首页 > 最新文献

Journal of cell science最新文献

英文 中文
Imaging interorganelle contacts at a glance. 器官间接触成像一目了然。
IF 3.3 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-10-15 Epub Date: 2024-10-23 DOI: 10.1242/jcs.262020
Maria Clara Zanellati, Chih-Hsuan Hsu, Sarah Cohen

Eukaryotic cells are compartmentalized into membrane-bound organelles that must coordinate their responses to stimuli. One way that organelles communicate is via membrane contact sites (MCSs), sites of close apposition between organelles used for the exchange of ions, lipids and information. In this Cell Science at a Glance article and the accompanying poster, we describe an explosion of new methods that have led to exciting progress in this area and discuss key examples of how these methods have advanced our understanding of MCSs. We discuss how diffraction-limited and super-resolution fluorescence imaging approaches have provided important insight into the biology of interorganelle communication. We also describe how the development of multiple proximity-based methods has enabled the detection of MCSs with high accuracy and precision. Finally, we assess how recent advances in electron microscopy (EM), considered the gold standard for detecting MCSs, have allowed the visualization of MCSs and associated proteins in 3D at ever greater resolution.

真核细胞被分隔成与膜结合的细胞器,这些细胞器必须协调它们对刺激的反应。细胞器交流的一种方式是通过膜接触点(MCSs),即细胞器之间用于交换离子、脂质和信息的紧密结合点。在这篇《细胞科学一瞥》(Cell Science at a Glance)文章和随附的海报中,我们介绍了在这一领域取得令人振奋进展的大量新方法,并讨论了这些方法如何促进我们对膜接触点(MCSs)的理解的关键实例。我们讨论了衍射限制和超分辨率荧光成像方法如何为细胞器间通信的生物学提供了重要的洞察力。我们还描述了多种基于邻近性的方法的发展是如何实现高精度、高准确性地检测 MCS 的。最后,我们评估了电子显微镜(EM)的最新进展(EM被认为是检测MCS的黄金标准)是如何以更高的分辨率实现MCS及相关蛋白的三维可视化的。
{"title":"Imaging interorganelle contacts at a glance.","authors":"Maria Clara Zanellati, Chih-Hsuan Hsu, Sarah Cohen","doi":"10.1242/jcs.262020","DOIUrl":"10.1242/jcs.262020","url":null,"abstract":"<p><p>Eukaryotic cells are compartmentalized into membrane-bound organelles that must coordinate their responses to stimuli. One way that organelles communicate is via membrane contact sites (MCSs), sites of close apposition between organelles used for the exchange of ions, lipids and information. In this Cell Science at a Glance article and the accompanying poster, we describe an explosion of new methods that have led to exciting progress in this area and discuss key examples of how these methods have advanced our understanding of MCSs. We discuss how diffraction-limited and super-resolution fluorescence imaging approaches have provided important insight into the biology of interorganelle communication. We also describe how the development of multiple proximity-based methods has enabled the detection of MCSs with high accuracy and precision. Finally, we assess how recent advances in electron microscopy (EM), considered the gold standard for detecting MCSs, have allowed the visualization of MCSs and associated proteins in 3D at ever greater resolution.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":"137 20","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529887/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expanding the field of view - a simple approach for interactive visualisation of electron microscopy data. 扩大视野:电子显微镜数据交互可视化的简单方法。
IF 3.3 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-10-15 Epub Date: 2024-10-23 DOI: 10.1242/jcs.262198
Jens Wohlmann

The unparalleled resolving power of electron microscopy is both a blessing and a curse. At 30,000× magnification, 1 µm corresponds to 3 cm in the image and the field of view is only a few micrometres or less, resulting in an inevitable reduction in the spatial data available in an image. Consequently, the gain in resolution is at the cost of loss of the contextual 'reference space', which is crucial for understanding the embedded structures of interest. This problem is particularly pronounced in immunoelectron microscopy, where the detection of a gold particle is crucial for the localisation of specific molecules. The common solution of presenting high-magnification and overview images side by side often insufficiently represents the cellular environment. To address these limitations, we propose here an interactive visualization strategy inspired by digital maps and GPS modules which enables seamless transitions between different magnifications by dynamically linking virtual low magnification overview images with primary high-resolution data. By enabling dynamic browsing, it offers the potential for a deeper understanding of cellular landscapes leading to more comprehensive analysis of the primary ultrastructural data.

电子显微镜无与伦比的分辨能力是福也是祸。在放大 30,000 倍的情况下,1 微米相当于图像中的 3 厘米,而视场只有几微米或更小,这就不可避免地减少了图像中可用的空间数据。因此,分辨率的提高是以背景 "参考空间 "的丧失为代价的,而背景 "参考空间 "对于理解感兴趣的嵌入结构至关重要。这一问题在免疫电子显微镜中尤为突出,因为金颗粒的检测对于特定分子的定位至关重要。通常的解决方案是将高倍率图像和概览图像并排显示,但这往往不能充分反映细胞环境。为了解决这些局限性,我们在此提出一种受数字地图和 GPS 模块启发的交互式可视化策略,通过动态连接虚拟低倍概观图像和原始高分辨率数据,实现不同放大倍率之间的无缝转换。通过动态浏览,它为深入了解细胞景观提供了可能,从而对原始超微结构数据进行更全面的分析。
{"title":"Expanding the field of view - a simple approach for interactive visualisation of electron microscopy data.","authors":"Jens Wohlmann","doi":"10.1242/jcs.262198","DOIUrl":"10.1242/jcs.262198","url":null,"abstract":"<p><p>The unparalleled resolving power of electron microscopy is both a blessing and a curse. At 30,000× magnification, 1 µm corresponds to 3 cm in the image and the field of view is only a few micrometres or less, resulting in an inevitable reduction in the spatial data available in an image. Consequently, the gain in resolution is at the cost of loss of the contextual 'reference space', which is crucial for understanding the embedded structures of interest. This problem is particularly pronounced in immunoelectron microscopy, where the detection of a gold particle is crucial for the localisation of specific molecules. The common solution of presenting high-magnification and overview images side by side often insufficiently represents the cellular environment. To address these limitations, we propose here an interactive visualization strategy inspired by digital maps and GPS modules which enables seamless transitions between different magnifications by dynamically linking virtual low magnification overview images with primary high-resolution data. By enabling dynamic browsing, it offers the potential for a deeper understanding of cellular landscapes leading to more comprehensive analysis of the primary ultrastructural data.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529876/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Imaging cell architecture and dynamics. 细胞结构和动态成像
IF 3.3 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-10-15 Epub Date: 2024-10-30 DOI: 10.1242/jcs.263575
Lucy Collinson, Guillaume Jacquemet
{"title":"Imaging cell architecture and dynamics.","authors":"Lucy Collinson, Guillaume Jacquemet","doi":"10.1242/jcs.263575","DOIUrl":"https://doi.org/10.1242/jcs.263575","url":null,"abstract":"","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":"137 20","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142545666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell-cell junctions in focus - imaging junctional architectures and dynamics at high resolution. 聚焦细胞-细胞连接--高分辨率成像连接结构和动态。
IF 3.3 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-10-15 Epub Date: 2024-10-31 DOI: 10.1242/jcs.262041
Vera Janssen, Stephan Huveneers

Studies utilizing electron microscopy and live fluorescence microscopy have significantly enhanced our understanding of the molecular mechanisms that regulate junctional dynamics during homeostasis, development and disease. To fully grasp the enormous complexity of cell-cell adhesions, it is crucial to study the nanoscale architectures of tight junctions, adherens junctions and desmosomes. It is important to integrate these junctional architectures with the membrane morphology and cellular topography in which the junctions are embedded. In this Review, we explore new insights from studies using super-resolution and volume electron microscopy into the nanoscale organization of these junctional complexes as well as the roles of the junction-associated cytoskeleton, neighboring organelles and the plasma membrane. Furthermore, we provide an overview of junction- and cytoskeletal-related biosensors and optogenetic probes that have contributed to these advances and discuss how these microscopy tools enhance our understanding of junctional dynamics across cellular environments.

利用电子显微镜和活体荧光显微镜进行的研究极大地促进了我们对平衡、发育和疾病过程中调节连接动态的分子机制的了解。要全面了解细胞-细胞粘附的巨大复杂性,研究紧密连接、粘附连接和脱膜小体的纳米级结构至关重要。重要的是要将这些连接架构与连接所嵌入的膜形态和细胞形貌结合起来。在这篇综述中,我们将探讨利用超分辨率和体电子显微镜对这些连接复合体的纳米级组织以及连接相关细胞骨架、邻近细胞器和质膜的作用进行研究的新见解。此外,我们还概述了有助于取得这些进展的交界和细胞骨架相关生物传感器和光遗传探针,并讨论了这些显微镜工具如何增进我们对细胞环境中交界动态的了解。
{"title":"Cell-cell junctions in focus - imaging junctional architectures and dynamics at high resolution.","authors":"Vera Janssen, Stephan Huveneers","doi":"10.1242/jcs.262041","DOIUrl":"10.1242/jcs.262041","url":null,"abstract":"<p><p>Studies utilizing electron microscopy and live fluorescence microscopy have significantly enhanced our understanding of the molecular mechanisms that regulate junctional dynamics during homeostasis, development and disease. To fully grasp the enormous complexity of cell-cell adhesions, it is crucial to study the nanoscale architectures of tight junctions, adherens junctions and desmosomes. It is important to integrate these junctional architectures with the membrane morphology and cellular topography in which the junctions are embedded. In this Review, we explore new insights from studies using super-resolution and volume electron microscopy into the nanoscale organization of these junctional complexes as well as the roles of the junction-associated cytoskeleton, neighboring organelles and the plasma membrane. Furthermore, we provide an overview of junction- and cytoskeletal-related biosensors and optogenetic probes that have contributed to these advances and discuss how these microscopy tools enhance our understanding of junctional dynamics across cellular environments.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":"137 20","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142557926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel 3D imaging approach for quantification of GLUT4 levels across the intact myocardium. 用于量化完整心肌中 GLUT4 水平的新型三维成像方法。
IF 3.3 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-10-15 Epub Date: 2024-08-05 DOI: 10.1242/jcs.262146
Angéline Geiser, Susan Currie, Hadi Al-Hasani, Alexandra Chadt, Gail McConnell, Gwyn W Gould

Cellular heterogeneity is a well-accepted feature of tissues, and both transcriptional and metabolic diversity have been revealed by numerous approaches, including optical imaging. However, the high magnification objective lenses needed for high-resolution imaging provides information from only small layers of tissue, which can result in poor cell statistics. There is therefore an unmet need for an imaging modality that can provide detailed molecular and cellular insight within intact tissue samples in 3D. Using GFP-tagged GLUT4 as proof of concept, we present here a novel optical mesoscopy approach that allows precise measurement of the spatial location of GLUT4 within specific anatomical structures across the myocardium in ultrathick sections (5 mm×5 mm×3 mm) of intact mouse heart. We reveal distinct GLUT4 distribution patterns across cardiac walls and highlight specific changes in GLUT4 expression levels in response to high fat diet-feeding, and we identify sex-dependent differences in expression patterns. This method is applicable to any target that can be labelled for light microscopy, and to other complex tissues when organ structure needs to be considered simultaneously with cellular detail.

细胞异质性是公认的组织特征,包括光学成像在内的多种方法都揭示了细胞转录和代谢的多样性。然而,高分辨率成像所需的高倍物镜只能提供小层组织的信息,这可能导致细胞统计不准确。因此,人们对一种成像方式的需求尚未得到满足,这种成像方式可以提供三维完整组织样本中详细的分子和细胞信息。我们以 GFP 标记的 GLUT4 作为概念验证,在此介绍一种新颖的光学中间镜方法,它能在完整小鼠心脏的超厚切片(5 mm x 5 mm x 3 mm)中精确测量 GLUT4 在心肌特定解剖结构中的空间位置。我们揭示了不同的 GLUT4 在心肌壁上的分布模式,并强调了 GLUT4 表达水平在高脂饮食喂养下的特定变化,我们还发现了表达模式的性别差异。这种方法适用于任何可在光镜下标记的目标,也适用于需要同时考虑器官结构和细胞细节的其他复杂组织。
{"title":"A novel 3D imaging approach for quantification of GLUT4 levels across the intact myocardium.","authors":"Angéline Geiser, Susan Currie, Hadi Al-Hasani, Alexandra Chadt, Gail McConnell, Gwyn W Gould","doi":"10.1242/jcs.262146","DOIUrl":"10.1242/jcs.262146","url":null,"abstract":"<p><p>Cellular heterogeneity is a well-accepted feature of tissues, and both transcriptional and metabolic diversity have been revealed by numerous approaches, including optical imaging. However, the high magnification objective lenses needed for high-resolution imaging provides information from only small layers of tissue, which can result in poor cell statistics. There is therefore an unmet need for an imaging modality that can provide detailed molecular and cellular insight within intact tissue samples in 3D. Using GFP-tagged GLUT4 as proof of concept, we present here a novel optical mesoscopy approach that allows precise measurement of the spatial location of GLUT4 within specific anatomical structures across the myocardium in ultrathick sections (5 mm×5 mm×3 mm) of intact mouse heart. We reveal distinct GLUT4 distribution patterns across cardiac walls and highlight specific changes in GLUT4 expression levels in response to high fat diet-feeding, and we identify sex-dependent differences in expression patterns. This method is applicable to any target that can be labelled for light microscopy, and to other complex tissues when organ structure needs to be considered simultaneously with cellular detail.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Myosin II tension sensors visualize force generation within the actin cytoskeleton in living cells. 肌球蛋白 II 张力传感器可视化活细胞中肌动蛋白细胞骨架内产生的力。
IF 3.3 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-10-15 Epub Date: 2024-10-30 DOI: 10.1242/jcs.262281
Ryan G Hart, Divya Kota, Fangjia Li, Mengdi Zhang, Diego Ramallo, Andrew J Price, Karla L Otterpohl, Steve J Smith, Alexander R Dunn, Mark O Huising, Jing Liu, Indra Chandrasekar

Nonmuscle myosin II (NMII) generates cytoskeletal forces that drive cell division, embryogenesis, muscle contraction and many other cellular functions. However, at present there is no method that can directly measure the forces generated by myosins in living cells. Here, we describe a Förster resonance energy transfer (FRET)-based tension sensor that can detect myosin-associated force along the filamentous actin network. Fluorescence lifetime imaging microscopy (FLIM)-FRET measurements indicate that the forces generated by NMII isoform B (NMIIB) exhibit significant spatial and temporal heterogeneity as a function of donor lifetime and fluorophore energy exchange. These measurements provide a proxy for inferred forces that vary widely along the actin cytoskeleton. This initial report highlights the potential utility of myosin-based tension sensors in elucidating the roles of cytoskeletal contractility in a wide variety of contexts.

非肌肉肌球蛋白 II 产生的细胞骨架力驱动着细胞分裂、胚胎发育、肌肉收缩和许多其他细胞功能。然而,目前还没有一种方法可以直接测量肌球蛋白在活细胞中产生的作用力。在这里,我们描述了一种基于佛斯特共振能量转移(FRET)的张力传感器,它可以沿着丝状肌动蛋白网络检测肌球蛋白相关的力。荧光寿命成像显微镜(FLIM)-FRET 测量结果表明,NMIIB 产生的力与供体寿命和荧光团能量交换有关,表现出显著的空间和时间异质性。这些测量结果为沿肌动蛋白细胞骨架广泛变化的推断力提供了替代物。这份初步报告强调了基于肌球蛋白的张力传感器在阐明细胞骨架收缩性在各种情况下的作用方面的潜在用途。
{"title":"Myosin II tension sensors visualize force generation within the actin cytoskeleton in living cells.","authors":"Ryan G Hart, Divya Kota, Fangjia Li, Mengdi Zhang, Diego Ramallo, Andrew J Price, Karla L Otterpohl, Steve J Smith, Alexander R Dunn, Mark O Huising, Jing Liu, Indra Chandrasekar","doi":"10.1242/jcs.262281","DOIUrl":"10.1242/jcs.262281","url":null,"abstract":"<p><p>Nonmuscle myosin II (NMII) generates cytoskeletal forces that drive cell division, embryogenesis, muscle contraction and many other cellular functions. However, at present there is no method that can directly measure the forces generated by myosins in living cells. Here, we describe a Förster resonance energy transfer (FRET)-based tension sensor that can detect myosin-associated force along the filamentous actin network. Fluorescence lifetime imaging microscopy (FLIM)-FRET measurements indicate that the forces generated by NMII isoform B (NMIIB) exhibit significant spatial and temporal heterogeneity as a function of donor lifetime and fluorophore energy exchange. These measurements provide a proxy for inferred forces that vary widely along the actin cytoskeleton. This initial report highlights the potential utility of myosin-based tension sensors in elucidating the roles of cytoskeletal contractility in a wide variety of contexts.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142377850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrastructural analysis of whole glomeruli using array tomography. 利用阵列断层扫描对整个肾小球进行超微结构分析。
IF 3.3 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-10-15 Epub Date: 2024-10-11 DOI: 10.1242/jcs.262154
Takayuki Miyaki, Nozomi Homma, Yuto Kawasaki, Mami Kishi, Junji Yamaguchi, Soichiro Kakuta, Tomoko Shindo, Makoto Sugiura, Juan Alejandro Oliva Trejo, Hisako Kaneda, Takuya Omotehara, Masaki Takechi, Takako Negishi-Koga, Muneaki Ishijima, Kazushi Aoto, Sachiko Iseki, Kosuke Kitamura, Satoru Muto, Mao Amagasa, Shiori Hotchi, Kanako Ogura, Shinsuke Shibata, Tatsuo Sakai, Yusuke Suzuki, Koichiro Ichimura

The renal glomerulus produces primary urine from blood plasma by ultrafiltration. The ultrastructure of the glomerulus is closely related to filtration function and disease development. The ultrastructure of glomeruli has mainly been evaluated using transmission electron microscopy; however, the volume that can be observed using transmission electron microscopy is extremely limited relative to the total volume of the glomerulus. Consequently, observing structures that exist in only one location in each glomerulus, such as the vascular pole, and evaluating low-density or localized lesions are challenging tasks. Array tomography (AT) is a technique used to analyze the ultrastructure of tissues and cells via scanning electron microscopy of serial sections. In this study, we present an AT workflow that is optimized for observing complete serial sections of the whole glomerulus, and we share several analytical examples that use the optimized AT workflow, demonstrating the usefulness of this approach. Overall, this AT workflow can be a powerful tool for structural and pathological evaluation of the glomerulus. This workflow is also expected to provide new insights into the ultrastructure of the glomerulus and its constituent cells.

肾小球通过超滤从血浆中产生原尿。肾小球的超微结构与过滤功能和疾病发展密切相关。肾小球的超微结构主要通过透射电子显微镜进行评估。然而,相对于肾小球的总体积而言,透射电子显微镜所能观察到的体积极为有限。因此,观察每个肾小球中仅存在于一个位置的结构(如血管极)以及评估低密度或局部病变都是极具挑战性的任务。阵列断层扫描(AT)是一种通过扫描电子显微镜连续切片分析组织和细胞超微结构的技术。在本研究中,我们提出了一种针对观察整个肾小球完整序列切片而优化的阵列断层成像工作流程,分享了几个使用优化后的阵列断层成像工作流程进行分析的实例,并展示了这种方法的实用性。总之,这种肾小球造影工作流程可以成为肾小球结构和病理评估的有力工具。该工作流程还有望为肾小球及其组成细胞的超微结构提供新的见解。
{"title":"Ultrastructural analysis of whole glomeruli using array tomography.","authors":"Takayuki Miyaki, Nozomi Homma, Yuto Kawasaki, Mami Kishi, Junji Yamaguchi, Soichiro Kakuta, Tomoko Shindo, Makoto Sugiura, Juan Alejandro Oliva Trejo, Hisako Kaneda, Takuya Omotehara, Masaki Takechi, Takako Negishi-Koga, Muneaki Ishijima, Kazushi Aoto, Sachiko Iseki, Kosuke Kitamura, Satoru Muto, Mao Amagasa, Shiori Hotchi, Kanako Ogura, Shinsuke Shibata, Tatsuo Sakai, Yusuke Suzuki, Koichiro Ichimura","doi":"10.1242/jcs.262154","DOIUrl":"10.1242/jcs.262154","url":null,"abstract":"<p><p>The renal glomerulus produces primary urine from blood plasma by ultrafiltration. The ultrastructure of the glomerulus is closely related to filtration function and disease development. The ultrastructure of glomeruli has mainly been evaluated using transmission electron microscopy; however, the volume that can be observed using transmission electron microscopy is extremely limited relative to the total volume of the glomerulus. Consequently, observing structures that exist in only one location in each glomerulus, such as the vascular pole, and evaluating low-density or localized lesions are challenging tasks. Array tomography (AT) is a technique used to analyze the ultrastructure of tissues and cells via scanning electron microscopy of serial sections. In this study, we present an AT workflow that is optimized for observing complete serial sections of the whole glomerulus, and we share several analytical examples that use the optimized AT workflow, demonstrating the usefulness of this approach. Overall, this AT workflow can be a powerful tool for structural and pathological evaluation of the glomerulus. This workflow is also expected to provide new insights into the ultrastructure of the glomerulus and its constituent cells.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142017583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correlative microscopy - illuminating the endomembrane system of plant seeds. 相关显微镜:照亮植物种子的内膜系统
IF 3.3 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-10-15 Epub Date: 2024-10-29 DOI: 10.1242/jcs.262251
Sonja Huber, Ulrike Hörmann-Dietrich, Eszter Kapusi, Eva Stöger, Elsa Arcalís

The endomembrane system of cereal seed endosperm is a highly plastic and dynamic system reflecting the high degree of specialization of this tissue. It is capable of coping with high levels of storage protein synthesis and undergoes rapid changes to accommodate these storage proteins in newly formed storage organelles such as endoplasmic reticulum-derived protein bodies or protein storage vacuoles. The study of endomembrane morphology in cereal endosperm is challenging due to the amount of starch that cereal seeds accumulate and the progressive desiccation of the tissue. Here, we present a comprehensive study of the endomembrane system of developing barley endosperm cells, complemented by correlative light and electron microscopy (CLEM) imaging. The use of genetically fused fluorescent protein tags in combination with the high resolution of electron microscopy brings ultrastructural research to a new level and can be used to generate novel insights in cell biology in general and in cereal seed research in particular.

谷物种子胚乳的内膜系统是一个高度可塑和动态的系统,反映了该组织的高度专业化。它能够应对高水平的蛋白质合成,并发生快速变化,以便在新形成的贮存细胞器(如源自ER的蛋白质体(PB)或蛋白质贮存泡(PSV))中容纳这些贮存蛋白质。由于谷物种子积累了大量淀粉,而且组织会逐渐干燥,因此研究谷物胚乳的内膜形态具有挑战性。在此,我们通过 CLEM 成像技术对发育中的大麦胚乳细胞的内膜系统进行了全面研究。基因融合荧光蛋白标签的使用与电子显微镜的高分辨率相结合,将超微结构研究提升到了一个新的水平,可用于在细胞生物学,特别是谷物种子研究方面产生新的见解。
{"title":"Correlative microscopy - illuminating the endomembrane system of plant seeds.","authors":"Sonja Huber, Ulrike Hörmann-Dietrich, Eszter Kapusi, Eva Stöger, Elsa Arcalís","doi":"10.1242/jcs.262251","DOIUrl":"10.1242/jcs.262251","url":null,"abstract":"<p><p>The endomembrane system of cereal seed endosperm is a highly plastic and dynamic system reflecting the high degree of specialization of this tissue. It is capable of coping with high levels of storage protein synthesis and undergoes rapid changes to accommodate these storage proteins in newly formed storage organelles such as endoplasmic reticulum-derived protein bodies or protein storage vacuoles. The study of endomembrane morphology in cereal endosperm is challenging due to the amount of starch that cereal seeds accumulate and the progressive desiccation of the tissue. Here, we present a comprehensive study of the endomembrane system of developing barley endosperm cells, complemented by correlative light and electron microscopy (CLEM) imaging. The use of genetically fused fluorescent protein tags in combination with the high resolution of electron microscopy brings ultrastructural research to a new level and can be used to generate novel insights in cell biology in general and in cereal seed research in particular.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
VISION - an open-source software for automated multi-dimensional image analysis of cellular biophysics. VISION - 用于细胞生物物理学多维图像自动分析的开源软件。
IF 3.3 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-10-15 Epub Date: 2024-10-23 DOI: 10.1242/jcs.262166
Florian Weber, Sofiia Iskrak, Franziska Ragaller, Jan Schlegel, Birgit Plochberger, Erdinc Sezgin, Luca A Andronico

Environment-sensitive probes are frequently used in spectral and multi-channel microscopy to study alterations in cell homeostasis. However, the few open-source packages available for processing of spectral images are limited in scope. Here, we present VISION, a stand-alone software based on Python for spectral analysis with improved applicability. In addition to classical intensity-based analysis, our software can batch-process multidimensional images with an advanced single-cell segmentation capability and apply user-defined mathematical operations on spectra to calculate biophysical and metabolic parameters of single cells. VISION allows for 3D and temporal mapping of properties such as membrane fluidity and mitochondrial potential. We demonstrate the broad applicability of VISION by applying it to study the effect of various drugs on cellular biophysical properties. the correlation between membrane fluidity and mitochondrial potential, protein distribution in cell-cell contacts and properties of nanodomains in cell-derived vesicles. Together with the code, we provide a graphical user interface for easy adoption.

环境敏感探针经常用于光谱/多通道显微镜,以研究细胞稳态的变化。然而,用于处理光谱图像的开源软件包数量有限。在此,我们介绍基于 Python 的独立软件 VISION,该软件用于光谱分析,具有更高的适用性。除了经典的基于强度的分析外,我们的软件还能批量处理多维图像,具有先进的单细胞分割能力,并能对光谱进行用户定义的数学运算,以计算单细胞的生物物理和代谢参数。VISION 可对膜流动性和线粒体电位等特性进行三维和时间绘图。我们将VISION应用于研究各种药物对细胞生物物理特性的影响、膜流动性与线粒体电位之间的相关性、蛋白质在细胞-细胞接触中的分布以及细胞衍生囊泡中纳米域的特性,从而展示了VISION的广泛适用性。除了代码,我们还提供了图形用户界面,方便用户使用。
{"title":"VISION - an open-source software for automated multi-dimensional image analysis of cellular biophysics.","authors":"Florian Weber, Sofiia Iskrak, Franziska Ragaller, Jan Schlegel, Birgit Plochberger, Erdinc Sezgin, Luca A Andronico","doi":"10.1242/jcs.262166","DOIUrl":"10.1242/jcs.262166","url":null,"abstract":"<p><p>Environment-sensitive probes are frequently used in spectral and multi-channel microscopy to study alterations in cell homeostasis. However, the few open-source packages available for processing of spectral images are limited in scope. Here, we present VISION, a stand-alone software based on Python for spectral analysis with improved applicability. In addition to classical intensity-based analysis, our software can batch-process multidimensional images with an advanced single-cell segmentation capability and apply user-defined mathematical operations on spectra to calculate biophysical and metabolic parameters of single cells. VISION allows for 3D and temporal mapping of properties such as membrane fluidity and mitochondrial potential. We demonstrate the broad applicability of VISION by applying it to study the effect of various drugs on cellular biophysical properties. the correlation between membrane fluidity and mitochondrial potential, protein distribution in cell-cell contacts and properties of nanodomains in cell-derived vesicles. Together with the code, we provide a graphical user interface for easy adoption.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529879/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142288106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immuno-scanning electron microscopy of islet primary cilia. 胰岛初级纤毛的免疫扫描电子显微镜。
IF 3.3 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-10-15 Epub Date: 2024-05-28 DOI: 10.1242/jcs.262038
Sanja Sviben, Alexander J Polino, Isabella L Melena, Jing W Hughes

The definitive demonstration of protein localization on primary cilia has been a challenge for cilia biologists. Primary cilia are solitary thread-like projections that have a specialized protein composition, but as the ciliary structure overlays the cell membrane and other cell parts, the identity of ciliary proteins are difficult to ascertain by conventional imaging approaches like immunofluorescence microscopy. Surface scanning electron microscopy combined with immunolabeling (immuno-SEM) bypasses some of these indeterminacies by unambiguously showing protein expression in the context of the three-dimensional ultrastructure of the cilium. Here, we apply immuno-SEM to specifically identify proteins on the primary cilia of mouse and human pancreatic islets, including post-translationally modified tubulin, intraflagellar transport (IFT)88, the small GTPase Arl13b, as well as subunits of axonemal dynein. Key parameters in sample preparation, immunolabeling and imaging acquisition are discussed to facilitate similar studies by others in the cilia research community.

对纤毛生物学家来说,如何明确证明蛋白质在原生纤毛上的定位一直是个难题。原生纤毛是单独的线状突起,具有特殊的蛋白质组成,但由于纤毛结构覆盖着细胞膜和其他细胞部分,因此很难通过免疫荧光显微镜等传统成像方法确定纤毛蛋白质的身份。结合免疫标记的表面扫描电子显微镜(immuno-SEM)可以绕过这些不确定性,在纤毛的三维超微结构中明确显示蛋白质的表达。在这里,我们应用免疫扫描电镜特异性地鉴定了小鼠和人类胰岛初级纤毛上的蛋白质,包括翻译后修饰的小管蛋白、鞘内转运(IFT)88、小GTP酶Arl13b以及轴突动力蛋白的亚基。本文讨论了样品制备、免疫标记和成像采集的关键参数,以方便纤毛研究领域的其他人员进行类似研究。
{"title":"Immuno-scanning electron microscopy of islet primary cilia.","authors":"Sanja Sviben, Alexander J Polino, Isabella L Melena, Jing W Hughes","doi":"10.1242/jcs.262038","DOIUrl":"10.1242/jcs.262038","url":null,"abstract":"<p><p>The definitive demonstration of protein localization on primary cilia has been a challenge for cilia biologists. Primary cilia are solitary thread-like projections that have a specialized protein composition, but as the ciliary structure overlays the cell membrane and other cell parts, the identity of ciliary proteins are difficult to ascertain by conventional imaging approaches like immunofluorescence microscopy. Surface scanning electron microscopy combined with immunolabeling (immuno-SEM) bypasses some of these indeterminacies by unambiguously showing protein expression in the context of the three-dimensional ultrastructure of the cilium. Here, we apply immuno-SEM to specifically identify proteins on the primary cilia of mouse and human pancreatic islets, including post-translationally modified tubulin, intraflagellar transport (IFT)88, the small GTPase Arl13b, as well as subunits of axonemal dynein. Key parameters in sample preparation, immunolabeling and imaging acquisition are discussed to facilitate similar studies by others in the cilia research community.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":"137 20","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166453/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141158176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of cell science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1