首页 > 最新文献

Journal of cell science最新文献

英文 中文
Counterregulatory roles of GLI2 and GLI3 in osteogenic differentiation via Gli1 expression. GLI2和GLI3通过Gli1表达在成骨分化中的反调控作用。
IF 3.3 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-02-01 Epub Date: 2025-02-10 DOI: 10.1242/jcs.263556
Yuto Takahashi, Yamato Ishida, Saishu Yoshida, Hye-Won Shin, Yohei Katoh, Kazuhisa Nakayama

The GLI1, GLI2 and GLI3 transcription factors mediate Hedgehog (Hh) signaling, which is crucial for bone development. During intramembranous ossification, mesenchymal stem cells (MSCs) are directly differentiated into osteoblasts. Under basal and Hh pathway-stimulated conditions, primary cilia play essential roles in proteolytic processing of GLI3 to its repressor form (GLI3R) and in activation of GLI2. Although previous studies in mice have suggested that Gli1 expression depends on GLI2 and GLI3, coordinated roles of GLI1, GLI2 and GLI3 in osteogenic differentiation are not fully understood at the cellular level. From the MSC line C3H10T1/2, we established Gli2-knockout (KO) and Gli3-KO cells, as well as constitutively GLI3R-producing (cGLI3R) cells, and expressed GLI1, GLI2 and GLI3 constructs in these cell lines. The results demonstrate at the cellular level that GLI2 and GLI3R counterregulate osteogenic differentiation via activation and repression of Gli1 expression, respectively; GLI3R, which results from GLI3 processing requiring protein kinase A-mediated phosphorylation, downregulates expression of Gli2 as well as Gli1; and GLI1 upregulates expression of Gli1 itself and Gli2, constituting a GLI1-GLI2 positive feedback loop.

GLI1/GLI2/GLI3转录因子介导Hedgehog (Hh)信号,这对骨发育至关重要。在膜内骨化过程中,间充质干细胞(MSCs)直接分化为成骨细胞。在基础和Hh通路刺激的条件下,初级纤毛在GLI3的蛋白水解加工到其抑制物形式(GLI3R)和GLI2的激活中发挥重要作用。虽然先前的小鼠研究表明Gli1的表达依赖于GLI2和GLI3,但在细胞水平上,Gli1、GLI2和GLI3在成骨分化中的协调作用尚未完全了解。从MSC细胞系C3H10T1/2中,我们建立了GLI2敲除(KO)和GLI3 -KO细胞,以及组成型gli3r生成(cGLI3R)细胞,并在这些细胞中表达GLI1、GLI2和GLI3构建体。结果表明,在细胞水平上,GLI2和GLI3R分别通过激活和抑制Gli1表达来调控成骨分化;GLI3R是由GLI3加工产生的,需要蛋白激酶a介导的磷酸化,下调Gli2和Gli1的表达;GLI1上调GLI1自身和Gli2,构成GLI1- Gli2正反馈回路。
{"title":"Counterregulatory roles of GLI2 and GLI3 in osteogenic differentiation via Gli1 expression.","authors":"Yuto Takahashi, Yamato Ishida, Saishu Yoshida, Hye-Won Shin, Yohei Katoh, Kazuhisa Nakayama","doi":"10.1242/jcs.263556","DOIUrl":"10.1242/jcs.263556","url":null,"abstract":"<p><p>The GLI1, GLI2 and GLI3 transcription factors mediate Hedgehog (Hh) signaling, which is crucial for bone development. During intramembranous ossification, mesenchymal stem cells (MSCs) are directly differentiated into osteoblasts. Under basal and Hh pathway-stimulated conditions, primary cilia play essential roles in proteolytic processing of GLI3 to its repressor form (GLI3R) and in activation of GLI2. Although previous studies in mice have suggested that Gli1 expression depends on GLI2 and GLI3, coordinated roles of GLI1, GLI2 and GLI3 in osteogenic differentiation are not fully understood at the cellular level. From the MSC line C3H10T1/2, we established Gli2-knockout (KO) and Gli3-KO cells, as well as constitutively GLI3R-producing (cGLI3R) cells, and expressed GLI1, GLI2 and GLI3 constructs in these cell lines. The results demonstrate at the cellular level that GLI2 and GLI3R counterregulate osteogenic differentiation via activation and repression of Gli1 expression, respectively; GLI3R, which results from GLI3 processing requiring protein kinase A-mediated phosphorylation, downregulates expression of Gli2 as well as Gli1; and GLI1 upregulates expression of Gli1 itself and Gli2, constituting a GLI1-GLI2 positive feedback loop.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142970958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decreased DNA density is a better indicator of a nuclear bleb than lamin B loss. DNA 密度的降低比 Lamin B 的缺失更能说明核出血点的存在。
IF 3.3 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-02-01 Epub Date: 2025-02-11 DOI: 10.1242/jcs.262082
Samantha Bunner, Kelsey Prince, Emily M Pujadas Liwag, Nebiyat Eskndir, Karan Srikrishna, Antonia Amonu McCarthy, Anna Kuklinski, Olivia Jackson, Pedro Pellegrino, Shrushti Jagtap, Imuetiyan Eweka, Colman Lawlor, Emma Eastin, Griffin Yas, Julianna Aiello, Nathan LaPointe, Isabelle Schramm von Blucher, Jillian Hardy, Jason Chen, Schuyler Figueroa, Vadim Backman, Anne Janssen, Mary Packard, Katherine Dorfman, Luay Almassalha, Michael Seifu Bahiru, Andrew D Stephens

Nuclear blebs are herniations of the nucleus that occur in diseased nuclei and cause nuclear rupture leading to cellular dysfunction. Chromatin and lamins are two of the major structural components of the nucleus that maintain its shape and function, but their relative roles in nuclear blebbing remain elusive. To determine the composition of nuclear blebs, we compared the immunofluorescence intensity of DNA and lamin B in the main nucleus body to that in the nuclear bleb across cell types and perturbations. DNA density in the nuclear bleb was consistently decreased to about half that of the nuclear body whereas lamin B levels in the nuclear bleb varied widely. Partial wave spectroscopic (PWS) microscopy recapitulated the significantly decreased likelihood of high-density domains in the nuclear bleb versus body, and that it was independent of lamin B level. Time-lapse imaging into immunofluorescence revealed that decreased DNA density marked all nuclear blebs whereas decreased lamin B1 levels only occurred in blebs that had recently ruptured. Thus, decreased DNA density is a better marker of a nuclear bleb than lamin B level.

核疝是发生在病变细胞核中的核疝,会导致核破裂,从而导致细胞功能障碍。染色质和片段蛋白是细胞核的两种主要结构成分,它们维持着细胞核的形状和功能,但它们在核疝中的相对作用仍然难以捉摸。为了确定核裂隙的组成,我们比较了不同细胞类型和扰动下核主体与核裂隙中DNA和片层蛋白B的免疫荧光强度。核斑中的 DNA 密度一直下降到核主体的一半左右,而核斑中的板层片段 B 水平差异很大。部分波谱(PWS)显微镜再现了核斑中高密度域相对于核体的可能性显著降低,这与层粘连蛋白 B 无关。因此,DNA 密度降低比板层片 B 水平降低更能标记核出血点。
{"title":"Decreased DNA density is a better indicator of a nuclear bleb than lamin B loss.","authors":"Samantha Bunner, Kelsey Prince, Emily M Pujadas Liwag, Nebiyat Eskndir, Karan Srikrishna, Antonia Amonu McCarthy, Anna Kuklinski, Olivia Jackson, Pedro Pellegrino, Shrushti Jagtap, Imuetiyan Eweka, Colman Lawlor, Emma Eastin, Griffin Yas, Julianna Aiello, Nathan LaPointe, Isabelle Schramm von Blucher, Jillian Hardy, Jason Chen, Schuyler Figueroa, Vadim Backman, Anne Janssen, Mary Packard, Katherine Dorfman, Luay Almassalha, Michael Seifu Bahiru, Andrew D Stephens","doi":"10.1242/jcs.262082","DOIUrl":"10.1242/jcs.262082","url":null,"abstract":"<p><p>Nuclear blebs are herniations of the nucleus that occur in diseased nuclei and cause nuclear rupture leading to cellular dysfunction. Chromatin and lamins are two of the major structural components of the nucleus that maintain its shape and function, but their relative roles in nuclear blebbing remain elusive. To determine the composition of nuclear blebs, we compared the immunofluorescence intensity of DNA and lamin B in the main nucleus body to that in the nuclear bleb across cell types and perturbations. DNA density in the nuclear bleb was consistently decreased to about half that of the nuclear body whereas lamin B levels in the nuclear bleb varied widely. Partial wave spectroscopic (PWS) microscopy recapitulated the significantly decreased likelihood of high-density domains in the nuclear bleb versus body, and that it was independent of lamin B level. Time-lapse imaging into immunofluorescence revealed that decreased DNA density marked all nuclear blebs whereas decreased lamin B1 levels only occurred in blebs that had recently ruptured. Thus, decreased DNA density is a better marker of a nuclear bleb than lamin B level.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Amyloid-β can activate JNK signalling via WNT5A-ROR2 to reduce synapse formation in Alzheimer's disease.
IF 3.3 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-02-01 Epub Date: 2025-02-05 DOI: 10.1242/jcs.263526
Kevin Fang, Ehsan Pishva, Thomas Piers, Steffen Scholpp

Wnt signalling is an essential signalling system in neurogenesis, with a crucial role in synaptic plasticity and neuronal survival, processes that are disrupted in Alzheimer's disease (AD). Within this network, the Wnt/β-catenin pathway has been studied for its neuroprotective role, and this is suppressed in AD. However, the involvement of the non-canonical Wnt-planar cell polarity (Wnt/PCP) pathway in AD remains to be determined. This study investigates the role of ROR2, a Wnt/PCP co-receptor, in synaptogenesis. We demonstrate that WNT5A-ROR2 signalling activates the JNK pathway, leading to synapse loss in mature neurons. This effect mirrors the synaptotoxic actions of Aβ1-42 and DKK1, which are elevated in AD. Notably, blocking ROR2 and JNK mitigates Aβ1-42 and DKK1-induced synapse loss, suggesting their dependence on ROR2. In induced pluripotent stem cell (iPSC)-derived cortical neurons carrying a PSEN1 mutation, known to increase the Aβ42/40 ratio, we observed increased WNT5A-ROR2 clustering and reduced numbers of synapses. Inhibiting ROR2 or JNK partially rescued synaptogenesis in these neurons. These findings suggest that, unlike the Wnt/β-catenin pathway, the Wnt/PCP-ROR2 signalling pathway can operate in a feedback loop with Aβ1-42 to enhance JNK signalling and contribute to synapse loss in AD.

{"title":"Amyloid-β can activate JNK signalling via WNT5A-ROR2 to reduce synapse formation in Alzheimer's disease.","authors":"Kevin Fang, Ehsan Pishva, Thomas Piers, Steffen Scholpp","doi":"10.1242/jcs.263526","DOIUrl":"10.1242/jcs.263526","url":null,"abstract":"<p><p>Wnt signalling is an essential signalling system in neurogenesis, with a crucial role in synaptic plasticity and neuronal survival, processes that are disrupted in Alzheimer's disease (AD). Within this network, the Wnt/β-catenin pathway has been studied for its neuroprotective role, and this is suppressed in AD. However, the involvement of the non-canonical Wnt-planar cell polarity (Wnt/PCP) pathway in AD remains to be determined. This study investigates the role of ROR2, a Wnt/PCP co-receptor, in synaptogenesis. We demonstrate that WNT5A-ROR2 signalling activates the JNK pathway, leading to synapse loss in mature neurons. This effect mirrors the synaptotoxic actions of Aβ1-42 and DKK1, which are elevated in AD. Notably, blocking ROR2 and JNK mitigates Aβ1-42 and DKK1-induced synapse loss, suggesting their dependence on ROR2. In induced pluripotent stem cell (iPSC)-derived cortical neurons carrying a PSEN1 mutation, known to increase the Aβ42/40 ratio, we observed increased WNT5A-ROR2 clustering and reduced numbers of synapses. Inhibiting ROR2 or JNK partially rescued synaptogenesis in these neurons. These findings suggest that, unlike the Wnt/β-catenin pathway, the Wnt/PCP-ROR2 signalling pathway can operate in a feedback loop with Aβ1-42 to enhance JNK signalling and contribute to synapse loss in AD.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":"138 3","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11832185/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143189166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rab10 function in tubular endosome formation requires the N-terminal K3 residue and is disrupted by N-terminal tagging. Rab10小GTPase n端区域保守的K3残基是管状内体形成所必需的:n端标记导致Rab10功能障碍。
IF 3.3 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-02-01 Epub Date: 2025-02-07 DOI: 10.1242/jcs.263649
Rinka Hata, Akira Sugawara, Mitsunori Fukuda

Various N-terminal tags have often been used to identify the functions and localization of Rab small GTPases, but their impact on Rab proteins themselves has been poorly investigated. Here, we used a knockout (KO)-rescue approach to systematically evaluate the effect of N-terminal tagging of two Rabs, Rab10 and Rab27A, on RAB10-KO HeLa cells and Rab27A-deficient melanocytes (melan-ash cells), respectively. The results showed that all of the N-terminal-tagged Rab27A proteins mediated actin-based melanosome transport in the melan-ash cells, but none of the N-terminal-tagged Rab10 proteins fully rescued the defect in tubular endosome formation in RAB10-KO cells. Although the N-terminal-tagged Rab10 proteins had the ability to localize tubular endosomes in wild-type HeLa cells, they sometimes exhibited a dominant-negative effect on tubular endosome formation. We also found that a conserved lysine residue at amino acid position 3 (K3) in the Rab10 proteins of different species is required for tubular endosome formation. Thus, it will be important to determine whether other Rab isoforms with N-terminal tags behave similarly to their corresponding untagged isoforms by performing appropriate KO-rescue experiments in future studies.

各种n端标签通常被用来鉴定Rab小gtpase的功能和定位,但它们对Rab蛋白本身的影响却很少被研究。在这里,我们采用敲除(KO)拯救方法系统地评估了Rab10和Rab27A两种Rab10-KO HeLa细胞和Rab27A缺陷黑素细胞(黑灰细胞)的n端标记对Rab10-KO HeLa细胞和Rab27A缺陷黑素细胞的影响。结果表明,所有n端标记的Rab27A蛋白都介导了黑灰细胞中基于肌动蛋白的黑素小体运输,但没有一种n端标记的Rab10蛋白完全修复了Rab10- ko细胞中管状内体形成的缺陷。虽然n端标记的Rab10蛋白在野生型HeLa细胞中具有定位管状内体的能力,但它们有时对管状内体的形成表现出显性负作用。我们还发现,在不同物种的Rab10蛋白中,位于氨基酸位置3 (K3)的保守赖氨酸残基是管状内体形成所必需的。因此,在未来的研究中,通过进行适当的KO-rescue实验来确定其他带有n端标签的Rab亚型是否与其相应的未标记亚型表现相似将是很重要的。
{"title":"Rab10 function in tubular endosome formation requires the N-terminal K3 residue and is disrupted by N-terminal tagging.","authors":"Rinka Hata, Akira Sugawara, Mitsunori Fukuda","doi":"10.1242/jcs.263649","DOIUrl":"10.1242/jcs.263649","url":null,"abstract":"<p><p>Various N-terminal tags have often been used to identify the functions and localization of Rab small GTPases, but their impact on Rab proteins themselves has been poorly investigated. Here, we used a knockout (KO)-rescue approach to systematically evaluate the effect of N-terminal tagging of two Rabs, Rab10 and Rab27A, on RAB10-KO HeLa cells and Rab27A-deficient melanocytes (melan-ash cells), respectively. The results showed that all of the N-terminal-tagged Rab27A proteins mediated actin-based melanosome transport in the melan-ash cells, but none of the N-terminal-tagged Rab10 proteins fully rescued the defect in tubular endosome formation in RAB10-KO cells. Although the N-terminal-tagged Rab10 proteins had the ability to localize tubular endosomes in wild-type HeLa cells, they sometimes exhibited a dominant-negative effect on tubular endosome formation. We also found that a conserved lysine residue at amino acid position 3 (K3) in the Rab10 proteins of different species is required for tubular endosome formation. Thus, it will be important to determine whether other Rab isoforms with N-terminal tags behave similarly to their corresponding untagged isoforms by performing appropriate KO-rescue experiments in future studies.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142949465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A century through the lens of Journal of Cell Science.
IF 3.3 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-02-01 Epub Date: 2025-02-13 DOI: 10.1242/jcs.263859
Saanjbati Adhikari, Seema Grewal
{"title":"A century through the lens of Journal of Cell Science.","authors":"Saanjbati Adhikari, Seema Grewal","doi":"10.1242/jcs.263859","DOIUrl":"https://doi.org/10.1242/jcs.263859","url":null,"abstract":"","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":"138 3","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143408021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nuclear blebs are associated with destabilized chromatin-packing domains.
IF 3.3 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-02-01 Epub Date: 2025-02-11 DOI: 10.1242/jcs.262161
Emily M Pujadas Liwag, Nicolas Acosta, Luay Matthew Almassalha, Yuanzhe Patrick Su, Ruyi Gong, Masato T Kanemaki, Andrew D Stephens, Vadim Backman

Disrupted nuclear shape is associated with multiple pathological processes including premature aging disorders, cancer-relevant chromosomal rearrangements and DNA damage. Nuclear blebs (i.e. herniations of the nuclear envelope) can be induced by (1) nuclear compression, (2) nuclear migration (e.g. cancer metastasis), (3) actin contraction, (4) lamin mutation or depletion, and (5) heterochromatin enzyme inhibition. Recent work has shown that chromatin transformation is a hallmark of bleb formation, but the transformation of higher-order structures in blebs is not well understood. As higher-order chromatin has been shown to assemble into nanoscopic packing domains, we investigated whether (1) packing domain organization is altered within nuclear blebs and (2) whether alteration in packing domain structure contributed to bleb formation. Using dual-partial wave spectroscopic microscopy, we show that chromatin-packing domains within blebs are transformed both by B-type lamin depletion and the inhibition of heterochromatin enzymes compared to what is seen in the nuclear body. Pairing these results with single-molecule localization microscopy of constitutive heterochromatin, we show fragmentation of nanoscopic heterochromatin domains within bleb domains. Overall, these findings indicate that chromatin within blebs is associated with a fragmented higher-order chromatin structure.

{"title":"Nuclear blebs are associated with destabilized chromatin-packing domains.","authors":"Emily M Pujadas Liwag, Nicolas Acosta, Luay Matthew Almassalha, Yuanzhe Patrick Su, Ruyi Gong, Masato T Kanemaki, Andrew D Stephens, Vadim Backman","doi":"10.1242/jcs.262161","DOIUrl":"10.1242/jcs.262161","url":null,"abstract":"<p><p>Disrupted nuclear shape is associated with multiple pathological processes including premature aging disorders, cancer-relevant chromosomal rearrangements and DNA damage. Nuclear blebs (i.e. herniations of the nuclear envelope) can be induced by (1) nuclear compression, (2) nuclear migration (e.g. cancer metastasis), (3) actin contraction, (4) lamin mutation or depletion, and (5) heterochromatin enzyme inhibition. Recent work has shown that chromatin transformation is a hallmark of bleb formation, but the transformation of higher-order structures in blebs is not well understood. As higher-order chromatin has been shown to assemble into nanoscopic packing domains, we investigated whether (1) packing domain organization is altered within nuclear blebs and (2) whether alteration in packing domain structure contributed to bleb formation. Using dual-partial wave spectroscopic microscopy, we show that chromatin-packing domains within blebs are transformed both by B-type lamin depletion and the inhibition of heterochromatin enzymes compared to what is seen in the nuclear body. Pairing these results with single-molecule localization microscopy of constitutive heterochromatin, we show fragmentation of nanoscopic heterochromatin domains within bleb domains. Overall, these findings indicate that chromatin within blebs is associated with a fragmented higher-order chromatin structure.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143059259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ground-state pluripotent stem cells are characterized by Rac1-dependent Cadherin-enriched F-actin Complexes.
IF 3.3 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-01-31 DOI: 10.1242/jcs.263811
Shiying Liu, Yue Meng, Xi Lan, Rong Li, Pakorn Kanchanawong

Pluripotent Stem Cells (PSCs) exhibit extraordinary differentiation potential and are thus highly valuable cellular model systems. However, while different PSC types corresponding to distinct stages of embryogenesis have been in common use, aspects of their cellular architecture and mechanobiology remain insufficiently understood. Here we investigated how the actin cytoskeleton is regulated in different pluripotency states. We observed a drastic reorganization during the transition from ground-state naïve mouse embryonic stem cells (mESCs) to converted prime epiblast stem cells (EpiSCs). mESCs are characterized by prominent actin-enriched cortical structures that contain cadherin-based cell-cell junctional components, despite not locating at cell-cell junctions. We termed these structures "Non-Junctional Cadherin Complexes (NJCC)" and showed that they are under low mechanical tension, depend on the ectodomain but not the cytoplasmic domain of E-cadherin, and exhibit minimal calcium dependence. Active Rac1 was identified as a negative regulator that promotes β-catenin dissociation and NJCC fragmentation. Our data suggests that NJCC may arise from the cis-association of E-cadherin ectodomain, with potential roles in ground-state pluripotency, and could serve as structural markers to distinguish heterogeneous population of pluripotent stem cells.

{"title":"Ground-state pluripotent stem cells are characterized by Rac1-dependent Cadherin-enriched F-actin Complexes.","authors":"Shiying Liu, Yue Meng, Xi Lan, Rong Li, Pakorn Kanchanawong","doi":"10.1242/jcs.263811","DOIUrl":"https://doi.org/10.1242/jcs.263811","url":null,"abstract":"<p><p>Pluripotent Stem Cells (PSCs) exhibit extraordinary differentiation potential and are thus highly valuable cellular model systems. However, while different PSC types corresponding to distinct stages of embryogenesis have been in common use, aspects of their cellular architecture and mechanobiology remain insufficiently understood. Here we investigated how the actin cytoskeleton is regulated in different pluripotency states. We observed a drastic reorganization during the transition from ground-state naïve mouse embryonic stem cells (mESCs) to converted prime epiblast stem cells (EpiSCs). mESCs are characterized by prominent actin-enriched cortical structures that contain cadherin-based cell-cell junctional components, despite not locating at cell-cell junctions. We termed these structures \"Non-Junctional Cadherin Complexes (NJCC)\" and showed that they are under low mechanical tension, depend on the ectodomain but not the cytoplasmic domain of E-cadherin, and exhibit minimal calcium dependence. Active Rac1 was identified as a negative regulator that promotes β-catenin dissociation and NJCC fragmentation. Our data suggests that NJCC may arise from the cis-association of E-cadherin ectodomain, with potential roles in ground-state pluripotency, and could serve as structural markers to distinguish heterogeneous population of pluripotent stem cells.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143065971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynein-driven regulation of postsynaptic membrane architecture and synaptic function.
IF 3.3 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-01-27 DOI: 10.1242/jcs.263844
Amanda L Neisch, Thomas Pengo, Adam W Avery, Min-Gang Li, Thomas S Hays

Cytoplasmic dynein is essential in motoneurons for retrograde cargo transport that sustains neuronal connectivity. Little, however, is known about dynein's function on the postsynaptic side of the circuit. Here we report distinct postsynaptic roles for dynein at neuromuscular junctions (NMJs). Intriguingly, we show that dynein punctae accumulate postsynaptically at glutamatergic synaptic terminals. Moreover, Skittles, a phosphatidylinositol 4-phosphate 5-kinase that produces PI(4,5)P2 to organize the spectrin cytoskeleton, also localizes specifically to glutamatergic synaptic terminals. Depletion of postsynaptic dynein disrupts the accumulation of Skittles, PI(4,5)P2 phospholipid, and organization of the spectrin cytoskeleton at the postsynaptic membrane. Coincidental with dynein depletion, we observe an increase in the size of ionotropic glutamate receptor (iGluRs) fields, and an increase in the amplitude and frequency of mEJPs. PI(4,5)P2 levels do not affect iGluR clustering, nor does dynein affect the levels of iGluR subunits at the NMJ. Our observations suggest a separate, transport independent function for dynein in iGluR cluster organization. Based on the close apposition of dynein punctae to the iGluR fields, we speculate that dynein at the postsynaptic membrane contributes to the organization of the receptor fields, hence ensuring proper synaptic transmission.

{"title":"Dynein-driven regulation of postsynaptic membrane architecture and synaptic function.","authors":"Amanda L Neisch, Thomas Pengo, Adam W Avery, Min-Gang Li, Thomas S Hays","doi":"10.1242/jcs.263844","DOIUrl":"https://doi.org/10.1242/jcs.263844","url":null,"abstract":"<p><p>Cytoplasmic dynein is essential in motoneurons for retrograde cargo transport that sustains neuronal connectivity. Little, however, is known about dynein's function on the postsynaptic side of the circuit. Here we report distinct postsynaptic roles for dynein at neuromuscular junctions (NMJs). Intriguingly, we show that dynein punctae accumulate postsynaptically at glutamatergic synaptic terminals. Moreover, Skittles, a phosphatidylinositol 4-phosphate 5-kinase that produces PI(4,5)P2 to organize the spectrin cytoskeleton, also localizes specifically to glutamatergic synaptic terminals. Depletion of postsynaptic dynein disrupts the accumulation of Skittles, PI(4,5)P2 phospholipid, and organization of the spectrin cytoskeleton at the postsynaptic membrane. Coincidental with dynein depletion, we observe an increase in the size of ionotropic glutamate receptor (iGluRs) fields, and an increase in the amplitude and frequency of mEJPs. PI(4,5)P2 levels do not affect iGluR clustering, nor does dynein affect the levels of iGluR subunits at the NMJ. Our observations suggest a separate, transport independent function for dynein in iGluR cluster organization. Based on the close apposition of dynein punctae to the iGluR fields, we speculate that dynein at the postsynaptic membrane contributes to the organization of the receptor fields, hence ensuring proper synaptic transmission.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143046927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Classification and characteristics of bacterial glycosaminoglycan lyases, and their therapeutic and experimental applications.
IF 3.3 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-01-15 Epub Date: 2025-01-23 DOI: 10.1242/jcs.263489
Ruyi Zou, Xiangyu Xu, Fuchuan Li

Glycosaminoglycans (GAGs), as animal polysaccharides, are linked to proteins to form various types of proteoglycans. Bacterial GAG lyases are not only essential enzymes that spoilage bacteria use for the degradation of GAGs, but also valuable tools for investigating the biological function and potential therapeutic applications of GAGs. The ongoing discovery and characterization of novel GAG lyases has identified an increasing number of lyases suitable for functional studies and other applications involving GAGs, which include oligosaccharide sequencing, detection and removal of specific glycan chains, clinical drug development and the design of novel biomaterials and sensors, some of which have not yet been comprehensively summarized. GAG lyases can be classified into hyaluronate lyases, chondroitinases and heparinases based on their substrate spectra, and their functional applications are mainly determined by their substrates, with different lyases exhibiting differing substrate selectivity and preferences. It is thus necessary to understand the properties of the available enzymes to determine strategies for their functional application. Building on previous studies and reviews, this Review highlights small yet crucial differences among or within the various GAG lyases to aid in optimizing their use in future studies. To clarify ideas and strategies for further research, we also discuss several traditional and novel applications of GAG lyases.

{"title":"Classification and characteristics of bacterial glycosaminoglycan lyases, and their therapeutic and experimental applications.","authors":"Ruyi Zou, Xiangyu Xu, Fuchuan Li","doi":"10.1242/jcs.263489","DOIUrl":"https://doi.org/10.1242/jcs.263489","url":null,"abstract":"<p><p>Glycosaminoglycans (GAGs), as animal polysaccharides, are linked to proteins to form various types of proteoglycans. Bacterial GAG lyases are not only essential enzymes that spoilage bacteria use for the degradation of GAGs, but also valuable tools for investigating the biological function and potential therapeutic applications of GAGs. The ongoing discovery and characterization of novel GAG lyases has identified an increasing number of lyases suitable for functional studies and other applications involving GAGs, which include oligosaccharide sequencing, detection and removal of specific glycan chains, clinical drug development and the design of novel biomaterials and sensors, some of which have not yet been comprehensively summarized. GAG lyases can be classified into hyaluronate lyases, chondroitinases and heparinases based on their substrate spectra, and their functional applications are mainly determined by their substrates, with different lyases exhibiting differing substrate selectivity and preferences. It is thus necessary to understand the properties of the available enzymes to determine strategies for their functional application. Building on previous studies and reviews, this Review highlights small yet crucial differences among or within the various GAG lyases to aid in optimizing their use in future studies. To clarify ideas and strategies for further research, we also discuss several traditional and novel applications of GAG lyases.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":"138 2","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143023658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rabin8 phosphorylated by NDR2, the canine early retinal degeneration gene product, directs rhodopsin Golgi-to-cilia trafficking. 犬早期视网膜变性(erd)基因产物NDR2/STK38L磷酸化的Rabin8调控视紫红质高尔基到纤毛的运输。
IF 3.3 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-01-15 Epub Date: 2025-01-23 DOI: 10.1242/jcs.263401
Theresa Fresquez, Beatrice M Tam, Shannon C Eshelman, Orson L Moritz, Michael A Robichaux, Dusanka Deretic

The Rab11-Rabin8-Rab8 ciliogenesis complex regulates the expansion of cilia-derived light-sensing organelles, the rod outer segments, via post-Golgi rhodopsin transport carriers (RTCs). Rabin8 (also known as RAB3IP), an effector of Rab11 proteins and a nucleotide exchange factor (GEF) for Rab8 proteins, is phosphorylated at S272 by NDR2 kinase (also known as STK38L), the canine early retinal degeneration (erd) gene product linked to the human ciliopathy Leber congenital amaurosis (LCA). Here, we define the step at which NDR2 phosphorylates Rabin8 and regulates Rab11-to-Rab8 succession in Xenopus laevis transgenic rod photoreceptors expressing human GFP-Rabin8 and its mutants. GFP-Rabin8 accumulated with endogenous Rabin8 at the Golgi-apposed exit sites (GESs), also known as the trans-Golgi network (TGN). Rabin8 mutants deficient in Rab11 binding prevented membrane association of GFP-Rabin8. GFP-Rabin8 and NDR2 kinase both interacted with the RTC-associated R-SNARE VAMP7 at the trans-Golgi and the GESs. Here, GFP-Rabin8 and the phosphomimetic GFP-Rabin8-S272E integrated into RTCs, which were subsequently functionalized by Rabin8 Rab8 GEF activity. Non-phosphorylatable GFP-Rabin8-S272A caused significant GES enlargement and deformation, possibly leading to unconventional membrane advancement toward the cilium, bypassing RTCs. Rabin8 phosphorylation loss due to an NDR2 gene disruption thereby likely causes dysfunctional rhodopsin Golgi-to-cilia trafficking underlying retinal degeneration and early-onset blindness.

Rab11-Rabin8-Rab8纤毛发生复合体通过高尔基后视紫红质运输载体(rtc)调节纤毛来源的光敏细胞器(杆外段)的扩张。Rabin8是Rab11的效应因子和Rab8的核苷酸交换因子(GEF),在S272位点被NDR2激酶(又名STK38L)磷酸化,NDR2激酶是一种与人类毛毛病Leber先天性黑内障(LCA)相关的犬erd基因产物。在这里,我们定义了NDR2磷酸化的Rabin8调控表达人GFP-Rabin8及其突变体的野田鼠转基因杆状光感受器中Rab11-Rab8演替的步骤。GFP-Rabin8与内源性Rabin8在高尔基相关出口位点(GESs),即反式高尔基网络(TGN)上积累。缺乏Rab11结合的Rabin8突变体阻止GFP-Rabin8的膜结合。GFP-Rabin8和NDR2激酶与RTC-R-SNARE-VAMP7在反式高尔基体和GESs上相互作用。在这里,GFP-Rabin8和GFP-Rabin8- s272e拟磷被整合到rtc中,随后被Rabin8 Rab8 GEF活性功能化。非磷酸化GFP-Rabin8-S272A导致GES显著增大和变形,可能导致非常规的膜向纤毛推进,绕过rtc。NDR2/STK38L基因破坏导致的Rabin8磷酸化缺失可能导致视紫红质高尔基到纤毛运输功能失调,从而导致视网膜变性和早发性失明。
{"title":"Rabin8 phosphorylated by NDR2, the canine early retinal degeneration gene product, directs rhodopsin Golgi-to-cilia trafficking.","authors":"Theresa Fresquez, Beatrice M Tam, Shannon C Eshelman, Orson L Moritz, Michael A Robichaux, Dusanka Deretic","doi":"10.1242/jcs.263401","DOIUrl":"10.1242/jcs.263401","url":null,"abstract":"<p><p>The Rab11-Rabin8-Rab8 ciliogenesis complex regulates the expansion of cilia-derived light-sensing organelles, the rod outer segments, via post-Golgi rhodopsin transport carriers (RTCs). Rabin8 (also known as RAB3IP), an effector of Rab11 proteins and a nucleotide exchange factor (GEF) for Rab8 proteins, is phosphorylated at S272 by NDR2 kinase (also known as STK38L), the canine early retinal degeneration (erd) gene product linked to the human ciliopathy Leber congenital amaurosis (LCA). Here, we define the step at which NDR2 phosphorylates Rabin8 and regulates Rab11-to-Rab8 succession in Xenopus laevis transgenic rod photoreceptors expressing human GFP-Rabin8 and its mutants. GFP-Rabin8 accumulated with endogenous Rabin8 at the Golgi-apposed exit sites (GESs), also known as the trans-Golgi network (TGN). Rabin8 mutants deficient in Rab11 binding prevented membrane association of GFP-Rabin8. GFP-Rabin8 and NDR2 kinase both interacted with the RTC-associated R-SNARE VAMP7 at the trans-Golgi and the GESs. Here, GFP-Rabin8 and the phosphomimetic GFP-Rabin8-S272E integrated into RTCs, which were subsequently functionalized by Rabin8 Rab8 GEF activity. Non-phosphorylatable GFP-Rabin8-S272A caused significant GES enlargement and deformation, possibly leading to unconventional membrane advancement toward the cilium, bypassing RTCs. Rabin8 phosphorylation loss due to an NDR2 gene disruption thereby likely causes dysfunctional rhodopsin Golgi-to-cilia trafficking underlying retinal degeneration and early-onset blindness.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11828469/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142949463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of cell science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1