Pub Date : 2024-11-17DOI: 10.1177/0271678X241301261
Mathijs Bj Dijsselhof, Jorina Holtrop, Sarah-Naomi James, Carole H Sudre, Kirsty Lu, Luigi Lorenzini, Lyduine E Collij, Catherine J Scott, Emily N Manning, David L Thomas, Marcus Richards, Alun D Hughes, David M Cash, Frederik Barkhof, Jonathan M Schott, Jan Petr, Henk Jmm Mutsaerts
While the associations of mid-life cardiovascular risk factors with late-life white matter lesions (WMH) and cognitive decline have been established, the role of cerebral haemodynamics is unclear. We investigated the relation of late-life (69-71 years) arterial spin labelling (ASL) MRI-derived cerebral blood flow (CBF) with life-course cardiovascular risk factors (36-71 years) and late-life white matter hyperintensity (WMH) load in 282 cognitively healthy participants (52.8% female). Late-life (69-71 years) high systolic (B = -0.15) and diastolic (B = -0.25) blood pressure, and mean arterial pressure (B = -0.25) were associated with low grey matter (GM) CBF (p < 0.03), and white matter CBF (B = -0.25; B = -0.15; B = -0.13, p < 0.03, respectively). The association between systolic blood pressure and GM CBF differed between sexes (male/female B = -0.15/0.02, p = 0.04). No associations were found with early- or mid-life cardiovascular risk factors. Furthermore, WMHs were associated with cerebral haemodynamics but not cardiovascular risk factors. These findings suggest that cerebral blood flow autoregulation is able to maintain stable global cerebral haemodynamics until later in life. Future studies are encouraged to investigate why cardiovascular risk factors have differential effects on haemodynamics and WMH, and their implications for cognitive decline.
{"title":"Associations of life-course cardiovascular risk factors with late-life cerebral haemodynamics.","authors":"Mathijs Bj Dijsselhof, Jorina Holtrop, Sarah-Naomi James, Carole H Sudre, Kirsty Lu, Luigi Lorenzini, Lyduine E Collij, Catherine J Scott, Emily N Manning, David L Thomas, Marcus Richards, Alun D Hughes, David M Cash, Frederik Barkhof, Jonathan M Schott, Jan Petr, Henk Jmm Mutsaerts","doi":"10.1177/0271678X241301261","DOIUrl":"10.1177/0271678X241301261","url":null,"abstract":"<p><p>While the associations of mid-life cardiovascular risk factors with late-life white matter lesions (WMH) and cognitive decline have been established, the role of cerebral haemodynamics is unclear. We investigated the relation of late-life (69-71 years) arterial spin labelling (ASL) MRI-derived cerebral blood flow (CBF) with life-course cardiovascular risk factors (36-71 years) and late-life white matter hyperintensity (WMH) load in 282 cognitively healthy participants (52.8% female). Late-life (69-71 years) high systolic (B = -0.15) and diastolic (B = -0.25) blood pressure, and mean arterial pressure (B = -0.25) were associated with low grey matter (GM) CBF (p < 0.03), and white matter CBF (B = -0.25; B = -0.15; B = -0.13, p < 0.03, respectively). The association between systolic blood pressure and GM CBF differed between sexes (male/female B = -0.15/0.02, p = 0.04). No associations were found with early- or mid-life cardiovascular risk factors. Furthermore, WMHs were associated with cerebral haemodynamics but not cardiovascular risk factors. These findings suggest that cerebral blood flow autoregulation is able to maintain stable global cerebral haemodynamics until later in life. Future studies are encouraged to investigate why cardiovascular risk factors have differential effects on haemodynamics and WMH, and their implications for cognitive decline.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"271678X241301261"},"PeriodicalIF":4.9,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11571377/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142647468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the central nervous system (CNS), neuronal function and dysfunction are critically dependent on mitochondrial integrity and activity. In damaged or diseased brains, mitochondrial dysfunction reduces adenosine triphosphate (ATP) levels and impairs ATP-dependent neural firing and neurotransmitter dynamics. Restoring mitochondrial capacity to generate ATP may be fundamental in restoring neuronal function. Recent studies in animals and humans have demonstrated that endogenous mitochondria may be released into the extracellular environment and transported or exchanged between cells in the CNS. Under pathological conditions in the CNS, intercellular mitochondria transfer contributes to new classes of signaling and multifunctional cellular activities, thereby triggering deleterious effects or promoting beneficial responses. Therefore, to take full advantage of the beneficial effects of mitochondria, it may be useful to transplant healthy and viable mitochondria into damaged tissues. In this review, we describe recent findings on the mechanisms of mitochondria transfer and provide an overview of experimental methodologies, including tissue sourcing, mitochondrial isolation, storage, and modification, aimed at optimizing mitochondria transplantation therapy for CNS disorders. Additionally, we examine the clinical relevance and potential strategies for the therapeutic application of mitochondria transplantation.
在中枢神经系统(CNS)中,神经元的功能和功能障碍严重依赖于线粒体的完整性和活性。在受损或患病的大脑中,线粒体功能障碍会降低三磷酸腺苷(ATP)水平,并损害依赖 ATP 的神经发射和神经递质动态。恢复线粒体产生 ATP 的能力可能是恢复神经元功能的基础。最近对动物和人类的研究表明,内源性线粒体可释放到细胞外环境中,并在中枢神经系统的细胞间运输或交换。在中枢神经系统病理条件下,细胞间线粒体转运有助于产生新的信号和多功能细胞活动,从而引发有害影响或促进有益反应。因此,为了充分利用线粒体的有益作用,将健康、有活力的线粒体移植到受损组织中可能是有益的。在这篇综述中,我们介绍了线粒体转移机制的最新发现,并概述了旨在优化中枢神经系统疾病线粒体移植疗法的实验方法,包括组织来源、线粒体分离、储存和修饰。此外,我们还探讨了线粒体移植的临床意义和潜在的治疗应用策略。
{"title":"Molecular and cellular mechanisms of mitochondria transfer in models of central nervous system disease.","authors":"Takafumi Nakano, Keiichi Irie, Koichi Matsuo, Kenichi Mishima, Yoshihiko Nakamura","doi":"10.1177/0271678X241300223","DOIUrl":"10.1177/0271678X241300223","url":null,"abstract":"<p><p>In the central nervous system (CNS), neuronal function and dysfunction are critically dependent on mitochondrial integrity and activity. In damaged or diseased brains, mitochondrial dysfunction reduces adenosine triphosphate (ATP) levels and impairs ATP-dependent neural firing and neurotransmitter dynamics. Restoring mitochondrial capacity to generate ATP may be fundamental in restoring neuronal function. Recent studies in animals and humans have demonstrated that endogenous mitochondria may be released into the extracellular environment and transported or exchanged between cells in the CNS. Under pathological conditions in the CNS, intercellular mitochondria transfer contributes to new classes of signaling and multifunctional cellular activities, thereby triggering deleterious effects or promoting beneficial responses. Therefore, to take full advantage of the beneficial effects of mitochondria, it may be useful to transplant healthy and viable mitochondria into damaged tissues. In this review, we describe recent findings on the mechanisms of mitochondria transfer and provide an overview of experimental methodologies, including tissue sourcing, mitochondrial isolation, storage, and modification, aimed at optimizing mitochondria transplantation therapy for CNS disorders. Additionally, we examine the clinical relevance and potential strategies for the therapeutic application of mitochondria transplantation.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"271678X241300223"},"PeriodicalIF":4.9,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565516/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142620958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-13DOI: 10.1177/0271678X241289756
Eszter Farkas, Christine R Rose
Brain pH is precisely regulated, and pH transients associated with activity are rapidly restored under physiological conditions. During ischemia, the brain's ability to buffer pH changes is rapidly depleted. Tissue oxygen deprivation causes a shift from aerobic to anaerobic metabolism and the accumulation of lactic acid and protons. Although the degree of tissue acidosis resulting from ischemia depends on the severity of the ischemia, spreading depolarization (SD) events emerge as central elements to determining ischemic tissue acidosis. A marked decrease in tissue pH during cerebral ischemia may exacerbate neuronal injury, which has become known as acidotoxicity, in analogy to excitotoxicity. The cellular pathways underlying acidotoxicity have recently been described in increasing detail. The molecular structure of acid or base carriers and acidosis-activated ion channels, the precise (dys)homeostatic conditions under which they are activated, and their possible role in severe ischemia have been addressed. The expanded understanding of acidotoxic mechanisms now provides an opportunity to reevaluate the contexts that lead to acidotoxic injury. Here, we review the specific cellular pathways of acidotoxicity and demonstrate that SD plays a central role in activating the molecular machinery leading to acid-induced damage. We propose that SD is a key contributor to acidotoxic injury in cerebral ischemia.
{"title":"A dangerous liaison: Spreading depolarization and tissue acidification in cerebral ischemia.","authors":"Eszter Farkas, Christine R Rose","doi":"10.1177/0271678X241289756","DOIUrl":"https://doi.org/10.1177/0271678X241289756","url":null,"abstract":"<p><p>Brain pH is precisely regulated, and pH transients associated with activity are rapidly restored under physiological conditions. During ischemia, the brain's ability to buffer pH changes is rapidly depleted. Tissue oxygen deprivation causes a shift from aerobic to anaerobic metabolism and the accumulation of lactic acid and protons. Although the degree of tissue acidosis resulting from ischemia depends on the severity of the ischemia, spreading depolarization (SD) events emerge as central elements to determining ischemic tissue acidosis. A marked decrease in tissue pH during cerebral ischemia may exacerbate neuronal injury, which has become known as acidotoxicity, in analogy to excitotoxicity. The cellular pathways underlying acidotoxicity have recently been described in increasing detail. The molecular structure of acid or base carriers and acidosis-activated ion channels, the precise (dys)homeostatic conditions under which they are activated, and their possible role in severe ischemia have been addressed. The expanded understanding of acidotoxic mechanisms now provides an opportunity to reevaluate the contexts that lead to acidotoxic injury. Here, we review the specific cellular pathways of acidotoxicity and demonstrate that SD plays a central role in activating the molecular machinery leading to acid-induced damage. We propose that SD is a key contributor to acidotoxic injury in cerebral ischemia.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"271678X241289756"},"PeriodicalIF":4.9,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142621036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-13DOI: 10.1177/0271678X241298588
Kristina M Zvolanek, Jackson E Moore, Kelly Jarvis, Sarah J Moum, Molly G Bright
Cerebrovascular imaging assessments are particularly challenging in adolescent cohorts, where not all modalities are appropriate, and rapid brain maturation alters hemodynamics at both macro- and microvascular scales. In a preliminary sample of healthy adolescents (n = 12, 8-25 years), we investigated relationships between 4D flow MRI-derived blood velocity and blood flow in bilateral anterior, middle, and posterior cerebral arteries and BOLD cerebrovascular reactivity (CVR) in associated vascular territories. As hypothesized, higher velocities in large arteries are associated with an earlier response to a vasodilatory stimulus (cerebrovascular reactivity delay) in the downstream territory. Higher blood flow through these arteries is associated with a larger BOLD response to a vasodilatory stimulus (cerebrovascular reactivity amplitude) in the associated territory. These trends are consistent in a case study of adult moyamoya disease. In our small adolescent cohort, macrovascular-microvascular relationships for velocity/delay and flow/CVR change with age, though underlying mechanisms are unclear. Our work emphasizes the need to better characterize this key stage of human brain development, when cerebrovascular hemodynamics are changing, and standard imaging methods offer limited insight into these processes. We provide important normative data for future comparisons in pathology, where combining macro- and microvascular assessments may better help us prevent, stratify, and treat cerebrovascular disease.
{"title":"Macrovascular blood flow and microvascular cerebrovascular reactivity are regionally coupled in adolescence.","authors":"Kristina M Zvolanek, Jackson E Moore, Kelly Jarvis, Sarah J Moum, Molly G Bright","doi":"10.1177/0271678X241298588","DOIUrl":"10.1177/0271678X241298588","url":null,"abstract":"<p><p>Cerebrovascular imaging assessments are particularly challenging in adolescent cohorts, where not all modalities are appropriate, and rapid brain maturation alters hemodynamics at both macro- and microvascular scales. In a preliminary sample of healthy adolescents (n = 12, 8-25 years), we investigated relationships between 4D flow MRI-derived blood velocity and blood flow in bilateral anterior, middle, and posterior cerebral arteries and BOLD cerebrovascular reactivity (CVR) in associated vascular territories. As hypothesized, higher velocities in large arteries are associated with an earlier response to a vasodilatory stimulus (cerebrovascular reactivity delay) in the downstream territory. Higher blood flow through these arteries is associated with a larger BOLD response to a vasodilatory stimulus (cerebrovascular reactivity amplitude) in the associated territory. These trends are consistent in a case study of adult moyamoya disease. In our small adolescent cohort, macrovascular-microvascular relationships for velocity/delay and flow/CVR change with age, though underlying mechanisms are unclear. Our work emphasizes the need to better characterize this key stage of human brain development, when cerebrovascular hemodynamics are changing, and standard imaging methods offer limited insight into these processes. We provide important normative data for future comparisons in pathology, where combining macro- and microvascular assessments may better help us prevent, stratify, and treat cerebrovascular disease.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"271678X241298588"},"PeriodicalIF":4.9,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563552/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142620953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1177/0271678X241298584
Praveena Elanghovan, Thanh Nguyen, Pascal Spincemaille, Ajay Gupta, Yi Wang, Junghun Cho
The study investigated the sensitivity of a novel MRI-based OEF mapping, quantitative susceptibility mapping plus quantitative blood oxygen level-dependent imaging (QSM+qBOLD or QQ), to physiological changes, particularly increased oxygen extraction fraction (OEF) by using hyperventilation as a vasoconstrictive stimulus. While QQ's sensitivity to decreased OEF during hypercapnia has been demonstrated, its sensitivity to increased OEF levels, crucial for cerebrovascular disorders like vascular dementia and Parkinson's disease, remains unexplored. In comparison with a previous QSM-based OEF, we evaluated QQ's sensitivity to high OEF values. MRI data were obtained from 11 healthy subjects during resting state (RS) and hyperventilation state (HV) using a 3 T MRI with a three-dimensional multi-echo gradient echo sequence (mGRE) and arterial spin labeling (ASL). Region of interest (ROI) analysis and paired t-tests were used to compare OEF, CMRO2 and CBF between QQ and QSM. Similar to QSM, QQ showed higher OEF during HV compared to RS: in cortical gray matter, QQ-OEF and QSM-OEF was 36.44.7% and 35.312.5% at RS and 45.011.6% and 45.014.8% in HV, respectively. These findings demonstrate QQ's ability to detect physiological changes and suggest its potential in studying brain metabolism in neurological disorders.
{"title":"Sensitivity assessment of QSM+qBOLD (or QQ) in detecting elevated oxygen extraction fraction (OEF) in physiological change.","authors":"Praveena Elanghovan, Thanh Nguyen, Pascal Spincemaille, Ajay Gupta, Yi Wang, Junghun Cho","doi":"10.1177/0271678X241298584","DOIUrl":"https://doi.org/10.1177/0271678X241298584","url":null,"abstract":"<p><p>The study investigated the sensitivity of a novel MRI-based OEF mapping, quantitative susceptibility mapping plus quantitative blood oxygen level-dependent imaging (QSM+qBOLD or QQ), to physiological changes, particularly increased oxygen extraction fraction (OEF) by using hyperventilation as a vasoconstrictive stimulus. While QQ's sensitivity to decreased OEF during hypercapnia has been demonstrated, its sensitivity to increased OEF levels, crucial for cerebrovascular disorders like vascular dementia and Parkinson's disease, remains unexplored. In comparison with a previous QSM-based OEF, we evaluated QQ's sensitivity to high OEF values. MRI data were obtained from 11 healthy subjects during resting state (RS) and hyperventilation state (HV) using a 3 T MRI with a three-dimensional multi-echo gradient echo sequence (mGRE) and arterial spin labeling (ASL). Region of interest (ROI) analysis and paired t-tests were used to compare OEF, CMRO<sub>2</sub> and CBF between QQ and QSM. Similar to QSM, QQ showed higher OEF during HV compared to RS: in cortical gray matter, QQ-OEF and QSM-OEF was 36.4<math><mo> </mo><mo>±</mo><mo> </mo></math>4.7% and 35.3<math><mo> </mo><mo>±</mo><mo> </mo></math>12.5% at RS and 45.0<math><mo> </mo><mo>±</mo><mo> </mo></math>11.6% and 45.0<math><mo> </mo><mo>±</mo><mo> </mo></math>14.8% in HV, respectively. These findings demonstrate QQ's ability to detect physiological changes and suggest its potential in studying brain metabolism in neurological disorders.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"271678X241298584"},"PeriodicalIF":4.9,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1177/0271678X241296799
Takuma Nishimoto, Fumiaki Oka, Takao Inoue, Hiroshi Moriyama, Reo Kawano, Michiyasu Suzuki, David Y Chung, Cenk Ayata, Hideyuki Ishihara
Spreading depolarization (SD) develops after stroke and traumatic brain injury and may contribute to secondary brain damage. These diseases are often accompanied by intracranial hypertension, but little is known about the effects of intracranial pressure (ICP) on SD. Here, we study the effect of increased ICP on hemodynamic and metabolic response to SD in rats. SDs were triggered at different ICPs and cerebral perfusion pressures (CPP). The regional cerebral blood flow (rCBF), partial pressure of brain tissue oxygen (PbtO2), cerebral extracellular glucose and lactate concentrations were recorded. Fluoro-Jade staining was used to quantify neuronal injury in cortex. At high ICP (50 mmHg) with low CPP (30 mmHg), rCBF and PbtO2 were monophasically decreased in contrast to a monophasically increased pattern under normal conditions. Neuronal death increased in both hemispheres but much more on the side where SDs were triggered. At high ICP (50 mmHg) with normal CPP (70 mmHg), CBF and metabolism during SD did not differ from baseline, and neuronal death did not increase even on the side of SD induction. These data suggest that maintaining CPP at 70 mmHg, even when the ICP is as high as 50 mmHg, preserves normal blood flow and metabolism during SD events and prevents neuronal degeneration.
{"title":"Impact of intracranial hypertension and cerebral perfusion pressure on spreading depolarization.","authors":"Takuma Nishimoto, Fumiaki Oka, Takao Inoue, Hiroshi Moriyama, Reo Kawano, Michiyasu Suzuki, David Y Chung, Cenk Ayata, Hideyuki Ishihara","doi":"10.1177/0271678X241296799","DOIUrl":"10.1177/0271678X241296799","url":null,"abstract":"<p><p>Spreading depolarization (SD) develops after stroke and traumatic brain injury and may contribute to secondary brain damage. These diseases are often accompanied by intracranial hypertension, but little is known about the effects of intracranial pressure (ICP) on SD. Here, we study the effect of increased ICP on hemodynamic and metabolic response to SD in rats. SDs were triggered at different ICPs and cerebral perfusion pressures (CPP). The regional cerebral blood flow (rCBF), partial pressure of brain tissue oxygen (PbtO<sub>2</sub>), cerebral extracellular glucose and lactate concentrations were recorded. Fluoro-Jade staining was used to quantify neuronal injury in cortex. At high ICP (50 mmHg) with low CPP (30 mmHg), rCBF and PbtO2 were monophasically decreased in contrast to a monophasically increased pattern under normal conditions. Neuronal death increased in both hemispheres but much more on the side where SDs were triggered. At high ICP (50 mmHg) with normal CPP (70 mmHg), CBF and metabolism during SD did not differ from baseline, and neuronal death did not increase even on the side of SD induction. These data suggest that maintaining CPP at 70 mmHg, even when the ICP is as high as 50 mmHg, preserves normal blood flow and metabolism during SD events and prevents neuronal degeneration.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"271678X241296799"},"PeriodicalIF":4.9,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563493/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-02DOI: 10.1177/0271678X241291958
Ylenia Giarratano, Elizabeth A Hill, Charlene Hamid, Stewart Wiseman, Calum Gray, Francesca M Chappell, Roberto Duarte Coello, Maria C Valdés-Hernández, Lucia Ballerini, Michael S Stringer, Michael J Thrippleton, Daniela Jaime Garcia, Xiaodi Liu, William Hewins, Yajun Cheng, Sandra E Black, Andrew Lim, Rosa Sommer, Joel Ramirez, Bradley J MacIntosh, Rosalind Brown, Fergus Doubal, Tom MacGillivray, Joanna M Wardlaw, Renata Riha, Miguel O Bernabeu
Optical coherence tomography angiography (OCT-A) retinal imaging enables in vivo visualization of the retinal microvasculature that is developmentally related to the brain and can offer insight on cerebrovascular health. We investigated retinal phenotypes and neuroimaging markers of small vessel disease (SVD) in individuals with obstructive sleep apnoea (OSA). We enrolled 44 participants (mean age 50.1 ± SD 9.1 years) and performed OCT-A imaging before and after continuous positive airway pressure (CPAP) therapy. Pre-treatment analyses using a generalized estimating equations model adjusted for relevant covariates, revealed perivascular spaces (PVS) volume in basal ganglia associated with greater foveal vessel density (fVD) (p-value < 0.001), and smaller foveal avascular zone area (p-value = 0.01), whereas PVS count in centrum semiovale associated with lower retinal vessel radius (p-value = 0.02) and higher vessel tortuosity (p-value = 0.01). A reduction in retinal vessel radius was also observed with increased OSA severity (p-value = 0.05). Post-treatment analyses showed greater CPAP usage was associated with a decrease in fVD (p-value = 0.02), and increased retinal vessel radius (p-value = 0.01). The findings demonstrate for the first time the potential use of OCT-A to monitor CPAP treatment and its possible impact on both retinal and brain vascular health.
{"title":"Retinal microvascular phenotypes can track small vessel disease burden and CPAP treatment effectiveness in obstructive sleep apnoea.","authors":"Ylenia Giarratano, Elizabeth A Hill, Charlene Hamid, Stewart Wiseman, Calum Gray, Francesca M Chappell, Roberto Duarte Coello, Maria C Valdés-Hernández, Lucia Ballerini, Michael S Stringer, Michael J Thrippleton, Daniela Jaime Garcia, Xiaodi Liu, William Hewins, Yajun Cheng, Sandra E Black, Andrew Lim, Rosa Sommer, Joel Ramirez, Bradley J MacIntosh, Rosalind Brown, Fergus Doubal, Tom MacGillivray, Joanna M Wardlaw, Renata Riha, Miguel O Bernabeu","doi":"10.1177/0271678X241291958","DOIUrl":"10.1177/0271678X241291958","url":null,"abstract":"<p><p>Optical coherence tomography angiography (OCT-A) retinal imaging enables <i>in vivo</i> visualization of the retinal microvasculature that is developmentally related to the brain and can offer insight on cerebrovascular health. We investigated retinal phenotypes and neuroimaging markers of small vessel disease (SVD) in individuals with obstructive sleep apnoea (OSA). We enrolled 44 participants (mean age 50.1 ± SD 9.1 years) and performed OCT-A imaging before and after continuous positive airway pressure (CPAP) therapy. Pre-treatment analyses using a generalized estimating equations model adjusted for relevant covariates, revealed perivascular spaces (PVS) volume in basal ganglia associated with greater foveal vessel density (fVD) (p-value < 0.001), and smaller foveal avascular zone area (p-value = 0.01), whereas PVS count in centrum semiovale associated with lower retinal vessel radius (p-value = 0.02) and higher vessel tortuosity (p-value = 0.01). A reduction in retinal vessel radius was also observed with increased OSA severity (p-value = 0.05). Post-treatment analyses showed greater CPAP usage was associated with a decrease in fVD (p-value = 0.02), and increased retinal vessel radius (p-value = 0.01). The findings demonstrate for the first time the potential use of OCT-A to monitor CPAP treatment and its possible impact on both retinal and brain vascular health.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"271678X241291958"},"PeriodicalIF":5.4,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563513/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142564530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-05-13DOI: 10.1177/0271678X241254680
Ana Monteiro, Pedro Castro, Gilberto Pereira, Carmen Ferreira, Jorge Polonia, Mariana Lobo, Elsa Azevedo
We examined the relation between transcranial Doppler (TCD) markers of cerebral blood flow regulation and cognitive performance in hypertension (HT) patients to evaluate the predictive value of these markers for cognitive decline. We assessed dynamic cerebral autoregulation (dCA), vasoreactivity to carbon dioxide, and neurovascular coupling (NVC) in the middle (MCA) and posterior (PCA) cerebral arteries of 52 patients. Neuropsychological evaluation included the Montreal Cognitive Assessment and tests covering attention, executive function, processing speed, and memory. Notably, reduced rate time in the PCA significantly predicted better processing speed (p = 0.003). Furthermore, reduced overshoot systolic cerebral blood velocity in the PCA and reduced phase in the VLF range in the MCA (p = 0.021 and p = 0.017, respectively) significantly predicted better memory. Intriguingly, enhanced dCA in the MCA predicted poorer memory performance, while reduced NVC in the PCA predicted both superior processing speed and memory performance. These findings suggest that HT-induced changes in cerebral hemodynamics impact cognitive performance. Further research should verify these observations and elucidate whether these changes represent adaptive responses or neurovascular inefficiency. TCD markers might provide insights into HT-related cognitive decline.
{"title":"Cerebral blood flow regulation and cognitive performance in hypertension.","authors":"Ana Monteiro, Pedro Castro, Gilberto Pereira, Carmen Ferreira, Jorge Polonia, Mariana Lobo, Elsa Azevedo","doi":"10.1177/0271678X241254680","DOIUrl":"10.1177/0271678X241254680","url":null,"abstract":"<p><p>We examined the relation between transcranial Doppler (TCD) markers of cerebral blood flow regulation and cognitive performance in hypertension (HT) patients to evaluate the predictive value of these markers for cognitive decline. We assessed dynamic cerebral autoregulation (dCA), vasoreactivity to carbon dioxide, and neurovascular coupling (NVC) in the middle (MCA) and posterior (PCA) cerebral arteries of 52 patients. Neuropsychological evaluation included the Montreal Cognitive Assessment and tests covering attention, executive function, processing speed, and memory. Notably, reduced rate time in the PCA significantly predicted better processing speed (<i>p = </i>0.003). Furthermore, reduced overshoot systolic cerebral blood velocity in the PCA and reduced phase in the VLF range in the MCA (<i>p = </i>0.021 and <i>p = </i>0.017, respectively) significantly predicted better memory. Intriguingly, enhanced dCA in the MCA predicted poorer memory performance, while reduced NVC in the PCA predicted both superior processing speed and memory performance. These findings suggest that HT-induced changes in cerebral hemodynamics impact cognitive performance. Further research should verify these observations and elucidate whether these changes represent adaptive responses or neurovascular inefficiency. TCD markers might provide insights into HT-related cognitive decline.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"1277-1287"},"PeriodicalIF":4.9,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542125/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140911816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-06-17DOI: 10.1177/0271678X241261771
Ingeborg Rasing, Naomi Vlegels, Manon R Schipper, Sabine Voigt, Emma A Koemans, Kanishk Kaushik, Rosemarie van Dort, Thijs W van Harten, Alberto De Luca, Ellis S van Etten, Erik W van Zwet, Mark A van Buchem, Huub Am Middelkoop, Geert Jan Biessels, Gisela M Terwindt, Matthias Jp van Osch, Marianne Aa van Walderveen, Marieke Jh Wermer
Peak width of skeletonized mean diffusivity (PSMD) is an emerging diffusion-MRI based marker to study subtle early alterations to white matter microstructure. We assessed PSMD over the clinical continuum in Dutch-type hereditary CAA (D-CAA) and its association with other CAA-related MRI-markers and cognitive symptoms. We included (pre)symptomatic D-CAA mutation-carriers and calculated PSMD from diffusion-MRI data. Associations between PSMD-levels, cognitive performance and CAA-related MRI-markers were assessed with linear regression models. We included 59 participants (25/34 presymptomatic/symptomatic; mean age 39/58 y). PSMD-levels increased with disease severity and were higher in symptomatic D-CAA mutation-carriers (median [range] 4.90 [2.77-9.50]mm2/s × 10-4) compared with presymptomatic mutation-carriers (2.62 [1.96-3.43]mm2/s × 10-4) p = <0.001. PSMD was positively correlated with age, CAA-SVD burden on MRI (adj.B [confidence interval] = 0.42 [0.16-0.67], p = 0.002), with number of cerebral microbleeds (adj.B = 0.30 [0.08-0.53], p = 0.009), and with both deep (adj.B = 0.46 [0.22-0.69], p = <0.001) and periventricular (adj.B = 0.38 [0.13-0.62], p = 0.004) white matter hyperintensities. Increasing PSMD was associated with decreasing Trail Making Test (TMT)-A performance (B = -0.42 [-0.69-0.14], p = 0.04. In D-CAA mutation-carriers microstructural white matter damage is associated with disease phase, CAA burden on MRI and cognitive impairment as reflected by a decrease in information processing speed. PSMD, as a global measure of alterations to the white matter microstructure, may be a useful tool to monitor disease progression in CAA.
{"title":"Microstructural white matter damage on MRI is associated with disease severity in Dutch-type cerebral amyloid angiopathy.","authors":"Ingeborg Rasing, Naomi Vlegels, Manon R Schipper, Sabine Voigt, Emma A Koemans, Kanishk Kaushik, Rosemarie van Dort, Thijs W van Harten, Alberto De Luca, Ellis S van Etten, Erik W van Zwet, Mark A van Buchem, Huub Am Middelkoop, Geert Jan Biessels, Gisela M Terwindt, Matthias Jp van Osch, Marianne Aa van Walderveen, Marieke Jh Wermer","doi":"10.1177/0271678X241261771","DOIUrl":"10.1177/0271678X241261771","url":null,"abstract":"<p><p>Peak width of skeletonized mean diffusivity (PSMD) is an emerging diffusion-MRI based marker to study subtle early alterations to white matter microstructure. We assessed PSMD over the clinical continuum in Dutch-type hereditary CAA (D-CAA) and its association with other CAA-related MRI-markers and cognitive symptoms. We included (pre)symptomatic D-CAA mutation-carriers and calculated PSMD from diffusion-MRI data. Associations between PSMD-levels, cognitive performance and CAA-related MRI-markers were assessed with linear regression models. We included 59 participants (25/34 presymptomatic/symptomatic; mean age 39/58 y). PSMD-levels increased with disease severity and were higher in symptomatic D-CAA mutation-carriers (median [range] 4.90 [2.77-9.50]mm<sup>2</sup>/s × 10<sup>-4</sup>) compared with presymptomatic mutation-carriers (2.62 [1.96-3.43]mm<sup>2</sup>/s × 10<sup>-4</sup>) p = <0.001. PSMD was positively correlated with age, CAA-SVD burden on MRI (adj.B [confidence interval] = 0.42 [0.16-0.67], p = 0.002), with number of cerebral microbleeds (adj.B = 0.30 [0.08-0.53], p = 0.009), and with both deep (adj.B = 0.46 [0.22-0.69], p = <0.001) and periventricular (adj.B = 0.38 [0.13-0.62], p = 0.004) white matter hyperintensities. Increasing PSMD was associated with decreasing Trail Making Test (TMT)-A performance (B = -0.42 [-0.69-0.14], p = 0.04. In D-CAA mutation-carriers microstructural white matter damage is associated with disease phase, CAA burden on MRI and cognitive impairment as reflected by a decrease in information processing speed. PSMD, as a global measure of alterations to the white matter microstructure, may be a useful tool to monitor disease progression in CAA.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"1253-1261"},"PeriodicalIF":4.9,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542140/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141419301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-05-21DOI: 10.1177/0271678X241255599
Carlo Perego, Francesca Fumagalli, Francesca Motta, Marianna Cerrato, Edoardo Micotti, Davide Olivari, Daria De Giorgio, Giulia Merigo, Angelo Di Clemente, Alessandra Mandelli, Gianluigi Forloni, Luigi Cervo, Roberto Furlan, Roberto Latini, Robert W Neumar, Giuseppe Ristagno
Cardiac arrest (CA) is one of the leading causes of death worldwide. Due to hypoxic ischemic brain injury, CA survivors may experience variable degrees of neurological dysfunction. This study, for the first time, describes the progression of CA-induced neuropathology in the rat. CA rats displayed neurological and exploratory deficits. Brain MRI revealed cortical and striatal edema at 3 days (d), white matter (WM) damage in corpus callosum (CC), external capsule (EC), internal capsule (IC) at d7 and d14. At d3 a brain edema significantly correlated with neurological score. Parallel neuropathological studies showed neurodegeneration, reduced neuronal density in CA1 and hilus of hippocampus at d7 and d14, with cells dying at d3 in hilus. Microgliosis increased in cortex (Cx), caudate putamen (Cpu), CA1, CC, and EC up to d14. Astrogliosis increased earlier (d3 to d7) in Cx, Cpu, CC and EC compared to CA1 (d7 to d14). Plasma levels of neurofilament light (NfL) increased at d3 and remained elevated up to d14. NfL levels at d7 correlated with WM damage. The study shows the consequences up to 14d after CA in rats, introducing clinically relevant parameters such as advanced neuroimaging and blood biomarker useful to test therapeutic interventions in this model.
心脏骤停(CA)是导致全球死亡的主要原因之一。由于缺氧缺血性脑损伤,心脏骤停幸存者可能会出现不同程度的神经功能障碍。本研究首次描述了 CA 引起的大鼠神经病理学进展。CA 大鼠表现出神经和探索功能障碍。脑磁共振成像显示,大鼠3天(d)时皮质和纹状体水肿,7天(d7)和14天(d14)时胼胝体(CC)、外囊(EC)和内囊(IC)的白质(WM)受损。d3 脑水肿与神经系统评分明显相关。同时进行的神经病理学研究显示,d7和d14时,神经变性、海马CA1和后部神经元密度降低,d3时后部细胞死亡。皮质(Cx)、尾状核丘脑(Cpu)、CA1、CC和EC的小胶质细胞增多,直至d14。Cx、Cpu、CC和EC的星形胶质细胞增多(d3至d7)早于CA1(d7至d14)。血浆中的神经丝光(NfL)水平在d3时升高,并在d14时保持升高。d7 的 NfL 水平与 WM 损伤相关。该研究显示了大鼠CA发生后14天内的后果,引入了临床相关参数,如先进的神经影像学和血液生物标记物,有助于在该模型中测试治疗干预措施。
{"title":"Evolution of brain injury and neurological dysfunction after cardiac arrest in the rat - A multimodal and comprehensive model.","authors":"Carlo Perego, Francesca Fumagalli, Francesca Motta, Marianna Cerrato, Edoardo Micotti, Davide Olivari, Daria De Giorgio, Giulia Merigo, Angelo Di Clemente, Alessandra Mandelli, Gianluigi Forloni, Luigi Cervo, Roberto Furlan, Roberto Latini, Robert W Neumar, Giuseppe Ristagno","doi":"10.1177/0271678X241255599","DOIUrl":"10.1177/0271678X241255599","url":null,"abstract":"<p><p>Cardiac arrest (CA) is one of the leading causes of death worldwide. Due to hypoxic ischemic brain injury, CA survivors may experience variable degrees of neurological dysfunction. This study, for the first time, describes the progression of CA-induced neuropathology in the rat. CA rats displayed neurological and exploratory deficits. Brain MRI revealed cortical and striatal edema at 3 days (d), white matter (WM) damage in corpus callosum (CC), external capsule (EC), internal capsule (IC) at d7 and d14. At d3 a brain edema significantly correlated with neurological score. Parallel neuropathological studies showed neurodegeneration, reduced neuronal density in CA1 and hilus of hippocampus at d7 and d14, with cells dying at d3 in hilus. Microgliosis increased in cortex (Cx), caudate putamen (Cpu), CA1, CC, and EC up to d14. Astrogliosis increased earlier (d3 to d7) in Cx, Cpu, CC and EC compared to CA1 (d7 to d14). Plasma levels of neurofilament light (NfL) increased at d3 and remained elevated up to d14. NfL levels at d7 correlated with WM damage. The study shows the consequences up to 14d after CA in rats, introducing clinically relevant parameters such as advanced neuroimaging and blood biomarker useful to test therapeutic interventions in this model.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"1316-1329"},"PeriodicalIF":4.9,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542119/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141069674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}