首页 > 最新文献

Journal of cell science最新文献

英文 中文
Borg5 restricts contractility and motility in epithelial MDCK cells. Borg5/Cdc42EP1 限制了上皮 MDCK 细胞的收缩性和运动性。
IF 3.3 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-12-10 DOI: 10.1242/jcs.261705
David Cohen, Dawn Fernandez, Francisco Lázaro-Diéguez, Beatrix Überheide, Anne Müsch

The Borg (or Cdc42EP) family consists of septin-binding proteins that are known to promote septin-dependent stress fibers and acto-myosin contractility. We show here that epithelial Borg5 (also known as Cdc42EP1) instead limits contractility, cell-cell adhesion tension and motility, as is required for the acquisition of columnar, isotropic cell morphology in mature MDCK monolayers. Borg5 depletion inhibited the development of the lateral F-actin cortex and stimulated microtubule-dependent leading-edge lamellae as well as radial stress fibers and, independently of the basal F-actin phenotype, caused anisotropy of apical surfaces within compacted monolayers. We determined that Borg5 limits colocalization of septin proteins with microtubules, and that like septin 2, Borg5 interacts with the rod-domain of myosin IIA (herein referring to the MYH9 heavy chain). The interaction of myosin IIA with Borg5 was reduced in the presence of septins. Because septins also mediate myosin activation, we propose that Borg5 limits contractility in MDCK cells in part by counteracting septin-associated myosin activity.

Borg/Cdc42EP 家族由 septin 结合蛋白组成,已知它们能促进依赖 septin 的应力纤维和肌动蛋白收缩性。我们在此表明,上皮细胞 Borg5/Cdc42ep1 反而限制了收缩性、细胞-细胞粘附张力和运动性,这是在成熟的 MDCK 单层中获得柱状、各向同性细胞形态所必需的。Borg5 的耗竭抑制了横向 F-肌动蛋白皮层的发育,刺激了微管依赖的前缘片层以及径向应力纤维,而且与基底 F-肌动蛋白表型无关,导致了压实单层细胞顶端表面的各向异性。我们确定,Borg5 限制了septin与微管的定位,而且与septin 2一样,Borg5也与肌球蛋白- IIA的杆域相互作用。在有隔蛋白存在的情况下,肌球蛋白-IIA与Borg5的相互作用减弱。由于隔蛋白也介导肌球蛋白活化,我们认为 Borg5 限制了 MDCK 细胞的收缩能力,部分原因是抵消了隔蛋白相关的肌球蛋白活性。
{"title":"Borg5 restricts contractility and motility in epithelial MDCK cells.","authors":"David Cohen, Dawn Fernandez, Francisco Lázaro-Diéguez, Beatrix Überheide, Anne Müsch","doi":"10.1242/jcs.261705","DOIUrl":"10.1242/jcs.261705","url":null,"abstract":"<p><p>The Borg (or Cdc42EP) family consists of septin-binding proteins that are known to promote septin-dependent stress fibers and acto-myosin contractility. We show here that epithelial Borg5 (also known as Cdc42EP1) instead limits contractility, cell-cell adhesion tension and motility, as is required for the acquisition of columnar, isotropic cell morphology in mature MDCK monolayers. Borg5 depletion inhibited the development of the lateral F-actin cortex and stimulated microtubule-dependent leading-edge lamellae as well as radial stress fibers and, independently of the basal F-actin phenotype, caused anisotropy of apical surfaces within compacted monolayers. We determined that Borg5 limits colocalization of septin proteins with microtubules, and that like septin 2, Borg5 interacts with the rod-domain of myosin IIA (herein referring to the MYH9 heavy chain). The interaction of myosin IIA with Borg5 was reduced in the presence of septins. Because septins also mediate myosin activation, we propose that Borg5 limits contractility in MDCK cells in part by counteracting septin-associated myosin activity.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11698036/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cajal body formation is regulated by coilin SUMOylation. Cajal体的形成受coilin SUMOylation调节。
IF 3.3 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-12-11 DOI: 10.1242/jcs.263447
Sara K Tucker, Douglas M McLaurin, Michael D Hebert

Cajal bodies (CBs) are membraneless organelles whose mechanism of formation is still not fully understood. Many proteins contribute to the formation of CBs, including Nopp140 (NOLC1), WRAP53 and coilin. Coilin is modified on multiple different lysine residues by SUMO, the small ubiquitin-like modifier. In addition to its accumulation in CBs, coilin is also found in the nucleoplasm, where its role is still being evaluated. Here, we demonstrate a novel mechanism of CB regulation by examining the interaction changes of coilin when its SUMOylation is disrupted. The impact of global SUMOylation inhibition and targeted disruption of coilin SUMOylation on CB formation was examined. We found that two types of global SUMOylation inhibition and expression of SUMO-deficient coilin mutants increased CB number but decreased CB size. Additionally, we saw via coimmunoprecipitation that a SUMO-deficient coilin mutant has altered interaction with Nopp140. This demonstrates increased mechanistic ties between CB formation and SUMOylation.

卡哈尔体是一种无膜细胞器,其形成机制尚不完全清楚。许多蛋白参与CBs的形成,包括Nopp140 (NOLC1)、WRAP53和coilin。Coilin在多个不同赖氨酸残基上被SUMO修饰,SUMO是一种小的泛素样修饰剂。除了在CBs中积累外,coilin也存在于核质中,其作用仍在评估中。在这里,我们通过检测当其sumo化被破坏时卷曲蛋白的相互作用变化,证明了一种新的CB调节机制。研究了整体sumo化抑制和有针对性地破坏coilin sumo化对CB形成的影响。我们发现两种类型的全域sumo酰化抑制和sumo缺陷卷曲蛋白突变体的表达增加了CB数量,但减小了CB大小。此外,我们通过共免疫沉淀发现sumo缺陷的卷曲蛋白突变体改变了与Nopp140的相互作用。这表明在CB形成和sumo酰化之间增加了机制联系。
{"title":"Cajal body formation is regulated by coilin SUMOylation.","authors":"Sara K Tucker, Douglas M McLaurin, Michael D Hebert","doi":"10.1242/jcs.263447","DOIUrl":"https://doi.org/10.1242/jcs.263447","url":null,"abstract":"<p><p>Cajal bodies (CBs) are membraneless organelles whose mechanism of formation is still not fully understood. Many proteins contribute to the formation of CBs, including Nopp140 (NOLC1), WRAP53 and coilin. Coilin is modified on multiple different lysine residues by SUMO, the small ubiquitin-like modifier. In addition to its accumulation in CBs, coilin is also found in the nucleoplasm, where its role is still being evaluated. Here, we demonstrate a novel mechanism of CB regulation by examining the interaction changes of coilin when its SUMOylation is disrupted. The impact of global SUMOylation inhibition and targeted disruption of coilin SUMOylation on CB formation was examined. We found that two types of global SUMOylation inhibition and expression of SUMO-deficient coilin mutants increased CB number but decreased CB size. Additionally, we saw via coimmunoprecipitation that a SUMO-deficient coilin mutant has altered interaction with Nopp140. This demonstrates increased mechanistic ties between CB formation and SUMOylation.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":"137 23","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142806808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
'Iterative Bleaching Extends Multiplexity' facilitates simultaneous identification of all major retinal cell types. 迭代漂白扩展复用技术(IBEX)可同时识别所有主要视网膜细胞类型。
IF 3.3 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-12-10 DOI: 10.1242/jcs.263407
Aanandita A Kothurkar, Gregory S Patient, Nicole C L Noel, Aleksandra M Krzywańska, Brittany J Carr, Colin J Chu, Ryan B MacDonald

To understand the multicellular composition of tissues, and how it is altered during development, ageing and/or disease, we must visualise the complete cellular landscape. Currently, this is hindered by our limited ability to combine multiple cellular markers. To overcome this, we adapted a highly multiplexed immunofluorescence (IF) technique called 'Iterative Bleaching Extends Multiplexity' (IBEX) to the zebrafish retina. We optimised fluorescent antibody micro-conjugation to perform sequential rounds of labelling on a single tissue to simultaneously visualise all major retinal cell types with 11 cell-specific antibodies. We further adapted IBEX to be compatible with fluorescent transgenic reporter lines, in situ hybridisation chain reaction (HCR), and whole-mount immunofluorescence (WMIF). We applied IBEX at multiple stages to study the spatial and temporal relationships between glia and neurons during retinal development. Finally, we demonstrate the utility of IBEX across species by testing it on the turquoise killifish (Nothobranchius furzeri) and African clawed frog (Xenopus laevis) to glean large amounts of information from precious tissues. These techniques will revolutionise our ability to visualise multiple cell types in any organism where antibodies are readily available.

要了解组织的多细胞组成,以及它在发育、老化和/或疾病过程中是如何改变的,我们必须对完整的细胞景观进行可视化。目前,我们结合多种细胞标记物的能力有限,这阻碍了我们的工作。为了克服这一问题,我们将一种名为 "迭代漂白扩展复用(IBEX)"的高度复用免疫荧光(IF)技术应用于斑马鱼视网膜。我们优化了荧光抗体微连接技术,在单个组织上进行连续多轮标记,用 11 种细胞特异性抗体同时观察所有主要视网膜细胞类型。我们进一步调整了 IBEX,使其与荧光转基因报告基因系、原位杂交链反应(HCR)和整装免疫荧光(WMIF)兼容。我们在多个阶段应用 IBEX 研究视网膜发育过程中神经胶质细胞和神经元之间的时空关系。最后,我们在绿松石鳉(Nothobranchius furzeri)和非洲爪蛙(Xenopus laevis)身上进行了测试,从珍贵的组织中收集了大量信息,从而证明了 IBEX 跨物种的实用性。这些技术将彻底改变我们对任何生物体内多种细胞类型进行可视化的能力,而这些生物体内的抗体都是现成的。
{"title":"'Iterative Bleaching Extends Multiplexity' facilitates simultaneous identification of all major retinal cell types.","authors":"Aanandita A Kothurkar, Gregory S Patient, Nicole C L Noel, Aleksandra M Krzywańska, Brittany J Carr, Colin J Chu, Ryan B MacDonald","doi":"10.1242/jcs.263407","DOIUrl":"10.1242/jcs.263407","url":null,"abstract":"<p><p>To understand the multicellular composition of tissues, and how it is altered during development, ageing and/or disease, we must visualise the complete cellular landscape. Currently, this is hindered by our limited ability to combine multiple cellular markers. To overcome this, we adapted a highly multiplexed immunofluorescence (IF) technique called 'Iterative Bleaching Extends Multiplexity' (IBEX) to the zebrafish retina. We optimised fluorescent antibody micro-conjugation to perform sequential rounds of labelling on a single tissue to simultaneously visualise all major retinal cell types with 11 cell-specific antibodies. We further adapted IBEX to be compatible with fluorescent transgenic reporter lines, in situ hybridisation chain reaction (HCR), and whole-mount immunofluorescence (WMIF). We applied IBEX at multiple stages to study the spatial and temporal relationships between glia and neurons during retinal development. Finally, we demonstrate the utility of IBEX across species by testing it on the turquoise killifish (Nothobranchius furzeri) and African clawed frog (Xenopus laevis) to glean large amounts of information from precious tissues. These techniques will revolutionise our ability to visualise multiple cell types in any organism where antibodies are readily available.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142620788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proximity labeling reveals interactions necessary to maintain the distinct apical domains of Drosophila photoreceptors. 近距离标记揭示了维持果蝇感光器独特顶端结构所需的相互作用。
IF 3.3 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-12-11 DOI: 10.1242/jcs.262223
Lalitha Sastry, Johnathan Rylee, Simpla Mahato, Andrew C Zelhof

Specialized membrane and cortical protein regions are common features of cells and are utilized to isolate differential cellular functions. In Drosophila photoreceptors, the apical membrane domain is defined by two distinct morphological membranes: the rhabdomere microvilli and the stalk membrane. To define the apical cortical protein complexes, we performed proximity labeling screens utilizing the rhabdomeric-specific protein PIP82 as bait. We found that the PIP82 interactome is enriched in actin-binding and cytoskeleton proteins, as well as proteins for cellular trafficking. Analysis of one target, Bifocal, with PIP82 revealed two independent pathways for localization to the rhabdomeric membrane and an additional mechanism of crosstalk between the protein complexes of the rhabdomeric and stalk membranes. The loss of Bifocal, and enhancement in the PIP82, bifocal double mutant, resulted in the additional distribution of Crumbs, an apical stalk membrane protein, to the lateral basal photoreceptor membrane. This phenotype was recapitulated by the knockdown of the catalytic subunit of Protein phosphatase 1, a known interactor with Bifocal. Taken together, these results expand our understanding of the molecular mechanisms underlying the generation of the two distinct photoreceptor apical domains.

特化的膜和皮层蛋白区域是细胞的共同特征,可用于分离不同的细胞功能。在果蝇感光器中,顶端膜域由两种不同形态的膜界定:横纹微绒毛膜和柄膜。为了确定顶端皮层蛋白复合物,我们利用横纹肌特异性蛋白 PIP82 作为诱饵,进行了接近标记筛选。我们发现,PIP82相互作用组富含肌动蛋白结合蛋白、细胞骨架蛋白以及细胞运输蛋白。对一个目标蛋白 Bifocal 与 PIP82 的分析揭示了定位到横纹肌膜的两种独立途径,以及横纹肌膜和茎膜蛋白复合物之间的另一种串扰机制。Bifocal的缺失以及Bifocal/PIP82双突变体的增强,导致顶端柄膜蛋白Crumbs额外分布到侧基感光器膜上。这种表型可通过敲除蛋白磷酸酶 1 的催化亚基再现,蛋白磷酸酶 1 是 Bifocal 的已知互作因子。总之,这些结果拓展了我们对产生两个不同感光器顶端结构域的分子机制的理解。
{"title":"Proximity labeling reveals interactions necessary to maintain the distinct apical domains of Drosophila photoreceptors.","authors":"Lalitha Sastry, Johnathan Rylee, Simpla Mahato, Andrew C Zelhof","doi":"10.1242/jcs.262223","DOIUrl":"10.1242/jcs.262223","url":null,"abstract":"<p><p>Specialized membrane and cortical protein regions are common features of cells and are utilized to isolate differential cellular functions. In Drosophila photoreceptors, the apical membrane domain is defined by two distinct morphological membranes: the rhabdomere microvilli and the stalk membrane. To define the apical cortical protein complexes, we performed proximity labeling screens utilizing the rhabdomeric-specific protein PIP82 as bait. We found that the PIP82 interactome is enriched in actin-binding and cytoskeleton proteins, as well as proteins for cellular trafficking. Analysis of one target, Bifocal, with PIP82 revealed two independent pathways for localization to the rhabdomeric membrane and an additional mechanism of crosstalk between the protein complexes of the rhabdomeric and stalk membranes. The loss of Bifocal, and enhancement in the PIP82, bifocal double mutant, resulted in the additional distribution of Crumbs, an apical stalk membrane protein, to the lateral basal photoreceptor membrane. This phenotype was recapitulated by the knockdown of the catalytic subunit of Protein phosphatase 1, a known interactor with Bifocal. Taken together, these results expand our understanding of the molecular mechanisms underlying the generation of the two distinct photoreceptor apical domains.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142620817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemomechanical regulation of EZH2 localization controls epithelial-mesenchymal transition. EZH2定位的化学机械调控控制着上皮-间质转化。
IF 3.3 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-11-15 Epub Date: 2024-11-25 DOI: 10.1242/jcs.262190
Jessica L Sacco, Zachary T Vaneman, Ava Self, Elix Sumner, Stella Kibinda, Chinmay S Sankhe, Esther W Gomez

The methyltransferase enhancer of zeste homolog 2 (EZH2) regulates gene expression, and aberrant EZH2 expression and signaling can drive fibrosis and cancer. However, it is not clear how chemical and mechanical signals are integrated to regulate EZH2 and gene expression. We show that culture of cells on stiff matrices in concert with transforming growth factor (TGF)-β1 promotes nuclear localization of EZH2 and an increase in the levels of the corresponding histone modification, H3K27me3, thereby regulating gene expression. EZH2 activity and expression are required for TGFβ1- and stiffness-induced increases in H3K27me3 levels as well as for morphological and gene expression changes associated with epithelial-mesenchymal transition (EMT). Inhibition of Rho associated kinase (ROCK) proteins or myosin II signaling attenuates TGFβ1-induced nuclear localization of EZH2 and decreases H3K27me3 levels in cells cultured on stiff substrata, suggesting that cellular contractility, in concert with a major cancer signaling regulator TGFβ1, modulates EZH2 subcellular localization. These findings provide a contractility-dependent mechanism by which matrix stiffness and TGFβ1 together mediate EZH2 signaling to promote EMT.

泽斯特同源增强子 2(EZH2)甲基转移酶调控基因表达,EZH2 的异常表达和信号传导可导致纤维化和癌症。然而,目前还不清楚化学和机械信号是如何综合调控 EZH2 和基因表达的。我们的研究表明,将细胞培养在坚硬的基质上并与转化生长因子(TGF)-β1协同作用,可促进EZH2的核定位和相应组蛋白修饰H3K27me3水平的增加,从而调控基因表达。EZH2的活性和表达是TGFβ1和硬度诱导的H3K27me3水平增加以及与上皮-间质转化(EMT)相关的形态和基因表达变化所必需的。抑制Rho相关激酶(ROCK)或肌球蛋白II信号传导可减轻TGFβ1诱导的EZH2核定位,并降低在僵硬基质上培养的细胞的H3K27me3水平,这表明细胞收缩性与主要癌症信号调节因子TGFβ1共同调节EZH2的亚细胞定位。这些发现提供了一种依赖于收缩力的机制,即基质硬度和 TGFβ1 共同介导 EZH2 信号以促进 EMT。
{"title":"Chemomechanical regulation of EZH2 localization controls epithelial-mesenchymal transition.","authors":"Jessica L Sacco, Zachary T Vaneman, Ava Self, Elix Sumner, Stella Kibinda, Chinmay S Sankhe, Esther W Gomez","doi":"10.1242/jcs.262190","DOIUrl":"10.1242/jcs.262190","url":null,"abstract":"<p><p>The methyltransferase enhancer of zeste homolog 2 (EZH2) regulates gene expression, and aberrant EZH2 expression and signaling can drive fibrosis and cancer. However, it is not clear how chemical and mechanical signals are integrated to regulate EZH2 and gene expression. We show that culture of cells on stiff matrices in concert with transforming growth factor (TGF)-β1 promotes nuclear localization of EZH2 and an increase in the levels of the corresponding histone modification, H3K27me3, thereby regulating gene expression. EZH2 activity and expression are required for TGFβ1- and stiffness-induced increases in H3K27me3 levels as well as for morphological and gene expression changes associated with epithelial-mesenchymal transition (EMT). Inhibition of Rho associated kinase (ROCK) proteins or myosin II signaling attenuates TGFβ1-induced nuclear localization of EZH2 and decreases H3K27me3 levels in cells cultured on stiff substrata, suggesting that cellular contractility, in concert with a major cancer signaling regulator TGFβ1, modulates EZH2 subcellular localization. These findings provide a contractility-dependent mechanism by which matrix stiffness and TGFβ1 together mediate EZH2 signaling to promote EMT.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ImmunoCellCycle-ID - a high-precision immunofluorescence-based method for cell cycle identification. ImmunoCellCycle-ID--一种基于免疫荧光的高精度细胞周期鉴定方法。
IF 3.3 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-11-15 Epub Date: 2024-11-20 DOI: 10.1242/jcs.263414
Yu-Lin Chen, Yu-Chia Chen, Aussie Suzuki

The cell cycle is a fundamental process essential for cell proliferation, differentiation and development. It consists of four major phases: G1, S, G2 and M. These phases collectively drive the reproductive cycle and are meticulously regulated by various proteins that play crucial roles in both the prevention and progression of cancer. Traditional methods for studying these functions, such as flow cytometry, require a substantial number of cells to ensure accuracy. In this study, we have developed a user-friendly immunofluorescence-based method for identifying cell cycle stages, providing single-cell resolution and precise identification of G1, early/mid S, late S, early/mid G2, late G2, and each sub-stage of the M phase using fluorescence microscopy called ImmunoCellCycle-ID. This method provides high-precision cell cycle identification and can serve as an alternative to, or in combination with, traditional flow cytometry to dissect detailed sub-stages of the cell cycle in a variety of cell lines.

细胞周期是细胞增殖、分化和发育必不可少的基本过程。它由四个主要阶段组成:G1、S、G2 和 M:G1、S、G2 和 M 四个阶段共同驱动着生殖周期,并受到各种蛋白质的严格调控,这些蛋白质在癌症的预防和发展过程中发挥着至关重要的作用。研究这些功能的传统方法(如流式细胞术)需要大量细胞才能确保准确性。在这项研究中,我们开发了一种用户友好型基于免疫荧光的细胞周期阶段鉴定方法,利用荧光显微镜提供单细胞分辨率并精确鉴定 G1、早/中 S 期、晚 S 期、早/中 G2 期、晚 G2 期和 M 期的每个亚阶段,称为 ImmunoCellCycle-ID。这种方法可提供高精度的细胞周期鉴定,可替代传统的流式细胞术或与之结合使用,在各种细胞系中剖析细胞周期的详细亚阶段。
{"title":"ImmunoCellCycle-ID - a high-precision immunofluorescence-based method for cell cycle identification.","authors":"Yu-Lin Chen, Yu-Chia Chen, Aussie Suzuki","doi":"10.1242/jcs.263414","DOIUrl":"10.1242/jcs.263414","url":null,"abstract":"<p><p>The cell cycle is a fundamental process essential for cell proliferation, differentiation and development. It consists of four major phases: G1, S, G2 and M. These phases collectively drive the reproductive cycle and are meticulously regulated by various proteins that play crucial roles in both the prevention and progression of cancer. Traditional methods for studying these functions, such as flow cytometry, require a substantial number of cells to ensure accuracy. In this study, we have developed a user-friendly immunofluorescence-based method for identifying cell cycle stages, providing single-cell resolution and precise identification of G1, early/mid S, late S, early/mid G2, late G2, and each sub-stage of the M phase using fluorescence microscopy called ImmunoCellCycle-ID. This method provides high-precision cell cycle identification and can serve as an alternative to, or in combination with, traditional flow cytometry to dissect detailed sub-stages of the cell cycle in a variety of cell lines.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":"137 22","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11607684/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142675851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DRAK2 regulates myosin light chain phosphorylation in T cells. DRAK2 可调节 T 细胞中肌球蛋白轻链的磷酸化。
IF 3.3 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-11-15 Epub Date: 2024-11-20 DOI: 10.1242/jcs.261813
Benjamin A Wilander, Tarsha L Harris, Alexandra H Mandarano, Cliff S Guy, Mollie S Prater, Shondra M Pruett-Miller, Stacey K Ogden, Maureen A McGargill

Death-associated protein kinase-related apoptosis-inducing kinase-2 (DRAK2; also known as STK17B) is a serine/threonine kinase expressed in T cells. Drak2-deficient (Drak2-/-) mice respond effectively to tumors and pathogens while displaying resistance to T cell-mediated autoimmune disease. However, the molecular mechanisms by which DRAK2 impacts T cell function remain unclear. Gaining further insight into the function of DRAK2 in T cells will shed light on differentially regulated pathways in autoreactive and pathogen-specific T cells, which is crucial for improving autoimmune therapies. Here, we demonstrate that DRAK2 contributes to activation of myosin light chain (MLC2, encoded by Myl2) in both murine and human T cells. In the absence of Drak2, the amount of polymerized actin was decreased, suggesting that DRAK2 modulates actomyosin dynamics. We further show that myosin-dependent T cell functions, such as migration, T cell receptor microcluster accumulation, and conjugation to antigen presenting cells are decreased in the absence of Drak2. These findings reveal that DRAK2 plays an important role in regulating MLC activation within T cells.

死亡相关蛋白激酶相关凋亡诱导激酶-2(DRAK2或STK17B)是一种在T细胞中表达的丝氨酸/苏氨酸激酶。Drak2缺陷(Drak2-/-)小鼠对肿瘤和病原体反应有效,同时对T细胞介导的自身免疫性疾病表现出抵抗力。然而,DRAK2影响T细胞功能的分子机制仍不清楚。进一步了解 DRAK2 在 T 细胞中的功能将有助于了解自体反应性 T 细胞和病原体特异性 T 细胞的不同调控途径,这对改善自身免疫疗法至关重要。在这里,我们证明了DRAK2有助于激活鼠和人T细胞中的肌球蛋白轻链(MLC)。在缺少 Drak2 的情况下,聚合肌动蛋白的量减少,这表明 DRAK2 可调节肌动蛋白的动力学。我们进一步发现,在缺少 Drak2 的情况下,肌动蛋白依赖的 T 细胞功能,如迁移、T 细胞受体微簇聚集和与抗原呈递细胞的结合等,都会降低。这些发现揭示了 DRAK2 在调节 T 细胞内 MLC 的活化方面发挥着重要作用。
{"title":"DRAK2 regulates myosin light chain phosphorylation in T cells.","authors":"Benjamin A Wilander, Tarsha L Harris, Alexandra H Mandarano, Cliff S Guy, Mollie S Prater, Shondra M Pruett-Miller, Stacey K Ogden, Maureen A McGargill","doi":"10.1242/jcs.261813","DOIUrl":"10.1242/jcs.261813","url":null,"abstract":"<p><p>Death-associated protein kinase-related apoptosis-inducing kinase-2 (DRAK2; also known as STK17B) is a serine/threonine kinase expressed in T cells. Drak2-deficient (Drak2-/-) mice respond effectively to tumors and pathogens while displaying resistance to T cell-mediated autoimmune disease. However, the molecular mechanisms by which DRAK2 impacts T cell function remain unclear. Gaining further insight into the function of DRAK2 in T cells will shed light on differentially regulated pathways in autoreactive and pathogen-specific T cells, which is crucial for improving autoimmune therapies. Here, we demonstrate that DRAK2 contributes to activation of myosin light chain (MLC2, encoded by Myl2) in both murine and human T cells. In the absence of Drak2, the amount of polymerized actin was decreased, suggesting that DRAK2 modulates actomyosin dynamics. We further show that myosin-dependent T cell functions, such as migration, T cell receptor microcluster accumulation, and conjugation to antigen presenting cells are decreased in the absence of Drak2. These findings reveal that DRAK2 plays an important role in regulating MLC activation within T cells.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11607690/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142466387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The lysosomal lipid transporter LIMP-2 is part of lysosome-ER STARD3-VAPB-dependent contact sites. 溶酶体脂质转运体 LIMP-2/SCARB2 是溶酶体-内质网 STARD3-VAPB 依赖性接触点的一部分。
IF 3.3 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-11-15 Epub Date: 2024-11-26 DOI: 10.1242/jcs.261810
Sönke Rudnik, Saskia Heybrock, Etienne Coyaud, Zizhen Xu, Dante Neculai, Brian Raught, Viola Oorschot, Cecilia Heus, Judith Klumperman, Paul Saftig

LIMP-2 (also known as SCARB2) is an abundant lysosomal membrane protein. Previous studies have shown that LIMP-2 functions as a virus receptor, a chaperone for lysosomal enzyme targeting and a lipid transporter. The large luminal domain of LIMP-2 contains a hydrophobic tunnel that enables transport of phospholipids, sphingosine and cholesterol from the lysosomal lumen to the membrane. The question about the fate of the lipids after LIMP-2-mediated transport is largely unexplored. To elucidate whether LIMP-2 is present at contact sites between lysosomes and the endoplasmic reticulum (ER), we performed a proximity-based interaction screen. This revealed that LIMP-2 interacts with the endosomal protein STARD3 and the ER-resident protein VAPB. Using imaging and co-immunoprecipitation, we demonstrated colocalization and physical interaction between LIMP-2 and these proteins. Moreover, we found that interaction of LIMP-2 with VAPB required the presence of STARD3. Our findings suggest that LIMP-2 is present at ER-lysosome contact sites, possibly facilitating cholesterol transport from the lysosomal to the ER membrane. This suggests a novel mechanism for inter-organelle communication and lipid trafficking mediated by LIMP-2.

SCARB2/LIMP-2 是一种丰富的溶酶体膜蛋白。先前的研究表明,LIMP-2 具有病毒受体、溶酶体酶靶向伴侣和脂质转运体的功能。LIMP-2 的大腔域包含一个疏水隧道,可将磷脂、鞘磷脂和胆固醇从溶酶体腔体转运到膜上。关于这些脂质在 LIMP-2 介导的转运后的去向问题,目前还基本上没有研究。为了弄清 LIMP-2 是否是溶酶体和内质网(ER)之间接触点的一部分,我们进行了基于近距离相互作用的筛选。结果发现,LIMP-2 与内质体蛋白 STARD3 和 ER 驻留蛋白 VAPB 相互作用。通过成像和共免疫沉淀,我们证明了 LIMP-2 与这些蛋白之间的共定位和物理相互作用。此外,我们还发现 LIMP-2 与 VAPB 的相互作用需要 STARD3 的存在。我们的研究结果表明,LIMP-2是ER-溶酶体接触点的一部分,可能促进了胆固醇从溶酶体到ER膜的运输。这表明 LIMP-2 介导了一种新的细胞器间通讯和脂质运输机制。
{"title":"The lysosomal lipid transporter LIMP-2 is part of lysosome-ER STARD3-VAPB-dependent contact sites.","authors":"Sönke Rudnik, Saskia Heybrock, Etienne Coyaud, Zizhen Xu, Dante Neculai, Brian Raught, Viola Oorschot, Cecilia Heus, Judith Klumperman, Paul Saftig","doi":"10.1242/jcs.261810","DOIUrl":"10.1242/jcs.261810","url":null,"abstract":"<p><p>LIMP-2 (also known as SCARB2) is an abundant lysosomal membrane protein. Previous studies have shown that LIMP-2 functions as a virus receptor, a chaperone for lysosomal enzyme targeting and a lipid transporter. The large luminal domain of LIMP-2 contains a hydrophobic tunnel that enables transport of phospholipids, sphingosine and cholesterol from the lysosomal lumen to the membrane. The question about the fate of the lipids after LIMP-2-mediated transport is largely unexplored. To elucidate whether LIMP-2 is present at contact sites between lysosomes and the endoplasmic reticulum (ER), we performed a proximity-based interaction screen. This revealed that LIMP-2 interacts with the endosomal protein STARD3 and the ER-resident protein VAPB. Using imaging and co-immunoprecipitation, we demonstrated colocalization and physical interaction between LIMP-2 and these proteins. Moreover, we found that interaction of LIMP-2 with VAPB required the presence of STARD3. Our findings suggest that LIMP-2 is present at ER-lysosome contact sites, possibly facilitating cholesterol transport from the lysosomal to the ER membrane. This suggests a novel mechanism for inter-organelle communication and lipid trafficking mediated by LIMP-2.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HIV-1 N-myristoylation-dependent hijacking of late endosomes/lysosomes to drive Gag assembly in macrophages. HIV-1 N-肉豆蔻酰化依赖性劫持晚期内体/溶酶体,以驱动巨噬细胞中 Gag 的组装。
IF 3.3 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-11-15 Epub Date: 2024-11-21 DOI: 10.1242/jcs.263588
Gabriel I Guajardo-Contreras, Ana L Abdalla, Alex Chen, Meijuan Niu, Erwan Beauchamp, Luc G Berthiaume, Alan W Cochrane, Andrew J Mouland

Macrophages represent an important viral reservoir in HIV-1-infected individuals. Different from T cells, HIV-1 assembly in macrophages occurs at intracellular compartments termed virus-containing compartments (VCCs). Our previous research in HeLa cells - in which assembly resembles that found in infected T cells - suggested that late endosomes/lysosomes (LELs) play a role in HIV-1 trafficking towards its assembly sites. However, the role of LELs during assembly at VCCs is not fully understood. Herein, we used the HIV-1-inducible cell line THP-1 GagZip as a model to study HIV-1 Gag intracellular trafficking and assembly in macrophages. We demonstrated LEL involvement at VCCs using various microscopy techniques and biochemical approaches. Live-cell imaging revealed that HIV-1 repositions LELs towards the plasma membrane and modulates their motility. We showed that Arl8b-mediated LEL repositioning is not responsible for Gag trafficking to VCCs. Additionally, the inhibition of myristoylation by PCLX-001 decreased the presence of Gag on endosomes and inhibited VCC formation in both the THP-1 cell line and primary macrophages. In conclusion, we present evidence supporting the idea that HIV-1 manipulates the LEL trajectory to guide Gag to VCCs in an N-myristoylation-dependent manner.

巨噬细胞是 HIV-1 感染者体内重要的病毒库。与 T 细胞不同,HIV-1 在巨噬细胞中的组装发生在细胞内称为含病毒区室(VCC)的区室中。我们之前在 HeLa 细胞中进行的研究表明,晚期内体/溶酶体(LEL)在 HIV-1 向其装配位点的运输过程中发挥了作用。然而,LEL 在 VCC 组装过程中的作用还不完全清楚。在本文中,我们以HIV-1诱导细胞系THP-1 GagZip为模型,研究了HIV-1 Gag在巨噬细胞中的胞内转运和组装。我们利用各种显微镜技术和生化方法证明了 LEL 在 VCC 中的参与。活细胞成像显示,HIV-1 将 LEL 向质膜重新定位并调节其运动。我们发现,Arl8b 介导的 LEL 重定位并不负责 Gag 向 VCCs 的贩运。此外,在细胞系和原代巨噬细胞中,通过 PCLX-001 抑制肉豆蔻酰化可减少 Gag 在内质体上的存在并抑制 VCC 的形成。总之,我们提出的证据支持了这样一种观点,即 HIV-1 操纵 LEL 轨迹,以 N-肉豆蔻酰化依赖的方式将 Gag 引导至 VCC。
{"title":"HIV-1 N-myristoylation-dependent hijacking of late endosomes/lysosomes to drive Gag assembly in macrophages.","authors":"Gabriel I Guajardo-Contreras, Ana L Abdalla, Alex Chen, Meijuan Niu, Erwan Beauchamp, Luc G Berthiaume, Alan W Cochrane, Andrew J Mouland","doi":"10.1242/jcs.263588","DOIUrl":"10.1242/jcs.263588","url":null,"abstract":"<p><p>Macrophages represent an important viral reservoir in HIV-1-infected individuals. Different from T cells, HIV-1 assembly in macrophages occurs at intracellular compartments termed virus-containing compartments (VCCs). Our previous research in HeLa cells - in which assembly resembles that found in infected T cells - suggested that late endosomes/lysosomes (LELs) play a role in HIV-1 trafficking towards its assembly sites. However, the role of LELs during assembly at VCCs is not fully understood. Herein, we used the HIV-1-inducible cell line THP-1 GagZip as a model to study HIV-1 Gag intracellular trafficking and assembly in macrophages. We demonstrated LEL involvement at VCCs using various microscopy techniques and biochemical approaches. Live-cell imaging revealed that HIV-1 repositions LELs towards the plasma membrane and modulates their motility. We showed that Arl8b-mediated LEL repositioning is not responsible for Gag trafficking to VCCs. Additionally, the inhibition of myristoylation by PCLX-001 decreased the presence of Gag on endosomes and inhibited VCC formation in both the THP-1 cell line and primary macrophages. In conclusion, we present evidence supporting the idea that HIV-1 manipulates the LEL trajectory to guide Gag to VCCs in an N-myristoylation-dependent manner.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11607699/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CENP-C-targeted PLK-1 regulates kinetochore function in C. elegans embryos. CENP-C靶向PLK-1调控优雅子胚胎中的动点功能
IF 3.3 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-11-15 Epub Date: 2024-11-28 DOI: 10.1242/jcs.262327
Laura Bel Borja, Samuel J P Taylor, Flavie Soubigou, Federico Pelisch

Polo-like kinase 1 (PLK-1) is present in centrosomes, the nuclear envelope and kinetochores and plays a significant role in meiosis and mitosis. PLK-1 depletion or inhibition has severe consequences for spindle assembly, spindle assembly checkpoint (SAC) activation, chromosome segregation and cytokinesis. BUB-1 targets PLK-1 to the outer kinetochore and, in mammals, the inner kinetochore PLK1 targeting is mediated by the constitutive centromere associated network (CCAN). BUB-1-targeted PLK-1 plays a key role in SAC activation and has a SAC-independent role through targeting CDC-20. In contrast, whether there is a specific, non-redundant role for inner kinetochore targeted PLK-1 is unknown. Here, we used the Caenorhabditis elegans embryo to study the role of inner kinetochore PLK-1. We found that CENP-C, the sole CCAN component in C. elegans and other species, targets PLK-1 to the inner kinetochore during prometaphase and metaphase. Disruption of the CENP-C-PLK-1 interaction leads to an imbalance in kinetochore components and a defect in chromosome congression, without affecting CDC-20 recruitment. These findings indicate that PLK-1 kinetochore recruitment by CENP-C has at least partially distinct functions from outer kinetochore PLK-1, providing a platform for a better understanding of the different roles played by PLK-1 during mitosis.

Polo-like kinase 1(PLK-1)存在于中心体、核膜和动点系中,在减数分裂和有丝分裂中发挥着重要作用。PLK-1 的耗竭或抑制会对纺锤体组装、纺锤体组装检查点(SAC)激活、染色体分离和细胞分裂产生严重影响。BUB-1 将 PLK-1 靶向外侧动点,而在哺乳动物中,内侧动点的 PLK1 靶向是由组成型中心粒相关网络(CCAN)介导的。BUB1靶向的PLK-1在SAC激活中发挥关键作用,并通过靶向CDC-20发挥独立于SAC的作用。相比之下,内动子核靶向 PLK-1 是否具有特定的、非冗余的作用尚不清楚。在这里,我们利用秀丽隐杆线虫胚胎研究了内动点核 PLK-1 的作用。我们发现,CENP-C是优雅子和其他物种中唯一的CCAN成分,它在原核期和分裂期将PLK-1靶向内动点核。CENP-C/PLK-1 相互作用的中断会导致动点核成分的失衡和染色体连接的缺陷,而不会影响 CDC-20 的招募。这些发现表明,CENP-C的PLK-1动点核募集与外动点核PLK-1相比至少具有部分不同的功能,为更好地了解PLK-1在有丝分裂过程中发挥的不同作用提供了一个平台。
{"title":"CENP-C-targeted PLK-1 regulates kinetochore function in C. elegans embryos.","authors":"Laura Bel Borja, Samuel J P Taylor, Flavie Soubigou, Federico Pelisch","doi":"10.1242/jcs.262327","DOIUrl":"10.1242/jcs.262327","url":null,"abstract":"<p><p>Polo-like kinase 1 (PLK-1) is present in centrosomes, the nuclear envelope and kinetochores and plays a significant role in meiosis and mitosis. PLK-1 depletion or inhibition has severe consequences for spindle assembly, spindle assembly checkpoint (SAC) activation, chromosome segregation and cytokinesis. BUB-1 targets PLK-1 to the outer kinetochore and, in mammals, the inner kinetochore PLK1 targeting is mediated by the constitutive centromere associated network (CCAN). BUB-1-targeted PLK-1 plays a key role in SAC activation and has a SAC-independent role through targeting CDC-20. In contrast, whether there is a specific, non-redundant role for inner kinetochore targeted PLK-1 is unknown. Here, we used the Caenorhabditis elegans embryo to study the role of inner kinetochore PLK-1. We found that CENP-C, the sole CCAN component in C. elegans and other species, targets PLK-1 to the inner kinetochore during prometaphase and metaphase. Disruption of the CENP-C-PLK-1 interaction leads to an imbalance in kinetochore components and a defect in chromosome congression, without affecting CDC-20 recruitment. These findings indicate that PLK-1 kinetochore recruitment by CENP-C has at least partially distinct functions from outer kinetochore PLK-1, providing a platform for a better understanding of the different roles played by PLK-1 during mitosis.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11634037/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142361604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of cell science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1