Pub Date : 2025-01-30DOI: 10.1177/0271678X251316395
Pontus Söderström, Anders Eklund, Nina Karalija, Britt M Andersson, Katrine Riklund, Lars Bäckman, Jan Malm, Anders Wåhlin
Variations in cerebral blood flow and blood volume interact with intracranial pressure and cerebrospinal fluid dynamics, all of which play a crucial role in brain homeostasis. A key physiological modulator is respiration, but its impact on cerebral blood flow and volume has not been thoroughly investigated. Here we used 4D flow MRI in a population-based sample of 65 participants (mean age = 75 ± 1) to quantify these effects. Two gating approaches were considered, one using respiratory-phase and the other using respiratory-time (i.e. raw time in the cycle). For both gating methods, the arterial inflow was significantly larger during exhalation compared to inhalation, whereas the venous outflow was significantly larger during inhalation compared to exhalation. The cerebral blood volume variation per respiratory cycle was 0.83 [0.62, 1.13] ml for respiratory-phase gating and 0.78 [0.59, 1.02] ml for respiratory-time gating. For comparison, the volume variation of the cardiac cycle was 1.01 [0.80, 1.30] ml. Taken together, our results clearly demonstrate respiratory influences on cerebral blood flow. The corresponding vascular volume variations appear to be of the same order of magnitude as those of the cardiac cycle, highlighting respiration as an important modulator of cerebral blood flow and blood volume.
{"title":"Respiratory influence on cerebral blood flow and blood volume - A 4D flow MRI study.","authors":"Pontus Söderström, Anders Eklund, Nina Karalija, Britt M Andersson, Katrine Riklund, Lars Bäckman, Jan Malm, Anders Wåhlin","doi":"10.1177/0271678X251316395","DOIUrl":"10.1177/0271678X251316395","url":null,"abstract":"<p><p>Variations in cerebral blood flow and blood volume interact with intracranial pressure and cerebrospinal fluid dynamics, all of which play a crucial role in brain homeostasis. A key physiological modulator is respiration, but its impact on cerebral blood flow and volume has not been thoroughly investigated. Here we used 4D flow MRI in a population-based sample of 65 participants (mean age = 75 ± 1) to quantify these effects. Two gating approaches were considered, one using respiratory-phase and the other using respiratory-time (i.e. raw time in the cycle). For both gating methods, the arterial inflow was significantly larger during exhalation compared to inhalation, whereas the venous outflow was significantly larger during inhalation compared to exhalation. The cerebral blood volume variation per respiratory cycle was 0.83 [0.62, 1.13] ml for respiratory-phase gating and 0.78 [0.59, 1.02] ml for respiratory-time gating. For comparison, the volume variation of the cardiac cycle was 1.01 [0.80, 1.30] ml. Taken together, our results clearly demonstrate respiratory influences on cerebral blood flow. The corresponding vascular volume variations appear to be of the same order of magnitude as those of the cardiac cycle, highlighting respiration as an important modulator of cerebral blood flow and blood volume.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"271678X251316395"},"PeriodicalIF":4.9,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11783418/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143065861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stem cell-based therapies have raised considerable interest to develop regenerative treatment for neurological disorders with high disability. In this review, we focus on recent preclinical and clinical evidence of stem cell therapy in the treatment of degenerative neurological diseases and discuss different cell types, delivery routes and biodistribution of stem cell therapy. In addition, recent advances of mechanistic insights of stem cell therapy, including functional replacement by exogenous cells, immunomodulation and paracrine effects of stem cell therapies are also demonstrated. Finally, we also highlight the adjunction approaches that has been implemented to augment their reparative function, survival and migration to target specific tissue, including stem cell preconditioning, genetical engineering, co-transplantation and combined therapy.
{"title":"Advances in clinical translation of stem cell-based therapy in neurological diseases.","authors":"Yu Wang, Yirong Cao, Wanqing Xie, Yunlu Guo, Jiayi Cai, Tingting Huang, Peiying Li","doi":"10.1177/0271678X251317374","DOIUrl":"10.1177/0271678X251317374","url":null,"abstract":"<p><p>Stem cell-based therapies have raised considerable interest to develop regenerative treatment for neurological disorders with high disability. In this review, we focus on recent preclinical and clinical evidence of stem cell therapy in the treatment of degenerative neurological diseases and discuss different cell types, delivery routes and biodistribution of stem cell therapy. In addition, recent advances of mechanistic insights of stem cell therapy, including functional replacement by exogenous cells, immunomodulation and paracrine effects of stem cell therapies are also demonstrated. Finally, we also highlight the adjunction approaches that has been implemented to augment their reparative function, survival and migration to target specific tissue, including stem cell preconditioning, genetical engineering, co-transplantation and combined therapy.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"271678X251317374"},"PeriodicalIF":4.9,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11783424/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143065847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-25DOI: 10.1177/0271678X251316392
Helena Eide Therkelsen, Rune Enger, Per Kristian Eide, Geir Ringstad
A potential two-way passage of cells and substances between the brain and skull bone marrow may open for new insights into neurological disease. The arachnoid membrane was traditionally considered to restrict cells and larger molecules in CSF from entering the dura and bone marrow directly. However, new data on exchange between brain and skull bone marrow have recently emerged. Here, we conducted a systematic literature to answer the question: What is the current evidence regarding the movement of cells and molecules between the brain and skull bone marrow, spanning CSF and meninges? We excluded studies related to head or skull trauma, cranial fractures or defects, cancer invasion, CSF leakage, spontaneous intracranial hypotension, spinal dura mater, and studies solely focusing on meningeal lymphatic vessels or the passage of substances from CSF to meningeal lymphatic vessels. The review identified 16 studies that provide evidence of communication between the brain, meninges and skull bone marrow. Cells (such as B and T cells and neutrophils), bacteria, and substances (tracers, drug compounds) have been reported to pass between the brain and skull bone. However, most studies are performed in rodents, emphasizing the need for translation to humans.
{"title":"Evidence for cellular and solute passage between the brain and skull bone marrow across meninges: A systematic review.","authors":"Helena Eide Therkelsen, Rune Enger, Per Kristian Eide, Geir Ringstad","doi":"10.1177/0271678X251316392","DOIUrl":"10.1177/0271678X251316392","url":null,"abstract":"<p><p>A potential two-way passage of cells and substances between the brain and skull bone marrow may open for new insights into neurological disease. The arachnoid membrane was traditionally considered to restrict cells and larger molecules in CSF from entering the dura and bone marrow directly. However, new data on exchange between brain and skull bone marrow have recently emerged. Here, we conducted a systematic literature to answer the question: What is the current evidence regarding the movement of cells and molecules between the brain and skull bone marrow, spanning CSF and meninges? We excluded studies related to head or skull trauma, cranial fractures or defects, cancer invasion, CSF leakage, spontaneous intracranial hypotension, spinal dura mater, and studies solely focusing on meningeal lymphatic vessels or the passage of substances from CSF to meningeal lymphatic vessels. The review identified 16 studies that provide evidence of communication between the brain, meninges and skull bone marrow. Cells (such as B and T cells and neutrophils), bacteria, and substances (tracers, drug compounds) have been reported to pass between the brain and skull bone. However, most studies are performed in rodents, emphasizing the need for translation to humans.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"271678X251316392"},"PeriodicalIF":4.9,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11765306/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143038943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-25DOI: 10.1177/0271678X251313747
Benjamin S Stacey, Christopher J Marley, Hayato Tsukamoto, Tony G Dawkins, Thomas S Owens, Thomas A Calverley, Lewis Fall, Angelo Iannetelli, Ifan Lewis, James M Coulson, Mike Stembridge, Damian M Bailey
To what extent sildenafil, a selective inhibitor of the type-5 phosphodiesterase modulates systemic redox status and cerebrovascular function during acute exposure to hypoxia remains unknown. To address this, 12 healthy males (aged 24 ± 3 y) participated in a randomized, placebo-controlled crossover study involving exposure to both normoxia and acute (60 min) hypoxia (Fi = 0.14), followed by oral administration of 50 mg sildenafil and placebo (double-blinded). Venous blood was sampled for the ascorbate radical (A•-: electron paramagnetic resonance spectroscopy) and nitric oxide metabolites (NO: ozone-based chemiluminescence). Transcranial Doppler ultrasound was employed to determine middle cerebral artery velocity (MCAv), cerebral delivery of oxygen dynamic cerebral autoregulation (dCA) and cerebrovascular reactivity to hypo/hypercapnia (CVRCO2HYPO/HYPER). Cortical oxyhemoglobin (cO2Hb) and oxygenation index (OI) were assessed using pulsed continuous wave near infra-red spectroscopy. Hypoxia decreased total plasma NO (P = 0.008), (P = <0.001) and cO2Hb (P = 0.005). In hypoxia, sildenafil selectively reduced A•- (P = 0.018) and MCAV (P = 0.018), and increased dCA metrics of low-frequency phase (P = 0.029) and CVRCO2HYPER (P = 0.007) compared to hypoxia-placebo. Collectively, these findings provide evidence for a PDE-5 inhibitory pathway that enhances select aspects of cerebrovascular function in hypoxia subsequent to a systemic improvement in redox homeostasis and independent of altered vascular NO bioavailability.
{"title":"Phosphodiesterase inhibition restoreshypoxia-induced cerebrovascular dysfunction subsequent to improved systemic redox homeostasis: A randomized, double-blind, placebo-controlled crossover study.","authors":"Benjamin S Stacey, Christopher J Marley, Hayato Tsukamoto, Tony G Dawkins, Thomas S Owens, Thomas A Calverley, Lewis Fall, Angelo Iannetelli, Ifan Lewis, James M Coulson, Mike Stembridge, Damian M Bailey","doi":"10.1177/0271678X251313747","DOIUrl":"10.1177/0271678X251313747","url":null,"abstract":"<p><p>To what extent sildenafil, a selective inhibitor of the type-5 phosphodiesterase modulates systemic redox status and cerebrovascular function during acute exposure to hypoxia remains unknown. To address this, 12 healthy males (aged 24 ± 3 y) participated in a randomized, placebo-controlled crossover study involving exposure to both normoxia and acute (60 min) hypoxia (Fi<math><msub><mrow><mtext>O</mtext></mrow><mrow><mn>2</mn></mrow></msub></math> = 0.14), followed by oral administration of 50 mg sildenafil and placebo (double-blinded). Venous blood was sampled for the ascorbate radical (A<sup>•-</sup>: electron paramagnetic resonance spectroscopy) and nitric oxide metabolites (NO: ozone-based chemiluminescence). Transcranial Doppler ultrasound was employed to determine middle cerebral artery velocity (MCAv), cerebral delivery of oxygen <math><msub><mrow><mtext>(CDO</mtext></mrow><mrow><mn>2</mn></mrow></msub><mtext>),</mtext></math> dynamic cerebral autoregulation (dCA) and cerebrovascular reactivity to hypo/hypercapnia (CVR<sub>CO2HYPO/HYPER</sub>). Cortical oxyhemoglobin (cO<sub>2</sub>Hb) and oxygenation index (OI) were assessed using pulsed continuous wave near infra-red spectroscopy. Hypoxia decreased total plasma NO (<i>P = </i>0.008), <math><msub><mrow><mtext>CDO</mtext></mrow><mrow><mn>2</mn></mrow></msub></math> (<i>P</i> = <0.001) and cO<sub>2</sub>Hb (<i>P = </i>0.005). In hypoxia, sildenafil selectively reduced A<sup>•-</sup> (<i>P = </i>0.018) and MCA<sub>V</sub> (<i>P = </i>0.018), and increased dCA metrics of low-frequency phase (<i>P = </i>0.029) and CVR<sub>CO2HYPER</sub> (<i>P = </i>0.007) compared to hypoxia-placebo. Collectively, these findings provide evidence for a PDE-5 inhibitory pathway that enhances select aspects of cerebrovascular function in hypoxia subsequent to a systemic improvement in redox homeostasis and independent of altered vascular NO bioavailability.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"271678X251313747"},"PeriodicalIF":4.9,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11765346/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143039004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-25DOI: 10.1177/0271678X251314331
Gerald A Dienel, Thaddeus S Nowak
Current metabolomics technologies can measure hundreds of chemical entities in tissue extracts with good reliability. However, long-recognized requirements to halt enzyme activities during the initial moments of sample preparation are usually overlooked, allowing marked postmortem shifts in levels of labile metabolites representing diverse pathways. In brain many such changes occur in a matter of seconds. These comments overview the concern, contrast representative studies, and specify approaches to consider as standards in the field going forward. Comparison with established metabolite signatures of in vivo brain is an essential validation step when implementing any collection method.
{"title":"Setting standards for brain collection procedures in metabolomic studies.","authors":"Gerald A Dienel, Thaddeus S Nowak","doi":"10.1177/0271678X251314331","DOIUrl":"10.1177/0271678X251314331","url":null,"abstract":"<p><p>Current metabolomics technologies can measure hundreds of chemical entities in tissue extracts with good reliability. However, long-recognized requirements to halt enzyme activities during the initial moments of sample preparation are usually overlooked, allowing marked postmortem shifts in levels of labile metabolites representing diverse pathways. In brain many such changes occur in a matter of seconds. These comments overview the concern, contrast representative studies, and specify approaches to consider as standards in the field going forward. Comparison with established metabolite signatures of in vivo brain is an essential validation step when implementing any collection method.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"271678X251314331"},"PeriodicalIF":4.9,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11765310/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143039008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-25DOI: 10.1177/0271678X251314683
Biranavan Uthayakumar, Nicole Ic Cappelletto, Nadia D Bragagnolo, Albert P Chen, Nathan Ma, William J Perks, Ruby Endre, Fred Tam, Simon J Graham, Chris Heyn, Kayvan R Keshari, Hany Soliman, Charles H Cunningham
Hyperpolarized-13C magnetic resonance imaging (HP-13C MRI) was used to image changes in 13C-lactate signal during a visual stimulus condition in comparison to an eyes-closed control condition. Whole-brain 13C-pyruvate, 13C-lactate and 13C-bicarbonate production was imaged in healthy volunteers (N = 6, ages 24-33) for the two conditions using two separate hyperpolarized 13C-pyruvate injections. BOLD-fMRI scans were used to delineate regions of functional activation. 13C-metabolite signal was normalized by 13C-metabolite signal from the brainstem and the percentage change in 13C-metabolite signal conditions was calculated. A one-way Wilcoxon signed-rank test showed a significant increase in 13C-lactate in regions of activation when compared to the remainder of the brain (). No significant increase was observed in 13C-pyruvate signal () or 13C-bicarbonate signal (). The results show an increase in 13C-lactate production in activated regions that is measurable with HP-13C MRI.
{"title":"Task activation results in regional <sup>13</sup>C-lactate signal increase in the human brain.","authors":"Biranavan Uthayakumar, Nicole Ic Cappelletto, Nadia D Bragagnolo, Albert P Chen, Nathan Ma, William J Perks, Ruby Endre, Fred Tam, Simon J Graham, Chris Heyn, Kayvan R Keshari, Hany Soliman, Charles H Cunningham","doi":"10.1177/0271678X251314683","DOIUrl":"10.1177/0271678X251314683","url":null,"abstract":"<p><p>Hyperpolarized-<sup>13</sup>C magnetic resonance imaging (HP-<sup>13</sup>C MRI) was used to image changes in <sup>13</sup>C-lactate signal during a visual stimulus condition in comparison to an eyes-closed control condition. Whole-brain <sup>13</sup>C-pyruvate, <sup>13</sup>C-lactate and <sup>13</sup>C-bicarbonate production was imaged in healthy volunteers (N = 6, ages 24-33) for the two conditions using two separate hyperpolarized <sup>13</sup>C-pyruvate injections. BOLD-fMRI scans were used to delineate regions of functional activation. <sup>13</sup>C-metabolite signal was normalized by <sup>13</sup>C-metabolite signal from the brainstem and the percentage change in <sup>13</sup>C-metabolite signal conditions was calculated. A one-way Wilcoxon signed-rank test showed a significant increase in <sup>13</sup>C-lactate in regions of activation when compared to the remainder of the brain (<math><mi>p</mi><mo>=</mo><mn>0.02</mn></math>). No significant increase was observed in <sup>13</sup>C-pyruvate signal (<math><mi>p</mi><mo>=</mo><mn>0.11</mn></math>) or <sup>13</sup>C-bicarbonate signal (<math><mi>p</mi><mo>=</mo><mn>0.95</mn></math>). The results show an increase in <sup>13</sup>C-lactate production in activated regions that is measurable with HP-<sup>13</sup>C MRI.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"271678X251314683"},"PeriodicalIF":4.9,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11765303/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143038949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-25DOI: 10.1177/0271678X251314371
Yoon Kyung Choi, Takakuni Maki, Anna C Liang, Kazuhide Hayakawa, Seong-Ho Koh, Young-Myeong Kim, Michael J Whalen, Ji Hae Seo, Josephine Lok, Irwin H Gelman, Kyu-Won Kim, Eng H Lo, Ken Arai
Therapeutic drug development for central nervous system injuries, such as traumatic brain injury (TBI), presents significant challenges. TBI results in primary mechanical damage followed by secondary injury, leading to cognitive dysfunction and memory loss. Our recent study demonstrated the potential of carbon monoxide-releasing molecules (CORMs) to improve TBI recovery by enhancing neurogenesis. However, a comprehensive TBI recovery strategy requires not only neurogenesis but also oligodendrogenesis. In this study, we elucidate the critical role of A-kinase anchor protein 12 (AKAP12), a scaffolding protein predominantly expressed by intact pericytes, in oligodendrocyte regeneration during CO therapy for TBI. CORM treatment increased AKAP12 expression, which enhanced myelin intensity and mitigated TBI-induced oligodendrocyte loss. In addition, CO promotes the generation of new oligodendrocytes, a process that is impaired by AKAP12 deficiency. Notably, even after TBI, cognitive function was restored in wild-type mice following CORM treatment, but this effect was absent in Akap12 knockout mice. These findings highlight the importance of CO-induced AKAP12 upregulation, particularly in pericytes, in supporting oligodendrogenesis and cognitive recovery after TBI. Understanding these mechanisms holds promise for the development of targeted therapies to address TBI-associated impairments.
{"title":"A-kinase anchor protein 12 promotes oligodendrogenesis and cognitive recovery in carbon monoxide therapy for traumatic brain injury.","authors":"Yoon Kyung Choi, Takakuni Maki, Anna C Liang, Kazuhide Hayakawa, Seong-Ho Koh, Young-Myeong Kim, Michael J Whalen, Ji Hae Seo, Josephine Lok, Irwin H Gelman, Kyu-Won Kim, Eng H Lo, Ken Arai","doi":"10.1177/0271678X251314371","DOIUrl":"10.1177/0271678X251314371","url":null,"abstract":"<p><p>Therapeutic drug development for central nervous system injuries, such as traumatic brain injury (TBI), presents significant challenges. TBI results in primary mechanical damage followed by secondary injury, leading to cognitive dysfunction and memory loss. Our recent study demonstrated the potential of carbon monoxide-releasing molecules (CORMs) to improve TBI recovery by enhancing neurogenesis. However, a comprehensive TBI recovery strategy requires not only neurogenesis but also oligodendrogenesis. In this study, we elucidate the critical role of A-kinase anchor protein 12 (AKAP12), a scaffolding protein predominantly expressed by intact pericytes, in oligodendrocyte regeneration during CO therapy for TBI. CORM treatment increased AKAP12 expression, which enhanced myelin intensity and mitigated TBI-induced oligodendrocyte loss. In addition, CO promotes the generation of new oligodendrocytes, a process that is impaired by AKAP12 deficiency. Notably, even after TBI, cognitive function was restored in wild-type mice following CORM treatment, but this effect was absent in <i>Akap12</i> knockout mice. These findings highlight the importance of CO-induced AKAP12 upregulation, particularly in pericytes, in supporting oligodendrogenesis and cognitive recovery after TBI. Understanding these mechanisms holds promise for the development of targeted therapies to address TBI-associated impairments.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"271678X251314371"},"PeriodicalIF":4.9,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11765309/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143038940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-24DOI: 10.1177/0271678X251317057
{"title":"Expression of concern.","authors":"","doi":"10.1177/0271678X251317057","DOIUrl":"10.1177/0271678X251317057","url":null,"abstract":"","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"271678X251317057"},"PeriodicalIF":4.9,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11760068/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143028413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-23DOI: 10.1177/0271678X251314682
Juha S Valjakka, Jaakko Paasonen, Raimo A Salo, Ekaterina Paasonen, Petteri Stenroos, Irina Gureviciene, Mikko Kettunen, Djaudat Idiyatullin, Heikki Tanila, Shalom Michaeli, Silvia Mangia, Olli Gröhn
Zero echo time (zero-TE) pulse sequences provide a quiet and artifact-free alternative to conventional functional magnetic resonance imaging (fMRI) pulse sequences. The fast readouts (<1 ms) utilized in zero-TE fMRI produce an image contrast with negligible contributions from blood oxygenation level-dependent (BOLD) mechanisms, yet the zero-TE contrast is highly sensitive to brain function. However, the precise relationship between the zero-TE contrast and neuronal activity has not been determined. Therefore, we aimed to derive a function to model the temporal dynamics of the zero-TE fMRI signal in response to neuronal activity. Furthermore, we examined the correlation of zero-TE fMRI with neuronal activity across stimulation frequencies. To these ends, we performed simultaneous electrophysiological recordings and zero-TE fMRI in rats subjected to whisker stimulation. The presented impulse response function provides a basis for the statistical modeling of neuronal activity-induced changes in the zero-TE fMRI signal. The temporal characteristics of the zero-TE fMRI response were found to be consistent with the previously postulated non-BOLD hemodynamic origin of the functional contrast. The zero-TE fMRI signal was well predicted by electrophysiological recordings, although systematic stimulation-dependent residuals were also observed, suggesting nonlinearities in neurovascular coupling. We conclude that zero-TE fMRI provides a robust proxy for neuronal activity.
{"title":"Correlation of zero echo time functional MRI with neuronal activity in rats.","authors":"Juha S Valjakka, Jaakko Paasonen, Raimo A Salo, Ekaterina Paasonen, Petteri Stenroos, Irina Gureviciene, Mikko Kettunen, Djaudat Idiyatullin, Heikki Tanila, Shalom Michaeli, Silvia Mangia, Olli Gröhn","doi":"10.1177/0271678X251314682","DOIUrl":"10.1177/0271678X251314682","url":null,"abstract":"<p><p>Zero echo time (zero-TE) pulse sequences provide a quiet and artifact-free alternative to conventional functional magnetic resonance imaging (fMRI) pulse sequences. The fast readouts (<1 ms) utilized in zero-TE fMRI produce an image contrast with negligible contributions from blood oxygenation level-dependent (BOLD) mechanisms, yet the zero-TE contrast is highly sensitive to brain function. However, the precise relationship between the zero-TE contrast and neuronal activity has not been determined. Therefore, we aimed to derive a function to model the temporal dynamics of the zero-TE fMRI signal in response to neuronal activity. Furthermore, we examined the correlation of zero-TE fMRI with neuronal activity across stimulation frequencies. To these ends, we performed simultaneous electrophysiological recordings and zero-TE fMRI in rats subjected to whisker stimulation. The presented impulse response function provides a basis for the statistical modeling of neuronal activity-induced changes in the zero-TE fMRI signal. The temporal characteristics of the zero-TE fMRI response were found to be consistent with the previously postulated non-BOLD hemodynamic origin of the functional contrast. The zero-TE fMRI signal was well predicted by electrophysiological recordings, although systematic stimulation-dependent residuals were also observed, suggesting nonlinearities in neurovascular coupling. We conclude that zero-TE fMRI provides a robust proxy for neuronal activity.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"271678X251314682"},"PeriodicalIF":4.9,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758440/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143023558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-22DOI: 10.1177/0271678X241310732
Bart Aa Franx, Ivo Acw Tiebosch, Annette van der Toorn, Rick M Dijkhuizen
Futile recanalization hampers prognoses for ischemic stroke patients despite successful recanalization therapy. Allegedly, hypertension and reperfusion deficits contribute, but a better understanding is needed of how they interact and mediate disease outcome. We reassessed data from spontaneously hypertensive and normotensive Wistar-Kyoto rats (male, n = 6-7/group) that were subjected to two-hour embolic middle cerebral artery occlusion and thrombolysis in preclinical trials. Serial MRI allowed lesion monitoring and parcellation of regions-of-interest that represented infarcted (core) or recovered (perilesional) tissue. Imaging markers of hemodynamics and blood-brain barrier (BBB) status were related to tissue fate and neurological outcome. Despite comparable ischemic severity during occlusion between groups, hypertensive rats temporarily developed larger lesions after recanalization, with permanently aggravated vasogenic edema and BBB permeability. One day post-stroke, cerebral blood flow (CBF) was variably restored, but blood transit times were consistently prolonged in hypertensives. Compared to the core, perilesional CBF was normo-to-hyperperfused in both groups, yet this pattern reversed after seven days. Volumes of hypo- and hyperperfusion developed irrespective of strain, differentially associating with final infarct volume and behavioral outcome. Incomplete reperfusion and cerebral injury after thrombolysis were augmented in hypertensive rats. One day after thrombolysis, fractional volumes of hypoperfusion associated with worsened outcomes, while fractional volumes of hyperperfusion appeared beneficial or benign.
{"title":"Chronic hypertension and perfusion deficits conjointly affect disease outcome after tPA treatment in a rodent model of thromboembolic stroke.","authors":"Bart Aa Franx, Ivo Acw Tiebosch, Annette van der Toorn, Rick M Dijkhuizen","doi":"10.1177/0271678X241310732","DOIUrl":"10.1177/0271678X241310732","url":null,"abstract":"<p><p>Futile recanalization hampers prognoses for ischemic stroke patients despite successful recanalization therapy. Allegedly, hypertension and reperfusion deficits contribute, but a better understanding is needed of how they interact and mediate disease outcome. We reassessed data from spontaneously hypertensive and normotensive Wistar-Kyoto rats (male, n = 6-7/group) that were subjected to two-hour embolic middle cerebral artery occlusion and thrombolysis in preclinical trials. Serial MRI allowed lesion monitoring and parcellation of regions-of-interest that represented infarcted (core) or recovered (perilesional) tissue. Imaging markers of hemodynamics and blood-brain barrier (BBB) status were related to tissue fate and neurological outcome. Despite comparable ischemic severity during occlusion between groups, hypertensive rats temporarily developed larger lesions after recanalization, with permanently aggravated vasogenic edema and BBB permeability. One day post-stroke, cerebral blood flow (CBF) was variably restored, but blood transit times were consistently prolonged in hypertensives. Compared to the core, perilesional CBF was normo-to-hyperperfused in both groups, yet this pattern reversed after seven days. Volumes of hypo- and hyperperfusion developed irrespective of strain, differentially associating with final infarct volume and behavioral outcome. Incomplete reperfusion and cerebral injury after thrombolysis were augmented in hypertensive rats. One day after thrombolysis, fractional volumes of hypoperfusion associated with worsened outcomes, while fractional volumes of hyperperfusion appeared beneficial or benign.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"271678X241310732"},"PeriodicalIF":4.9,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755427/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143023554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}