôme Yerly, Josef Pfeuffer, Frank Kober, Sylviane Confort Gouny, Monique Bernard, Matthias Stuber, Jessica A M Bastiaansen, Stanislas Rapacchi
Background: Metabolic diseases can negatively alter epicardial fat accumulation and composition, which can be probed using quantitative cardiac chemical shift encoded (CSE) cardiovascular magnetic resonance (CMR) by mapping proton-density fat fraction (PDFF). To obtain motion-resolved high-resolution PDFF maps, we proposed a free-running cardiac CSE-CMR framework at 3T. To employ faster bipolar readout gradients, a correction for gradient imperfections was added using the gradient impulse response function (GIRF) and evaluated on intermediate images and PDFF quantification.
Methods: Ten minutes free-running cardiac 3D radial CSE-CMR acquisitions were compared in vitro and in vivo at 3T. Monopolar and bipolar readout gradient schemes provided 8 echoes (TE1/ΔTE = 1.16/1.96 ms) and 13 echoes (TE1/ΔTE = 1.12/1.07 ms), respectively. Bipolar-gradient free-running cardiac fat and water images and PDFF maps were reconstructed with or without GIRF correction. PDFF values were evaluated in silico, in vitro on a fat/water phantom, and in vivo in 10 healthy volunteers and 3 diabetic patients.
Results: In monopolar mode, fat-water swaps were demonstrated in silico and confirmed in vitro. Using bipolar readout gradients, PDFF quantification was reliable and accurate with GIRF correction with a mean bias of 0.03% in silico and 0.36% in vitro while it suffered from artifacts without correction, leading to a PDFF bias of 4.9% in vitro and swaps in vivo. Using bipolar readout gradients, in vivo PDFF of epicardial adipose tissue was significantly lower compared to subcutaneous fat (80.4 ± 7.1% vs 92.5 ± 4.3%, P < 0.0001).
Conclusions: Aiming for an accurate PDFF quantification, high-resolution free-running cardiac CSE-MRI imaging proved to benefit from bipolar echoes with k-space trajectory correction at 3T. This free-breathing acquisition framework enables to investigate epicardial adipose tissue PDFF in metabolic diseases.
{"title":"Trajectory correction enables free-running chemical shift encoded imaging for accurate cardiac proton-density fat fraction quantification at 3T.","authors":"Pierre Daudé, Thomas Troalen, Adèle L C Mackowiak, Emilien Royer, Davide Piccini, Jérôme Yerly, Josef Pfeuffer, Frank Kober, Sylviane Confort Gouny, Monique Bernard, Matthias Stuber, Jessica A M Bastiaansen, Stanislas Rapacchi","doi":"10.1016/j.jocmr.2024.101048","DOIUrl":"10.1016/j.jocmr.2024.101048","url":null,"abstract":"<p><strong>Background: </strong>Metabolic diseases can negatively alter epicardial fat accumulation and composition, which can be probed using quantitative cardiac chemical shift encoded (CSE) cardiovascular magnetic resonance (CMR) by mapping proton-density fat fraction (PDFF). To obtain motion-resolved high-resolution PDFF maps, we proposed a free-running cardiac CSE-CMR framework at 3T. To employ faster bipolar readout gradients, a correction for gradient imperfections was added using the gradient impulse response function (GIRF) and evaluated on intermediate images and PDFF quantification.</p><p><strong>Methods: </strong>Ten minutes free-running cardiac 3D radial CSE-CMR acquisitions were compared in vitro and in vivo at 3T. Monopolar and bipolar readout gradient schemes provided 8 echoes (TE1/ΔTE = 1.16/1.96 ms) and 13 echoes (TE1/ΔTE = 1.12/1.07 ms), respectively. Bipolar-gradient free-running cardiac fat and water images and PDFF maps were reconstructed with or without GIRF correction. PDFF values were evaluated in silico, in vitro on a fat/water phantom, and in vivo in 10 healthy volunteers and 3 diabetic patients.</p><p><strong>Results: </strong>In monopolar mode, fat-water swaps were demonstrated in silico and confirmed in vitro. Using bipolar readout gradients, PDFF quantification was reliable and accurate with GIRF correction with a mean bias of 0.03% in silico and 0.36% in vitro while it suffered from artifacts without correction, leading to a PDFF bias of 4.9% in vitro and swaps in vivo. Using bipolar readout gradients, in vivo PDFF of epicardial adipose tissue was significantly lower compared to subcutaneous fat (80.4 ± 7.1% vs 92.5 ± 4.3%, P < 0.0001).</p><p><strong>Conclusions: </strong>Aiming for an accurate PDFF quantification, high-resolution free-running cardiac CSE-MRI imaging proved to benefit from bipolar echoes with k-space trajectory correction at 3T. This free-breathing acquisition framework enables to investigate epicardial adipose tissue PDFF in metabolic diseases.</p>","PeriodicalId":15221,"journal":{"name":"Journal of Cardiovascular Magnetic Resonance","volume":" ","pages":"101048"},"PeriodicalIF":4.2,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11269917/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141327539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-02-09DOI: 10.1016/j.jocmr.2024.101008
Ersin Cavus, Jan N Schneider, Eleonora di Carluccio, Andreas Ziegler, Alena Haack, Francisco Ojeda, Celeste Chevalier, Charlotte Jahnke, Katharina A Riedl, Ulf K Radunski, Raphael Twerenbold, Paulus Kirchhof, Stefan Blankenberg, Gerhard Adam, Enver Tahir, Gunnar K Lund, Kai Muellerleile
Background: The presence of myocardial scar is associated with poor prognosis in several underlying diseases. Late-gadolinium-enhancement (LGE) cardiovascular magnetic resonance (CMR) imaging reveals clinically silent "unrecognized myocardial scar" (UMS), but the etiology of UMS often remains unclear. This population-based CMR study evaluated prevalence, localization, patterns, and risk factors of UMS.
Methods: The study population consisted of 1064 consecutive Hamburg City Health Study participants without a history of coronary heart disease or myocarditis. UMS was assessed by standard-phase-sensitive-inversion-recovery LGE CMR.
Results: Median age was 66 [quartiles 59, 71] years and 37% (388/1064) were females. UMS was detected in 244 (23%) participants. Twenty-five participants (10%) had ischemic, and 217 participants (89%) had non-ischemic scar patterns, predominantly involving the basal inferolateral left-ventricular (LV) myocardium (75%). Two participants (1%) had coincident ischemic and non-ischemic scar. The presence of any UMS was independently associated with LV ejection fraction (odds ratios (OR) per standard deviation (SD) 0.77 (confidence interval (CI) 0.65-0.90), p = 0.002) and LV mass (OR per SD 1.54 (CI 1.31-1.82), p < 0.001). Ischemic UMS was independently associated with LV ejection fraction (OR per SD 0.58 (CI 0.39-0.86), p = 0.007), LV mass (OR per SD 1.74 (CI 1.25-2.45), p = 0.001), and diabetes (OR 4.91 (CI 1.66-13.03), p = 0.002). Non-ischemic UMS was only independently associated with LV mass (OR per SD 1.44 (CI 1.24-1.69), p < 0.001).
Conclusion: UMS, in particular with a non-ischemic pattern, is frequent in individuals without known cardiac disease and predominantly involves the basal inferolateral LV myocardium. Presence of UMS is independently associated with a lower LVEF, a higher LV mass, and a history of diabetes.
{"title":"Unrecognized myocardial scar by late-gadolinium-enhancement cardiovascular magnetic resonance: Insights from the population-based Hamburg City Health Study.","authors":"Ersin Cavus, Jan N Schneider, Eleonora di Carluccio, Andreas Ziegler, Alena Haack, Francisco Ojeda, Celeste Chevalier, Charlotte Jahnke, Katharina A Riedl, Ulf K Radunski, Raphael Twerenbold, Paulus Kirchhof, Stefan Blankenberg, Gerhard Adam, Enver Tahir, Gunnar K Lund, Kai Muellerleile","doi":"10.1016/j.jocmr.2024.101008","DOIUrl":"10.1016/j.jocmr.2024.101008","url":null,"abstract":"<p><strong>Background: </strong>The presence of myocardial scar is associated with poor prognosis in several underlying diseases. Late-gadolinium-enhancement (LGE) cardiovascular magnetic resonance (CMR) imaging reveals clinically silent \"unrecognized myocardial scar\" (UMS), but the etiology of UMS often remains unclear. This population-based CMR study evaluated prevalence, localization, patterns, and risk factors of UMS.</p><p><strong>Methods: </strong>The study population consisted of 1064 consecutive Hamburg City Health Study participants without a history of coronary heart disease or myocarditis. UMS was assessed by standard-phase-sensitive-inversion-recovery LGE CMR.</p><p><strong>Results: </strong>Median age was 66 [quartiles 59, 71] years and 37% (388/1064) were females. UMS was detected in 244 (23%) participants. Twenty-five participants (10%) had ischemic, and 217 participants (89%) had non-ischemic scar patterns, predominantly involving the basal inferolateral left-ventricular (LV) myocardium (75%). Two participants (1%) had coincident ischemic and non-ischemic scar. The presence of any UMS was independently associated with LV ejection fraction (odds ratios (OR) per standard deviation (SD) 0.77 (confidence interval (CI) 0.65-0.90), p = 0.002) and LV mass (OR per SD 1.54 (CI 1.31-1.82), p < 0.001). Ischemic UMS was independently associated with LV ejection fraction (OR per SD 0.58 (CI 0.39-0.86), p = 0.007), LV mass (OR per SD 1.74 (CI 1.25-2.45), p = 0.001), and diabetes (OR 4.91 (CI 1.66-13.03), p = 0.002). Non-ischemic UMS was only independently associated with LV mass (OR per SD 1.44 (CI 1.24-1.69), p < 0.001).</p><p><strong>Conclusion: </strong>UMS, in particular with a non-ischemic pattern, is frequent in individuals without known cardiac disease and predominantly involves the basal inferolateral LV myocardium. Presence of UMS is independently associated with a lower LVEF, a higher LV mass, and a history of diabetes.</p>","PeriodicalId":15221,"journal":{"name":"Journal of Cardiovascular Magnetic Resonance","volume":" ","pages":"101008"},"PeriodicalIF":6.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10944257/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139716096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-02-03DOI: 10.1016/j.jocmr.2024.101007
Henrik Engblom, Ellen Ostenfeld, Marcus Carlsson, Julius Åkesson, Anthony H Aletras, Hui Xue, Peter Kellman, Håkan Arheden
Background: Quantitative cardiovascular magnetic resonance (CMR) first pass perfusion maps are conventionally acquired with 3 short-axis (SAX) views (basal, mid, and apical) in every heartbeat (3SAX/1RR). Thus, a significant part of the left ventricle (LV) myocardium, including the apex, is not covered. The aims of this study were 1) to investigate if perfusion maps acquired with 3 short-axis views sampled every other RR-interval (2RR) yield comparable quantitative measures of myocardial perfusion (MP) as 1RR and 2) to assess if acquiring 3 additional perfusion views (i.e., total of 6) every other RR-interval (2RR) increases diagnostic confidence.
Methods: In 287 patients with suspected ischemic heart disease stress and rest MP were performed on clinical indication on a 1.5T MR scanner. Eighty-three patients were examined by acquiring 3 short-axis perfusion maps with 1RR sampling (3SAX/1RR); for which also 2RR maps were reconstructed. Additionally, in 103 patients 3 short-axis and 3 long-axis (LAX; 2-, 3, and 4-chamber view) perfusion maps were acquired using 2RR sampling (3SAX + 3LAX/2RR) and in 101 patients 6 short-axis perfusion maps using 2RR sampling (6SAX/2RR) were acquired. The diagnostic confidence for ruling in or out stress-induced ischemia was scored according to a Likert scale (certain ischemia [2 points], probably ischemia [1 point], uncertain [0 points], probably no ischemia [1 point], certain no ischemia [2 points]).
Results: There was a strong correlation (R = 0.99) between 3SAX/1RR and 3SAX/2RR for global MP (mL/min/g). The diagnostic confidence score increased significantly when the number of perfusion views was increased from 3 to 6 (1.24 ± 0.68 vs 1.54 ± 0.64, p < 0.001 with similar increase for 3SAX+3LAX/2RR (1.29 ± 0.68 vs 1.55 ± 0.65, p < 0.001) and for 6SAX/2RR (1.19 ± 0.69 vs 1.53 ± 0.63, p < 0.001).
Conclusion: Quantitative perfusion mapping with 2RR sampling of data yields comparable perfusion values as 1RR sampling, allowing for the acquisition of additional views within the same perfusion scan. The diagnostic confidence for stress-induced ischemia increases when adding 3 additional views, short- or long axes, to the conventional 3 short-axis views. Thus, future development and clinical implementation of quantitative CMR perfusion should aim at increasing the LV coverage from the current standard using 3 short-axis views.
{"title":"Diagnostic confidence with quantitative cardiovascular magnetic resonance perfusion mapping increases with increased coverage of the left ventricle.","authors":"Henrik Engblom, Ellen Ostenfeld, Marcus Carlsson, Julius Åkesson, Anthony H Aletras, Hui Xue, Peter Kellman, Håkan Arheden","doi":"10.1016/j.jocmr.2024.101007","DOIUrl":"10.1016/j.jocmr.2024.101007","url":null,"abstract":"<p><strong>Background: </strong>Quantitative cardiovascular magnetic resonance (CMR) first pass perfusion maps are conventionally acquired with 3 short-axis (SAX) views (basal, mid, and apical) in every heartbeat (3SAX/1RR). Thus, a significant part of the left ventricle (LV) myocardium, including the apex, is not covered. The aims of this study were 1) to investigate if perfusion maps acquired with 3 short-axis views sampled every other RR-interval (2RR) yield comparable quantitative measures of myocardial perfusion (MP) as 1RR and 2) to assess if acquiring 3 additional perfusion views (i.e., total of 6) every other RR-interval (2RR) increases diagnostic confidence.</p><p><strong>Methods: </strong>In 287 patients with suspected ischemic heart disease stress and rest MP were performed on clinical indication on a 1.5T MR scanner. Eighty-three patients were examined by acquiring 3 short-axis perfusion maps with 1RR sampling (3SAX/1RR); for which also 2RR maps were reconstructed. Additionally, in 103 patients 3 short-axis and 3 long-axis (LAX; 2-, 3, and 4-chamber view) perfusion maps were acquired using 2RR sampling (3SAX + 3LAX/2RR) and in 101 patients 6 short-axis perfusion maps using 2RR sampling (6SAX/2RR) were acquired. The diagnostic confidence for ruling in or out stress-induced ischemia was scored according to a Likert scale (certain ischemia [2 points], probably ischemia [1 point], uncertain [0 points], probably no ischemia [1 point], certain no ischemia [2 points]).</p><p><strong>Results: </strong>There was a strong correlation (R = 0.99) between 3SAX/1RR and 3SAX/2RR for global MP (mL/min/g). The diagnostic confidence score increased significantly when the number of perfusion views was increased from 3 to 6 (1.24 ± 0.68 vs 1.54 ± 0.64, p < 0.001 with similar increase for 3SAX+3LAX/2RR (1.29 ± 0.68 vs 1.55 ± 0.65, p < 0.001) and for 6SAX/2RR (1.19 ± 0.69 vs 1.53 ± 0.63, p < 0.001).</p><p><strong>Conclusion: </strong>Quantitative perfusion mapping with 2RR sampling of data yields comparable perfusion values as 1RR sampling, allowing for the acquisition of additional views within the same perfusion scan. The diagnostic confidence for stress-induced ischemia increases when adding 3 additional views, short- or long axes, to the conventional 3 short-axis views. Thus, future development and clinical implementation of quantitative CMR perfusion should aim at increasing the LV coverage from the current standard using 3 short-axis views.</p>","PeriodicalId":15221,"journal":{"name":"Journal of Cardiovascular Magnetic Resonance","volume":" ","pages":"101007"},"PeriodicalIF":4.2,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11211224/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139691942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-03-07DOI: 10.1016/j.jocmr.2024.101033
Kei Nakata, Selcuk Kucukseymen, Xiaoying Cai, Tuyen Yankama, Jennifer Rodriguez, Eiryu Sai, Patrick Pierce, Long Ngo, Shiro Nakamori, Nadine Tung, Warren J Manning, Reza Nezafat
Background: Left ventricular ejection fraction (LVEF) is the most commonly clinically used imaging parameter for assessing cancer therapy-related cardiac dysfunction (CTRCD). However, LVEF declines may occur late, after substantial injury. This study sought to investigate cardiovascular magnetic resonance (CMR) imaging markers of subclinical cardiac injury in a miniature swine model.
Methods: Female Yucatan miniature swine (n = 14) received doxorubicin (2 mg/kg) every 3 weeks for 4 cycles. CMR, including cine, tissue characterization via T1 and T2 mapping, and late gadolinium enhancement (LGE) were performed on the same day as doxorubicin administration and 3 weeks after the final chemotherapy cycle. In addition, magnetic resonance spectroscopy (MRS) was performed during the 3 weeks after the final chemotherapy in 7 pigs. A single CMR and MRS exam were also performed in 3 Yucatan miniature swine that were age- and weight-matched to the final imaging exam of the doxorubicin-treated swine to serve as controls. CTRCD was defined as histological early morphologic changes, including cytoplasmic vacuolization and myofibrillar loss of myocytes, based on post-mortem analysis of humanely euthanized pigs after the final CMR exam.
Results: Of 13 swine completing 5 serial CMR scans, 10 (77%) had histological evidence of CTRCD. Three animals had neither histological evidence nor changes in LVEF from baseline. No absolute LVEF <40% or LGE was observed. Native T1, extracellular volume (ECV), and T2 at 12 weeks were significantly higher in swine with CTRCD than those without CTRCD (1178 ms vs. 1134 ms, p = 0.002, 27.4% vs. 24.5%, p = 0.03, and 38.1 ms vs. 36.4 ms, p = 0.02, respectively). There were no significant changes in strain parameters. The temporal trajectories in native T1, ECV, and T2 in swine with CTRCD showed similar and statistically significant increases. At the same time, there were no differences in their temporal changes between those with and without CTRCD. MRS myocardial triglyceride content substantially differed among controls, swine with and without CTRCD (0.89%, 0.30%, 0.54%, respectively, analysis of variance, p = 0.01), and associated with the severity of histological findings and incidence of vacuolated cardiomyocytes.
Conclusion: Serial CMR imaging alone has a limited ability to detect histologic CTRCD beyond LVEF. Integrating MRS myocardial triglyceride content may be useful for detection of early potential CTRCD.
{"title":"Cardiovascular magnetic resonance characterization of myocardial tissue injury in a miniature swine model of cancer therapy-related cardiovascular toxicity.","authors":"Kei Nakata, Selcuk Kucukseymen, Xiaoying Cai, Tuyen Yankama, Jennifer Rodriguez, Eiryu Sai, Patrick Pierce, Long Ngo, Shiro Nakamori, Nadine Tung, Warren J Manning, Reza Nezafat","doi":"10.1016/j.jocmr.2024.101033","DOIUrl":"10.1016/j.jocmr.2024.101033","url":null,"abstract":"<p><strong>Background: </strong>Left ventricular ejection fraction (LVEF) is the most commonly clinically used imaging parameter for assessing cancer therapy-related cardiac dysfunction (CTRCD). However, LVEF declines may occur late, after substantial injury. This study sought to investigate cardiovascular magnetic resonance (CMR) imaging markers of subclinical cardiac injury in a miniature swine model.</p><p><strong>Methods: </strong>Female Yucatan miniature swine (n = 14) received doxorubicin (2 mg/kg) every 3 weeks for 4 cycles. CMR, including cine, tissue characterization via T<sub>1</sub> and T<sub>2</sub> mapping, and late gadolinium enhancement (LGE) were performed on the same day as doxorubicin administration and 3 weeks after the final chemotherapy cycle. In addition, magnetic resonance spectroscopy (MRS) was performed during the 3 weeks after the final chemotherapy in 7 pigs. A single CMR and MRS exam were also performed in 3 Yucatan miniature swine that were age- and weight-matched to the final imaging exam of the doxorubicin-treated swine to serve as controls. CTRCD was defined as histological early morphologic changes, including cytoplasmic vacuolization and myofibrillar loss of myocytes, based on post-mortem analysis of humanely euthanized pigs after the final CMR exam.</p><p><strong>Results: </strong>Of 13 swine completing 5 serial CMR scans, 10 (77%) had histological evidence of CTRCD. Three animals had neither histological evidence nor changes in LVEF from baseline. No absolute LVEF <40% or LGE was observed. Native T<sub>1</sub>, extracellular volume (ECV), and T<sub>2</sub> at 12 weeks were significantly higher in swine with CTRCD than those without CTRCD (1178 ms vs. 1134 ms, p = 0.002, 27.4% vs. 24.5%, p = 0.03, and 38.1 ms vs. 36.4 ms, p = 0.02, respectively). There were no significant changes in strain parameters. The temporal trajectories in native T<sub>1</sub>, ECV, and T<sub>2</sub> in swine with CTRCD showed similar and statistically significant increases. At the same time, there were no differences in their temporal changes between those with and without CTRCD. MRS myocardial triglyceride content substantially differed among controls, swine with and without CTRCD (0.89%, 0.30%, 0.54%, respectively, analysis of variance, p = 0.01), and associated with the severity of histological findings and incidence of vacuolated cardiomyocytes.</p><p><strong>Conclusion: </strong>Serial CMR imaging alone has a limited ability to detect histologic CTRCD beyond LVEF. Integrating MRS myocardial triglyceride content may be useful for detection of early potential CTRCD.</p>","PeriodicalId":15221,"journal":{"name":"Journal of Cardiovascular Magnetic Resonance","volume":" ","pages":"101033"},"PeriodicalIF":6.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11126930/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140068415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-03-24DOI: 10.1016/j.jocmr.2024.101040
Sameer Zaman, Kavitha Vimalesvaran, Digby Chappell, Marta Varela, Nicholas S Peters, Hunain Shiwani, Kristopher D Knott, Rhodri H Davies, James C Moon, Anil A Bharath, Nick Wf Linton, Darrel P Francis, Graham D Cole, James P Howard
<p><strong>Background: </strong>Late gadolinium enhancement (LGE) of the myocardium has significant diagnostic and prognostic implications, with even small areas of enhancement being important. Distinguishing between definitely normal and definitely abnormal LGE images is usually straightforward, but diagnostic uncertainty arises when reporters are not sure whether the observed LGE is genuine or not. This uncertainty might be resolved by repetition (to remove artifact) or further acquisition of intersecting images, but this must take place before the scan finishes. Real-time quality assurance by humans is a complex task requiring training and experience, so being able to identify which images have an intermediate likelihood of LGE while the scan is ongoing, without the presence of an expert is of high value. This decision-support could prompt immediate image optimization or acquisition of supplementary images to confirm or refute the presence of genuine LGE. This could reduce ambiguity in reports.</p><p><strong>Methods: </strong>Short-axis, phase-sensitive inversion recovery late gadolinium images were extracted from our clinical cardiac magnetic resonance (CMR) database and shuffled. Two, independent, blinded experts scored each individual slice for "LGE likelihood" on a visual analog scale, from 0 (absolute certainty of no LGE) to 100 (absolute certainty of LGE), with 50 representing clinical equipoise. The scored images were split into two classes-either "high certainty" of whether LGE was present or not, or "low certainty." The dataset was split into training, validation, and test sets (70:15:15). A deep learning binary classifier based on the EfficientNetV2 convolutional neural network architecture was trained to distinguish between these categories. Classifier performance on the test set was evaluated by calculating the accuracy, precision, recall, F1-score, and area under the receiver operating characteristics curve (ROC AUC). Performance was also evaluated on an external test set of images from a different center.</p><p><strong>Results: </strong>One thousand six hundred and forty-five images (from 272 patients) were labeled and split at the patient level into training (1151 images), validation (247 images), and test (247 images) sets for the deep learning binary classifier. Of these, 1208 images were "high certainty" (255 for LGE, 953 for no LGE), and 437 were "low certainty". An external test comprising 247 images from 41 patients from another center was also employed. After 100 epochs, the performance on the internal test set was accuracy = 0.94, recall = 0.80, precision = 0.97, F1-score = 0.87, and ROC AUC = 0.94. The classifier also performed robustly on the external test set (accuracy = 0.91, recall = 0.73, precision = 0.93, F1-score = 0.82, and ROC AUC = 0.91). These results were benchmarked against a reference inter-expert accuracy of 0.86.</p><p><strong>Conclusion: </strong>Deep learning shows potential to automate quality control
{"title":"Quality assurance of late gadolinium enhancement cardiac magnetic resonance images: a deep learning classifier for confidence in the presence or absence of abnormality with potential to prompt real-time image optimization.","authors":"Sameer Zaman, Kavitha Vimalesvaran, Digby Chappell, Marta Varela, Nicholas S Peters, Hunain Shiwani, Kristopher D Knott, Rhodri H Davies, James C Moon, Anil A Bharath, Nick Wf Linton, Darrel P Francis, Graham D Cole, James P Howard","doi":"10.1016/j.jocmr.2024.101040","DOIUrl":"10.1016/j.jocmr.2024.101040","url":null,"abstract":"<p><strong>Background: </strong>Late gadolinium enhancement (LGE) of the myocardium has significant diagnostic and prognostic implications, with even small areas of enhancement being important. Distinguishing between definitely normal and definitely abnormal LGE images is usually straightforward, but diagnostic uncertainty arises when reporters are not sure whether the observed LGE is genuine or not. This uncertainty might be resolved by repetition (to remove artifact) or further acquisition of intersecting images, but this must take place before the scan finishes. Real-time quality assurance by humans is a complex task requiring training and experience, so being able to identify which images have an intermediate likelihood of LGE while the scan is ongoing, without the presence of an expert is of high value. This decision-support could prompt immediate image optimization or acquisition of supplementary images to confirm or refute the presence of genuine LGE. This could reduce ambiguity in reports.</p><p><strong>Methods: </strong>Short-axis, phase-sensitive inversion recovery late gadolinium images were extracted from our clinical cardiac magnetic resonance (CMR) database and shuffled. Two, independent, blinded experts scored each individual slice for \"LGE likelihood\" on a visual analog scale, from 0 (absolute certainty of no LGE) to 100 (absolute certainty of LGE), with 50 representing clinical equipoise. The scored images were split into two classes-either \"high certainty\" of whether LGE was present or not, or \"low certainty.\" The dataset was split into training, validation, and test sets (70:15:15). A deep learning binary classifier based on the EfficientNetV2 convolutional neural network architecture was trained to distinguish between these categories. Classifier performance on the test set was evaluated by calculating the accuracy, precision, recall, F1-score, and area under the receiver operating characteristics curve (ROC AUC). Performance was also evaluated on an external test set of images from a different center.</p><p><strong>Results: </strong>One thousand six hundred and forty-five images (from 272 patients) were labeled and split at the patient level into training (1151 images), validation (247 images), and test (247 images) sets for the deep learning binary classifier. Of these, 1208 images were \"high certainty\" (255 for LGE, 953 for no LGE), and 437 were \"low certainty\". An external test comprising 247 images from 41 patients from another center was also employed. After 100 epochs, the performance on the internal test set was accuracy = 0.94, recall = 0.80, precision = 0.97, F1-score = 0.87, and ROC AUC = 0.94. The classifier also performed robustly on the external test set (accuracy = 0.91, recall = 0.73, precision = 0.93, F1-score = 0.82, and ROC AUC = 0.91). These results were benchmarked against a reference inter-expert accuracy of 0.86.</p><p><strong>Conclusion: </strong>Deep learning shows potential to automate quality control","PeriodicalId":15221,"journal":{"name":"Journal of Cardiovascular Magnetic Resonance","volume":" ","pages":"101040"},"PeriodicalIF":6.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11129090/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140207013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-01-17DOI: 10.1016/j.jocmr.2024.100998
Francisco Contijoch, Volker Rasche, Nicole Seiberlich, Dana C Peters
Cardiac Magnetic Resonance (CMR) protocols can be lengthy and complex, which has driven the research community to develop new technologies to make these protocols more efficient and patient-friendly. Two different approaches to improving CMR have been proposed, specifically "all-in-one" CMR, where several contrasts and/or motion states are acquired simultaneously, and "real-time" CMR, in which the examination is accelerated to avoid the need for breathholding and/or cardiac gating. The goal of this two-part manuscript is to describe these two different types of emerging rapid CMR protocols. To this end, the vision of all-in-one and real-time imaging are described, along with techniques which have been devised and tested along the pathway of clinical implementation. The pros and cons of the different methods are presented, and the remaining open needs of each are detailed. Part 1 tackles the "All-in-One" approaches, and Part 2 focuses on the "Real-Time" approaches along with an overall summary of these emerging methods.
{"title":"The future of CMR: All-in-one vs. real-time CMR (Part 2).","authors":"Francisco Contijoch, Volker Rasche, Nicole Seiberlich, Dana C Peters","doi":"10.1016/j.jocmr.2024.100998","DOIUrl":"10.1016/j.jocmr.2024.100998","url":null,"abstract":"<p><p>Cardiac Magnetic Resonance (CMR) protocols can be lengthy and complex, which has driven the research community to develop new technologies to make these protocols more efficient and patient-friendly. Two different approaches to improving CMR have been proposed, specifically \"all-in-one\" CMR, where several contrasts and/or motion states are acquired simultaneously, and \"real-time\" CMR, in which the examination is accelerated to avoid the need for breathholding and/or cardiac gating. The goal of this two-part manuscript is to describe these two different types of emerging rapid CMR protocols. To this end, the vision of all-in-one and real-time imaging are described, along with techniques which have been devised and tested along the pathway of clinical implementation. The pros and cons of the different methods are presented, and the remaining open needs of each are detailed. Part 1 tackles the \"All-in-One\" approaches, and Part 2 focuses on the \"Real-Time\" approaches along with an overall summary of these emerging methods.</p>","PeriodicalId":15221,"journal":{"name":"Journal of Cardiovascular Magnetic Resonance","volume":" ","pages":"100998"},"PeriodicalIF":4.2,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11211235/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139491397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-03-07DOI: 10.1016/j.jocmr.2024.101035
Babak Salam, Dmitrij Kravchenko, Sebastian Nowak, Alois M Sprinkart, Leonie Weinhold, Anna Odenthal, Narine Mesropyan, Leon M Bischoff, Ulrike Attenberger, Daniel L Kuetting, Julian A Luetkens, Alexander Isaak
Background: Patients are increasingly using Generative Pre-trained Transformer 4 (GPT-4) to better understand their own radiology findings.
Purpose: To evaluate the performance of GPT-4 in transforming cardiovascular magnetic resonance (CMR) reports into text that is comprehensible to medical laypersons.
Methods: ChatGPT with GPT-4 architecture was used to generate three different explained versions of 20 various CMR reports (n = 60) using the same prompt: "Explain the radiology report in a language understandable to a medical layperson". Two cardiovascular radiologists evaluated understandability, factual correctness, completeness of relevant findings, and lack of potential harm, while 13 medical laypersons evaluated the understandability of the original and the GPT-4 reports on a Likert scale (1 "strongly disagree", 5 "strongly agree"). Readability was measured using the Automated Readability Index (ARI). Linear mixed-effects models (values given as median [interquartile range]) and intraclass correlation coefficient (ICC) were used for statistical analysis.
Results: GPT-4 reports were generated on average in 52 s ± 13. GPT-4 reports achieved a lower ARI score (10 [9-12] vs 5 [4-6]; p < 0.001) and were subjectively easier to understand for laypersons than original reports (1 [1] vs 4 [4,5]; p < 0.001). Eighteen out of 20 (90%) standard CMR reports and 2/60 (3%) GPT-generated reports had an ARI score corresponding to the 8th grade level or higher. Radiologists' ratings of the GPT-4 reports reached high levels for correctness (5 [4, 5]), completeness (5 [5]), and lack of potential harm (5 [5]); with "strong agreement" for factual correctness in 94% (113/120) and completeness of relevant findings in 81% (97/120) of reports. Test-retest agreement for layperson understandability ratings between the three simplified reports generated from the same original report was substantial (ICC: 0.62; p < 0.001). Interrater agreement between radiologists was almost perfect for lack of potential harm (ICC: 0.93, p < 0.001) and moderate to substantial for completeness (ICC: 0.76, p < 0.001) and factual correctness (ICC: 0.55, p < 0.001).
Conclusion: GPT-4 can reliably transform complex CMR reports into more understandable, layperson-friendly language while largely maintaining factual correctness and completeness, and can thus help convey patient-relevant radiology information in an easy-to-understand manner.
{"title":"Generative Pre-trained Transformer 4 makes cardiovascular magnetic resonance reports easy to understand.","authors":"Babak Salam, Dmitrij Kravchenko, Sebastian Nowak, Alois M Sprinkart, Leonie Weinhold, Anna Odenthal, Narine Mesropyan, Leon M Bischoff, Ulrike Attenberger, Daniel L Kuetting, Julian A Luetkens, Alexander Isaak","doi":"10.1016/j.jocmr.2024.101035","DOIUrl":"10.1016/j.jocmr.2024.101035","url":null,"abstract":"<p><strong>Background: </strong>Patients are increasingly using Generative Pre-trained Transformer 4 (GPT-4) to better understand their own radiology findings.</p><p><strong>Purpose: </strong>To evaluate the performance of GPT-4 in transforming cardiovascular magnetic resonance (CMR) reports into text that is comprehensible to medical laypersons.</p><p><strong>Methods: </strong>ChatGPT with GPT-4 architecture was used to generate three different explained versions of 20 various CMR reports (n = 60) using the same prompt: \"Explain the radiology report in a language understandable to a medical layperson\". Two cardiovascular radiologists evaluated understandability, factual correctness, completeness of relevant findings, and lack of potential harm, while 13 medical laypersons evaluated the understandability of the original and the GPT-4 reports on a Likert scale (1 \"strongly disagree\", 5 \"strongly agree\"). Readability was measured using the Automated Readability Index (ARI). Linear mixed-effects models (values given as median [interquartile range]) and intraclass correlation coefficient (ICC) were used for statistical analysis.</p><p><strong>Results: </strong>GPT-4 reports were generated on average in 52 s ± 13. GPT-4 reports achieved a lower ARI score (10 [9-12] vs 5 [4-6]; p < 0.001) and were subjectively easier to understand for laypersons than original reports (1 [1] vs 4 [4,5]; p < 0.001). Eighteen out of 20 (90%) standard CMR reports and 2/60 (3%) GPT-generated reports had an ARI score corresponding to the 8th grade level or higher. Radiologists' ratings of the GPT-4 reports reached high levels for correctness (5 [4, 5]), completeness (5 [5]), and lack of potential harm (5 [5]); with \"strong agreement\" for factual correctness in 94% (113/120) and completeness of relevant findings in 81% (97/120) of reports. Test-retest agreement for layperson understandability ratings between the three simplified reports generated from the same original report was substantial (ICC: 0.62; p < 0.001). Interrater agreement between radiologists was almost perfect for lack of potential harm (ICC: 0.93, p < 0.001) and moderate to substantial for completeness (ICC: 0.76, p < 0.001) and factual correctness (ICC: 0.55, p < 0.001).</p><p><strong>Conclusion: </strong>GPT-4 can reliably transform complex CMR reports into more understandable, layperson-friendly language while largely maintaining factual correctness and completeness, and can thus help convey patient-relevant radiology information in an easy-to-understand manner.</p>","PeriodicalId":15221,"journal":{"name":"Journal of Cardiovascular Magnetic Resonance","volume":" ","pages":"101035"},"PeriodicalIF":6.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10981113/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140068416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-03-16DOI: 10.1016/j.jocmr.2024.101037
Christopher W Roy, Bastien Milani, Jérôme Yerly, Salim Si-Mohamed, Ludovica Romanin, Aurélien Bustin, Estelle Tenisch, Tobias Rutz, Milan Prsa, Matthias Stuber
Background: Free-running cardiac and respiratory motion-resolved whole-heart five-dimensional (5D) cardiovascular magnetic resonance (CMR) can reduce scan planning and provide a means of evaluating respiratory-driven changes in clinical parameters of interest. However, respiratory-resolved imaging can be limited by user-defined parameters which create trade-offs between residual artifact and motion blur. In this work, we develop and validate strategies for both correction of intra-bin and compensation of inter-bin respiratory motion to improve the quality of 5D CMR.
Methods: Each component of the reconstruction framework was systematically validated and compared to the previously established 5D approach using simulated free-running data (N = 50) and a cohort of 32 patients with congenital heart disease. The impact of intra-bin respiratory motion correction was evaluated in terms of image sharpness while inter-bin respiratory motion compensation was evaluated in terms of reconstruction error, compression of respiratory motion, and image sharpness. The full reconstruction framework (intra-acquisition correction and inter-acquisition compensation of respiratory motion [IIMC] 5D) was evaluated in terms of image sharpness and scoring of image quality by expert reviewers.
Results: Intra-bin motion correction provides significantly (p < 0.001) sharper images for both simulated and patient data. Inter-bin motion compensation results in significant (p < 0.001) lower reconstruction error, lower motion compression, and higher sharpness in both simulated (10/11) and patient (9/11) data. The combined framework resulted in significantly (p < 0.001) sharper IIMC 5D reconstructions (End-expiration (End-Exp): 0.45 ± 0.09, End-inspiration (End-Ins): 0.46 ± 0.10) relative to the previously established 5D implementation (End-Exp: 0.43 ± 0.08, End-Ins: 0.39 ± 0.09). Similarly, image scoring by three expert reviewers was significantly (p < 0.001) higher using IIMC 5D (End-Exp: 3.39 ± 0.44, End-Ins: 3.32 ± 0.45) relative to 5D images (End-Exp: 3.02 ± 0.54, End-Ins: 2.45 ± 0.52).
Conclusion: The proposed IIMC reconstruction significantly improves the quality of 5D whole-heart MRI. This may be exploited for higher resolution or abbreviated scanning. Further investigation of the diagnostic impact of this framework and comparison to gold standards is needed to understand its full clinical utility, including exploration of respiratory-driven changes in physiological measurements of interest.
{"title":"Intra-bin correction and inter-bin compensation of respiratory motion in free-running five-dimensional whole-heart magnetic resonance imaging.","authors":"Christopher W Roy, Bastien Milani, Jérôme Yerly, Salim Si-Mohamed, Ludovica Romanin, Aurélien Bustin, Estelle Tenisch, Tobias Rutz, Milan Prsa, Matthias Stuber","doi":"10.1016/j.jocmr.2024.101037","DOIUrl":"10.1016/j.jocmr.2024.101037","url":null,"abstract":"<p><strong>Background: </strong>Free-running cardiac and respiratory motion-resolved whole-heart five-dimensional (5D) cardiovascular magnetic resonance (CMR) can reduce scan planning and provide a means of evaluating respiratory-driven changes in clinical parameters of interest. However, respiratory-resolved imaging can be limited by user-defined parameters which create trade-offs between residual artifact and motion blur. In this work, we develop and validate strategies for both correction of intra-bin and compensation of inter-bin respiratory motion to improve the quality of 5D CMR.</p><p><strong>Methods: </strong>Each component of the reconstruction framework was systematically validated and compared to the previously established 5D approach using simulated free-running data (N = 50) and a cohort of 32 patients with congenital heart disease. The impact of intra-bin respiratory motion correction was evaluated in terms of image sharpness while inter-bin respiratory motion compensation was evaluated in terms of reconstruction error, compression of respiratory motion, and image sharpness. The full reconstruction framework (intra-acquisition correction and inter-acquisition compensation of respiratory motion [IIMC] 5D) was evaluated in terms of image sharpness and scoring of image quality by expert reviewers.</p><p><strong>Results: </strong>Intra-bin motion correction provides significantly (p < 0.001) sharper images for both simulated and patient data. Inter-bin motion compensation results in significant (p < 0.001) lower reconstruction error, lower motion compression, and higher sharpness in both simulated (10/11) and patient (9/11) data. The combined framework resulted in significantly (p < 0.001) sharper IIMC 5D reconstructions (End-expiration (End-Exp): 0.45 ± 0.09, End-inspiration (End-Ins): 0.46 ± 0.10) relative to the previously established 5D implementation (End-Exp: 0.43 ± 0.08, End-Ins: 0.39 ± 0.09). Similarly, image scoring by three expert reviewers was significantly (p < 0.001) higher using IIMC 5D (End-Exp: 3.39 ± 0.44, End-Ins: 3.32 ± 0.45) relative to 5D images (End-Exp: 3.02 ± 0.54, End-Ins: 2.45 ± 0.52).</p><p><strong>Conclusion: </strong>The proposed IIMC reconstruction significantly improves the quality of 5D whole-heart MRI. This may be exploited for higher resolution or abbreviated scanning. Further investigation of the diagnostic impact of this framework and comparison to gold standards is needed to understand its full clinical utility, including exploration of respiratory-driven changes in physiological measurements of interest.</p>","PeriodicalId":15221,"journal":{"name":"Journal of Cardiovascular Magnetic Resonance","volume":" ","pages":"101037"},"PeriodicalIF":6.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10987330/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140158223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}