Pub Date : 2024-10-30DOI: 10.1177/0271678X241296367
Jae Wook Jung, Chung Eun Yoon, Il Kwon, Kee Ook Lee, Jinkwon Kim, Young Dae Kim, Ji Hoe Heo, Hyo Suk Nam
Endovascular thrombectomy has a recanalization rate over 80%; however, approximately 50% of ischemic stroke patients still experience dependency or mortality. Recently, clinical trials demonstrated the benefits of administering neuroprotective agents prior to endovascular thrombectomy. Additionally, recent studies showed neuroprotective effects of mild hypercapnia in patients resuscitated after cardiac arrest. However, its efficacy in ischemic stroke remains unclear. We aimed to investigate whether carbon dioxide (CO2) per-conditioning has neuroprotective effects in rat models with middle cerebral artery occlusion (MCAO). Rat models received intermittent inhalation of mixed gas during the MCAO period. After surgery, behavioral assessments, infarct size measurement, immunohistochemistry, and western blot analysis were performed. We found CO2 per-conditioning reduced infarct size and neurological deficit. The number of 8-hydroxy-2-deoxyguanosine (8-OHdG) positive cells and matrix metalloproteinase 9 (MMP-9)/platelet derived growth factor receptor beta (PDGFRβ) double positive cells were significantly decreased after CO2 per-conditioning. The expressions of tight junction protein and pericytes survival were preserved. This study underscores mild hypercapnia before reperfusion not only reduces neurologic deficit and infarct size, but also maintains the integrity of the blood-brain barrier and neurovascular unit, alongside mitigating oxidative stress in hyperacute stroke rat models. Therapeutic mild hypercapnia before reperfusion is promising and requires further clinical application.
血管内血栓切除术的再通率超过 80%,但仍有约 50% 的缺血性脑卒中患者会出现依赖或死亡。最近,临床试验证明了在血管内血栓切除术前使用神经保护剂的益处。此外,最近的研究表明,轻度高碳酸血症对心脏骤停后复苏的患者有神经保护作用。然而,其对缺血性脑卒中的疗效仍不明确。我们的目的是研究二氧化碳(CO2)预处理对大脑中动脉闭塞(MCAO)大鼠模型是否具有神经保护作用。大鼠模型在 MCAO 期间间歇吸入混合气体。手术后进行了行为评估、梗塞大小测量、免疫组化和 Western 印迹分析。我们发现二氧化碳调理可缩小梗死面积,减轻神经功能缺损。二氧化碳预处理后,8-羟基-2-脱氧鸟苷(8-OHdG)阳性细胞和基质金属蛋白酶9(MMP-9)/血小板生长因子受体β(PDGFRβ)双阳性细胞的数量明显减少。紧密连接蛋白和周细胞存活率的表达则保持不变。这项研究强调,再灌注前轻度高碳酸血症不仅能减轻神经功能缺损和梗死面积,还能维持血脑屏障和神经血管单元的完整性,同时减轻超急性期卒中大鼠模型的氧化应激。再灌注前治疗性轻度高碳酸血症前景广阔,需要进一步临床应用。
{"title":"Mild hypercapnia before reperfusion reduces ischemia-reperfusion injury in hyperacute ischemic stroke rat model.","authors":"Jae Wook Jung, Chung Eun Yoon, Il Kwon, Kee Ook Lee, Jinkwon Kim, Young Dae Kim, Ji Hoe Heo, Hyo Suk Nam","doi":"10.1177/0271678X241296367","DOIUrl":"https://doi.org/10.1177/0271678X241296367","url":null,"abstract":"<p><p>Endovascular thrombectomy has a recanalization rate over 80%; however, approximately 50% of ischemic stroke patients still experience dependency or mortality. Recently, clinical trials demonstrated the benefits of administering neuroprotective agents prior to endovascular thrombectomy. Additionally, recent studies showed neuroprotective effects of mild hypercapnia in patients resuscitated after cardiac arrest. However, its efficacy in ischemic stroke remains unclear. We aimed to investigate whether carbon dioxide (CO<sub>2</sub>) per-conditioning has neuroprotective effects in rat models with middle cerebral artery occlusion (MCAO). Rat models received intermittent inhalation of mixed gas during the MCAO period. After surgery, behavioral assessments, infarct size measurement, immunohistochemistry, and western blot analysis were performed. We found CO<sub>2</sub> per-conditioning reduced infarct size and neurological deficit. The number of 8-hydroxy-2-deoxyguanosine (8-OHdG) positive cells and matrix metalloproteinase 9 (MMP-9)/platelet derived growth factor receptor beta (PDGFRβ) double positive cells were significantly decreased after CO<sub>2</sub> per-conditioning. The expressions of tight junction protein and pericytes survival were preserved. This study underscores mild hypercapnia before reperfusion not only reduces neurologic deficit and infarct size, but also maintains the integrity of the blood-brain barrier and neurovascular unit, alongside mitigating oxidative stress in hyperacute stroke rat models. Therapeutic mild hypercapnia before reperfusion is promising and requires further clinical application.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142545711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30DOI: 10.1177/0271678X241296270
Diana G Bohannon, Laurie L Wellman, Marcus Kaul, Elena V Galkina, Ming-Lei Guo, Prasun K Datta, Woong-Ki Kim
While the concept of pericyte heterogeneity in the brain microvasculature is becoming more widely accepted, little is known about how they arise, or their functional contributions to the blood-brain barrier (BBB). We therefore set out to examine the distribution of subtypes of pericytes at the BBB and sought to elucidate some of their functional characteristics by examining their unique mRNA expression patterns. We demonstrate that type-1 pericytes (PC1) that are associated with young healthy brains and BBB homeostasis, can transition into type-2 pericytes (PC2) that are associated with disease and BBB breakdown, both in vitro and in vivo, in the presence of both endogenous and disease associated ligands. We identified PC1 and PC2 in single-cell RNA-sequencing from vascular enriched mouse brain and identified transcriptional differences between PC1 and PC2. PC2 showed increased expression of genes associated with phagocytosis and peripheral immune cell infiltration. On the contrary, PC1 displayed increased expression of genes involved in hedgehog signaling, which is known to promote tight junction formation at the BBB. Our data support the PC1-to-PC2 transition as an origin of PC diversity and suggest a functional role for PC1 in maintaining BBB homeostasis and PC2 in responding to pathological conditions.
{"title":"Type-1-to-type-2 transition of brain microvascular pericytes induced by cytokines and disease-associated proteins: Role in neuroinflammation and blood-brain barrier disruption.","authors":"Diana G Bohannon, Laurie L Wellman, Marcus Kaul, Elena V Galkina, Ming-Lei Guo, Prasun K Datta, Woong-Ki Kim","doi":"10.1177/0271678X241296270","DOIUrl":"https://doi.org/10.1177/0271678X241296270","url":null,"abstract":"<p><p>While the concept of pericyte heterogeneity in the brain microvasculature is becoming more widely accepted, little is known about how they arise, or their functional contributions to the blood-brain barrier (BBB). We therefore set out to examine the distribution of subtypes of pericytes at the BBB and sought to elucidate some of their functional characteristics by examining their unique mRNA expression patterns. We demonstrate that type-1 pericytes (PC1) that are associated with young healthy brains and BBB homeostasis, can transition into type-2 pericytes (PC2) that are associated with disease and BBB breakdown, both in vitro and in vivo, in the presence of both endogenous and disease associated ligands. We identified PC1 and PC2 in single-cell RNA-sequencing from vascular enriched mouse brain and identified transcriptional differences between PC1 and PC2. PC2 showed increased expression of genes associated with phagocytosis and peripheral immune cell infiltration. On the contrary, PC1 displayed increased expression of genes involved in hedgehog signaling, which is known to promote tight junction formation at the BBB. Our data support the PC1-to-PC2 transition as an origin of PC diversity and suggest a functional role for PC1 in maintaining BBB homeostasis and PC2 in responding to pathological conditions.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142545713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-25DOI: 10.1177/0271678X241295857
Yuhui Hou, Wei Ye, Ziyuan Tang, Fengxian Li
The increasing prevalence of pathological cerebrovascular conditions, including stroke, hypertensive encephalopathy, and chronic disorders, underscores the importance of anesthetic considerations for affected patients. Preserving cerebral oxygenation and blood flow during anesthesia is paramount to prevent neurological deterioration. Furthermore, protecting vulnerable neurons from damage is crucial for optimal outcomes. Recent research suggests that anesthetic agents may provide a potentially therapeutic approach for managing pathological cerebrovascular conditions. Anesthetics target neural mechanisms underlying cerebrovascular dysfunction, thereby modulating neuroinflammation, protecting neurons against ischemic injury, and improving cerebral hemodynamics. However, optimal strategies regarding mechanisms, dosage, and indications remain uncertain. This review aims to clarify the physiological effects, mechanisms of action, and reported neuroprotective benefits of anesthetics in patients with various pathological cerebrovascular conditions. Investigating anesthetic effects in cerebrovascular disease holds promise for developing novel therapeutic strategies.
{"title":"Anesthetics in pathological cerebrovascular conditions.","authors":"Yuhui Hou, Wei Ye, Ziyuan Tang, Fengxian Li","doi":"10.1177/0271678X241295857","DOIUrl":"https://doi.org/10.1177/0271678X241295857","url":null,"abstract":"<p><p>The increasing prevalence of pathological cerebrovascular conditions, including stroke, hypertensive encephalopathy, and chronic disorders, underscores the importance of anesthetic considerations for affected patients. Preserving cerebral oxygenation and blood flow during anesthesia is paramount to prevent neurological deterioration. Furthermore, protecting vulnerable neurons from damage is crucial for optimal outcomes. Recent research suggests that anesthetic agents may provide a potentially therapeutic approach for managing pathological cerebrovascular conditions. Anesthetics target neural mechanisms underlying cerebrovascular dysfunction, thereby modulating neuroinflammation, protecting neurons against ischemic injury, and improving cerebral hemodynamics. However, optimal strategies regarding mechanisms, dosage, and indications remain uncertain. This review aims to clarify the physiological effects, mechanisms of action, and reported neuroprotective benefits of anesthetics in patients with various pathological cerebrovascular conditions. Investigating anesthetic effects in cerebrovascular disease holds promise for developing novel therapeutic strategies.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-25DOI: 10.1177/0271678X241293537
Julia K Gundersen, Fernando Gonzalez-Ortiz, Thomas Karikari, Bjørn-Eivind Kirsebom, Katrin Mertes, Henrik Zetterberg, Hlin Kvartsberg, Ole Morten Rønning, Berglind Gísladóttir, Kaj Blennow, Tormod Fladby
Early imaging-based detection of acute ischemic stroke (AIS) has improved in the era of reperfusion therapy. Despite of this, prognosis of outcome after AIS remains a challenge. Therefore, parameters that support clinical decision making are sought. Blood-based biomarkers have the potential to provide valuable information in addition to the established prognostic factors. Neuronal biomarkers of acute or degenerative neuronal injury have shown to be reliably detected in plasma. These biomarkers are well-established in neurodegenerative pathology, such as Alzheimer's disease. In this study, we explored the association between stroke diameter and plasma biomarkers for neuronal injury and tau pathophysiology (brain-derived tau [BD-tau], phosphorylated-tau-217 [p-tau21] and neurofilament light [NfL]) in patients (n = 193) admitted to the acute ward, Akershus University Hospital. All patients received a final diagnosis of AIS, transient ischemic attack or stroke mimics. Blood samples were obtained the day after admission. We find that levels of BD-tau (p = .004) and NfL (p = .011) were higher after AIS than in patients with stroke mimics. The cortical stroke diameter correlated with BD-tau (tau-b = 0.64, p < .001) and p-tau217 (tau-b = 0.36, p = .003). Linear regression confirmed BD-tau to be the strongest variable associated with stroke diameter, pointing to the potential clinical value of plasma BD-tau in outcome prediction after AIS.
{"title":"Neuronal plasma biomarkers in acute ischemic stroke.","authors":"Julia K Gundersen, Fernando Gonzalez-Ortiz, Thomas Karikari, Bjørn-Eivind Kirsebom, Katrin Mertes, Henrik Zetterberg, Hlin Kvartsberg, Ole Morten Rønning, Berglind Gísladóttir, Kaj Blennow, Tormod Fladby","doi":"10.1177/0271678X241293537","DOIUrl":"https://doi.org/10.1177/0271678X241293537","url":null,"abstract":"<p><p>Early imaging-based detection of acute ischemic stroke (AIS) has improved in the era of reperfusion therapy. Despite of this, prognosis of outcome after AIS remains a challenge. Therefore, parameters that support clinical decision making are sought. Blood-based biomarkers have the potential to provide valuable information in addition to the established prognostic factors. Neuronal biomarkers of acute or degenerative neuronal injury have shown to be reliably detected in plasma. These biomarkers are well-established in neurodegenerative pathology, such as Alzheimer's disease. In this study, we explored the association between stroke diameter and plasma biomarkers for neuronal injury and tau pathophysiology (brain-derived tau [BD-tau], phosphorylated-tau-217 [p-tau21] and neurofilament light [NfL]) in patients (n = 193) admitted to the acute ward, Akershus University Hospital. All patients received a final diagnosis of AIS, transient ischemic attack or stroke mimics. Blood samples were obtained the day after admission. We find that levels of BD-tau (p = .004) and NfL (p = .011) were higher after AIS than in patients with stroke mimics. The cortical stroke diameter correlated with BD-tau (tau-b = 0.64, p < .001) and p-tau217 (tau-b = 0.36, p = .003). Linear regression confirmed BD-tau to be the strongest variable associated with stroke diameter, pointing to the potential clinical value of plasma BD-tau in outcome prediction after AIS.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-25DOI: 10.1177/0271678X241295856
Xinmei Kang, Xiaotao Su, Tiemei Li, Shisi Wang, Huipeng Huang, Yuxin Liu, Chunyi Li, Xiaohui Deng, Mengyan Hu, Tingting Lu, Lei Wei, Wei Cai, Zhengqi Lu
General modeling strategies for sporadic cerebral small blood vessel diseases (CSVDs) include limiting blood stream in large blood vessels and inducing systemic hypertension, in which small blood vessel deficit is either a secondary or concomitant pathology. In the current study, we introduce that intra-cisterna-magna Bevacizumab injection (ICM-BI) directly causes cerebral small blood vessel injury by neutralizing VEGF-A, the indispensable growth factor for angiogenesis. ICM-BI reproduces neuro-functional impairment, tight junction loss, cerebral micro-bleeds (CMBs), amyloid peptide accumulation, neuronal injury, white matter loss, and glial cell activation, which are common manifestations of sporadic CSVDs. Compared with existing CSVD models, small blood vessel injury is more prominent in the ICM-BI brain. Moreover, no significant alteration in large blood vessels or peripheral organs after ICM-BI is recorded. We thus propose that ICM-BI is a neat, economic and applicable methodology to establish murine sporadic CSVD model.
{"title":"Intra-cisterna-magna bevacizumab injection (ICM-BI) reproduces pathological alterations of cerebral small vessel diseases.","authors":"Xinmei Kang, Xiaotao Su, Tiemei Li, Shisi Wang, Huipeng Huang, Yuxin Liu, Chunyi Li, Xiaohui Deng, Mengyan Hu, Tingting Lu, Lei Wei, Wei Cai, Zhengqi Lu","doi":"10.1177/0271678X241295856","DOIUrl":"https://doi.org/10.1177/0271678X241295856","url":null,"abstract":"<p><p>General modeling strategies for sporadic cerebral small blood vessel diseases (CSVDs) include limiting blood stream in large blood vessels and inducing systemic hypertension, in which small blood vessel deficit is either a secondary or concomitant pathology. In the current study, we introduce that intra-cisterna-magna Bevacizumab injection (ICM-BI) directly causes cerebral small blood vessel injury by neutralizing VEGF-A, the indispensable growth factor for angiogenesis. ICM-BI reproduces neuro-functional impairment, tight junction loss, cerebral micro-bleeds (CMBs), amyloid peptide accumulation, neuronal injury, white matter loss, and glial cell activation, which are common manifestations of sporadic CSVDs. Compared with existing CSVD models, small blood vessel injury is more prominent in the ICM-BI brain. Moreover, no significant alteration in large blood vessels or peripheral organs after ICM-BI is recorded. We thus propose that ICM-BI is a neat, economic and applicable methodology to establish murine sporadic CSVD model.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18DOI: 10.1177/0271678X241289780
Ling Cai, Yueman Zhang, Yuxi Zhou, Xin Wang
Aging-related cognitive decline is emerging as a health concern during the aging process of the global population. Hahn and colleagues found that glial aging was particularly accelerated in white matter compared to cortical regions. Specialized neuronal populations showed region-specific changes in gene expression. Acute dietary restriction triggers a reprogramming of genes associated with the circadian clock in glial cells, whereas injections of young mouse plasma selectively reverse age-related expression patterns. The discovery of region-specific aging could enhance our understanding of the aging process and offer new possibilities for innovative treatment strategies and interventions for cognitive impairments related to aging.
{"title":"Aging affects the mouse brain in a region-specific manner.","authors":"Ling Cai, Yueman Zhang, Yuxi Zhou, Xin Wang","doi":"10.1177/0271678X241289780","DOIUrl":"https://doi.org/10.1177/0271678X241289780","url":null,"abstract":"<p><p>Aging-related cognitive decline is emerging as a health concern during the aging process of the global population. Hahn and colleagues found that glial aging was particularly accelerated in white matter compared to cortical regions. Specialized neuronal populations showed region-specific changes in gene expression. Acute dietary restriction triggers a reprogramming of genes associated with the circadian clock in glial cells, whereas injections of young mouse plasma selectively reverse age-related expression patterns. The discovery of region-specific aging could enhance our understanding of the aging process and offer new possibilities for innovative treatment strategies and interventions for cognitive impairments related to aging.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142466522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18DOI: 10.1177/0271678X241290018
Richard J Maddock
1H-MRS investigators studying brain metabolite concentrations often attribute biological significance to correlations between calculated metabolite values within the same voxel. A recent report in this journal provides a valuable perspective on how statistical non-independence of such values can undermine biological interpretations of their correlations. However, careful examination of this issue suggests their critical analysis does not go far enough. Hong et al. claim that appropriate water normalization, unlike creatine normalization, eliminates the problem of spurious correlation. Both logical and empirical considerations show this is not the case. Correlations between water-normalized metabolite values are also prone to substantial spurious correlations.
{"title":"Statistical non-independence of brain metabolite concentrations whether normalized to creatine or water.","authors":"Richard J Maddock","doi":"10.1177/0271678X241290018","DOIUrl":"https://doi.org/10.1177/0271678X241290018","url":null,"abstract":"<p><p>1H-MRS investigators studying brain metabolite concentrations often attribute biological significance to correlations between calculated metabolite values within the same voxel. A recent report in this journal provides a valuable perspective on how statistical non-independence of such values can undermine biological interpretations of their correlations. However, careful examination of this issue suggests their critical analysis does not go far enough. Hong et al. claim that appropriate water normalization, unlike creatine normalization, eliminates the problem of spurious correlation. Both logical and empirical considerations show this is not the case. Correlations between water-normalized metabolite values are also prone to substantial spurious correlations.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142466526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18DOI: 10.1177/0271678X241292537
Yuying Liu, Shuang Li, Xuan Tian, Jill Abrigo, Bonnie Yk Lam, Jize Wei, Lina Zheng, Yu Liu, Ziqi Li, Tingjun Liang, Bonaventure Ym Ip, Thomas W Leung, Xinyi Leng
We investigated the association between cerebral small vessel disease (CSVD) and ipsilateral leptomeningeal collateral (LMC) status in patients with symptomatic intracranial atherosclerotic stenosis (sICAS). In 108 patients with 50-99% symptomatic intracranial internal carotid artery or M1 middle cerebral artery stenosis, 4 CSVD imaging markers (lacunes, cerebral microbleeds, enlarged perivascular spaces [EPVSs], and white matter hyperintensities [WMHs]) were assessed in MRI. Score of 0 or 1 was assigned to each marker and added up as a summary CSVD score (ranging 0-4) to reflect an overall CSVD burden. Ipsilateral LMC status was assessed by determining the laterality of distal vessels in anterior and posterior cerebral artery territories on CT angiography. Moderate-to-severe EPVSs (adjusted odds ratio [aOR] = 4.15; p = 0.031) and WMHs (aOR = 5.90; p = 0.010), and higher summary CSVD score (aOR = 1.66; p = 0.030) were independently associated with poor LMCs. There was significant interaction between stenosis percentage in sICAS and summary CSVD score on poor LMCs (p = 0.022 for interaction), when higher CSVD score was significantly associated with poor LMCs in patients with severe sICAS (aOR = 2.84; p = 0.011) but not in those with moderate sICAS. The findings indicated possibly adverse effect of CSVD on the recruitment or development of LMCs in sICAS patients, especially in patients with severe sICAS.
{"title":"More severe cerebral small vessel disease associated with poor leptomeningeal collaterals in symptomatic intracranial atherosclerotic stenosis.","authors":"Yuying Liu, Shuang Li, Xuan Tian, Jill Abrigo, Bonnie Yk Lam, Jize Wei, Lina Zheng, Yu Liu, Ziqi Li, Tingjun Liang, Bonaventure Ym Ip, Thomas W Leung, Xinyi Leng","doi":"10.1177/0271678X241292537","DOIUrl":"https://doi.org/10.1177/0271678X241292537","url":null,"abstract":"<p><p>We investigated the association between cerebral small vessel disease (CSVD) and ipsilateral leptomeningeal collateral (LMC) status in patients with symptomatic intracranial atherosclerotic stenosis (sICAS). In 108 patients with 50-99% symptomatic intracranial internal carotid artery or M1 middle cerebral artery stenosis, 4 CSVD imaging markers (lacunes, cerebral microbleeds, enlarged perivascular spaces [EPVSs], and white matter hyperintensities [WMHs]) were assessed in MRI. Score of 0 or 1 was assigned to each marker and added up as a summary CSVD score (ranging 0-4) to reflect an overall CSVD burden. Ipsilateral LMC status was assessed by determining the laterality of distal vessels in anterior and posterior cerebral artery territories on CT angiography. Moderate-to-severe EPVSs (adjusted odds ratio [aOR] = 4.15; p = 0.031) and WMHs (aOR = 5.90; p = 0.010), and higher summary CSVD score (aOR = 1.66; p = 0.030) were independently associated with poor LMCs. There was significant interaction between stenosis percentage in sICAS and summary CSVD score on poor LMCs (p = 0.022 for interaction), when higher CSVD score was significantly associated with poor LMCs in patients with severe sICAS (aOR = 2.84; p = 0.011) but not in those with moderate sICAS. The findings indicated possibly adverse effect of CSVD on the recruitment or development of LMCs in sICAS patients, especially in patients with severe sICAS.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142466524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-13DOI: 10.1177/0271678X241290606
Cedric Gollion, Rune H Christensen, Håkan Ashina, Haidar M Al-Khazali, Patrick M Fisher, Faisal Mohammad Amin, Martin Lauritzen, Messoud Ashina
Cortical spreading depression (CSD) is associated with pronounced alterations in cerebral blood flow. These alterations can be captured using high-field functional magnetic resonance imaging (fMRI). While compelling clinical and experimental data suggest that CSD is involved in the pathogenesis of migraine aura, the mechanistic intricacies remain poorly understood. Here, we use visual stimulus-induced blood oxygen level-dependent (BOLD) fMRI responses to characterize spatiotemporal alterations in cerebral blood flow during spontaneous attacks with migraine aura. Six adult participants diagnosed with migraine with aura underwent BOLD fMRI scans with a visual stimulation paradigm, consisting of flickering checkerboard stimulation. Our results revealed that auras with somatosensory symptoms corresponded with bilateral alterations of stimulus-induced BOLD responses in the somatosensory cortex, exhibiting anterior-to-posterior propagation and absence of antecedent occipital abnormalities. These altered stimulus-induced BOLD responses were bilateral, despite a unilateral manifestation of aura symptoms, and had no relationship with positive or negative aura symptoms. The bilateral abnormalities in stimulus-induced BOLD responses completes our current knowledge on migraine aura.
{"title":"Somatosensory migraine auras evoked by bihemispheric cortical spreading depression events in human parietal cortex.","authors":"Cedric Gollion, Rune H Christensen, Håkan Ashina, Haidar M Al-Khazali, Patrick M Fisher, Faisal Mohammad Amin, Martin Lauritzen, Messoud Ashina","doi":"10.1177/0271678X241290606","DOIUrl":"https://doi.org/10.1177/0271678X241290606","url":null,"abstract":"<p><p>Cortical spreading depression (CSD) is associated with pronounced alterations in cerebral blood flow. These alterations can be captured using high-field functional magnetic resonance imaging (fMRI). While compelling clinical and experimental data suggest that CSD is involved in the pathogenesis of migraine aura, the mechanistic intricacies remain poorly understood. Here, we use visual stimulus-induced blood oxygen level-dependent (BOLD) fMRI responses to characterize spatiotemporal alterations in cerebral blood flow during spontaneous attacks with migraine aura. Six adult participants diagnosed with migraine with aura underwent BOLD fMRI scans with a visual stimulation paradigm, consisting of flickering checkerboard stimulation. Our results revealed that auras with somatosensory symptoms corresponded with bilateral alterations of stimulus-induced BOLD responses in the somatosensory cortex, exhibiting anterior-to-posterior propagation and absence of antecedent occipital abnormalities. These altered stimulus-induced BOLD responses were bilateral, despite a unilateral manifestation of aura symptoms, and had no relationship with positive or negative aura symptoms. The bilateral abnormalities in stimulus-induced BOLD responses completes our current knowledge on migraine aura.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142466525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ischemic stroke is a leading cause of disability and death globally. Stem cell therapies are emerging as a frontier for enhancing post-stroke recovery, with Muse cells-a subclass of pluripotent stem cells-demonstrating considerable promise. Muse cells are notable not only for their potential in cell replacement but also for their role in modulating immune responses following cerebral infarction. In the present study, we administered Muse cells intravenously to mice after inducing a stroke via distal middle cerebral artery occlusion. We evaluated motor outcomes, splenocyte populations, cytokine profiles, and gene expression 2 weeks after inducing stroke. Additionally, comparisons were drawn between outcomes in splenectomized mice and those receiving adoptive splenocyte transfer to discern the specific influence of the spleen on treatment efficacy. Our findings revealed that Muse cell therapy facilitates motor recovery, an effect that is compromised in the absence of the spleen. Spleens in treated mice exhibited a shift in neutrophil counts, increased cytokine activity, and a notable uptick in the expression of genes related to protein folding. These insights affirm the potential therapeutic effect of Muse cells in post-stroke treatment strategies, with their efficacy attributed, at least in part, to immunomodulatory pathways involving the spleen.
{"title":"Intravenous administration of muse cells improves cerebral ischemia outcome via immunomodulation in the spleen.","authors":"Yuya Kato, Daiki Aburakawa, Ryosuke Tashiro, Yuan Zhou, Sherif Rashad, Hidenori Endo, Teiji Tominaga, Kuniyasu Niizuma","doi":"10.1177/0271678X241290363","DOIUrl":"https://doi.org/10.1177/0271678X241290363","url":null,"abstract":"<p><p>Ischemic stroke is a leading cause of disability and death globally. Stem cell therapies are emerging as a frontier for enhancing post-stroke recovery, with Muse cells-a subclass of pluripotent stem cells-demonstrating considerable promise. Muse cells are notable not only for their potential in cell replacement but also for their role in modulating immune responses following cerebral infarction. In the present study, we administered Muse cells intravenously to mice after inducing a stroke via distal middle cerebral artery occlusion. We evaluated motor outcomes, splenocyte populations, cytokine profiles, and gene expression 2 weeks after inducing stroke. Additionally, comparisons were drawn between outcomes in splenectomized mice and those receiving adoptive splenocyte transfer to discern the specific influence of the spleen on treatment efficacy. Our findings revealed that Muse cell therapy facilitates motor recovery, an effect that is compromised in the absence of the spleen. Spleens in treated mice exhibited a shift in neutrophil counts, increased cytokine activity, and a notable uptick in the expression of genes related to protein folding. These insights affirm the potential therapeutic effect of Muse cells in post-stroke treatment strategies, with their efficacy attributed, at least in part, to immunomodulatory pathways involving the spleen.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142466523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}