首页 > 最新文献

Journal of Computational and Graphical Statistics最新文献

英文 中文
smashGP: Large-scale Spatial Modeling via Matrix-free Gaussian Processes smashGP:通过无矩阵高斯过程进行大规模空间建模
IF 2.4 2区 数学 Q1 Mathematics Pub Date : 2024-05-22 DOI: 10.1080/10618600.2024.2353653
Lucas Erlandson, Ana María Estrada Gómez, Edmond Chow, Kamran Paynabar
Gaussian processes are essential for spatial data analysis. Not only do they allow the prediction of unknown values, but they also allow for uncertainty quantification. However, in the era of big d...
高斯过程对空间数据分析至关重要。它们不仅可以预测未知值,还可以量化不确定性。然而,在大数据时代,高斯过程的应用却面临着巨大的挑战。
{"title":"smashGP: Large-scale Spatial Modeling via Matrix-free Gaussian Processes","authors":"Lucas Erlandson, Ana María Estrada Gómez, Edmond Chow, Kamran Paynabar","doi":"10.1080/10618600.2024.2353653","DOIUrl":"https://doi.org/10.1080/10618600.2024.2353653","url":null,"abstract":"Gaussian processes are essential for spatial data analysis. Not only do they allow the prediction of unknown values, but they also allow for uncertainty quantification. However, in the era of big d...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141091856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonparametric high-dimensional multi-sample tests based on graph theory 基于图论的非参数高维多样本检验
IF 2.4 2区 数学 Q1 Mathematics Pub Date : 2024-05-21 DOI: 10.1080/10618600.2024.2358156
Xiaoping Shi
High-dimensional data pose unique challenges for data processing in an era of ever-increasing amounts of data availability. Graph theory can provide a structure of high-dimensional data. We introdu...
在数据量不断增加的时代,高维数据对数据处理提出了独特的挑战。图论可以提供高维数据的结构。我们介绍了图论。
{"title":"Nonparametric high-dimensional multi-sample tests based on graph theory","authors":"Xiaoping Shi","doi":"10.1080/10618600.2024.2358156","DOIUrl":"https://doi.org/10.1080/10618600.2024.2358156","url":null,"abstract":"High-dimensional data pose unique challenges for data processing in an era of ever-increasing amounts of data availability. Graph theory can provide a structure of high-dimensional data. We introdu...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141091862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonparametric testing of the covariate significance for spatial point patterns under the presence of nuisance covariates 在存在干扰协变量的情况下,对空间点模式的协变量显著性进行非参数检验
IF 2.4 2区 数学 Q1 Mathematics Pub Date : 2024-05-20 DOI: 10.1080/10618600.2024.2357626
Jiří Dvořák, Tomáš Mrkvička
Determining the relevant spatial covariates is one of the most important problems in the analysis of point patterns. Parametric methods may lead to incorrect conclusions, especially when the model ...
确定相关的空间协变量是点模式分析中最重要的问题之一。参数方法可能会导致错误的结论,尤其是当模型...
{"title":"Nonparametric testing of the covariate significance for spatial point patterns under the presence of nuisance covariates","authors":"Jiří Dvořák, Tomáš Mrkvička","doi":"10.1080/10618600.2024.2357626","DOIUrl":"https://doi.org/10.1080/10618600.2024.2357626","url":null,"abstract":"Determining the relevant spatial covariates is one of the most important problems in the analysis of point patterns. Parametric methods may lead to incorrect conclusions, especially when the model ...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141091860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Projection Approach to Local Regression with Variable-Dimension Covariates 使用变维度变量进行局部回归的投影方法
IF 2.4 2区 数学 Q1 Mathematics Pub Date : 2024-05-20 DOI: 10.1080/10618600.2024.2357636
Matthew J. Heiner, Garritt L. Page, Fernando Andrés Quintana
Incomplete covariate vectors are known to be problematic for estimation and inferences on model parameters, but their impact on prediction performance is less understood. We develop an imputation-f...
众所周知,不完整的协变量向量会给模型参数的估计和推断带来问题,但它们对预测性能的影响却鲜为人知。我们开发了一种估算-...
{"title":"A Projection Approach to Local Regression with Variable-Dimension Covariates","authors":"Matthew J. Heiner, Garritt L. Page, Fernando Andrés Quintana","doi":"10.1080/10618600.2024.2357636","DOIUrl":"https://doi.org/10.1080/10618600.2024.2357636","url":null,"abstract":"Incomplete covariate vectors are known to be problematic for estimation and inferences on model parameters, but their impact on prediction performance is less understood. We develop an imputation-f...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141091905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fast calculation of Gaussian process multiple-fold cross-validation residuals and their covariances 高斯过程多重交叉验证残差及其协方差的快速计算
IF 2.4 2区 数学 Q1 Mathematics Pub Date : 2024-05-17 DOI: 10.1080/10618600.2024.2353633
David Ginsbourger, Cédric Schärer
We generalize fast Gaussian process leave-one-out formulae to multiple-fold cross-validation, highlighting in turn the covariance structure of cross-validation residuals in simple and universal kri...
我们将快速高斯过程留一公式推广到多倍交叉验证中,反过来在简单和普遍的kri...
{"title":"Fast calculation of Gaussian process multiple-fold cross-validation residuals and their covariances","authors":"David Ginsbourger, Cédric Schärer","doi":"10.1080/10618600.2024.2353633","DOIUrl":"https://doi.org/10.1080/10618600.2024.2353633","url":null,"abstract":"We generalize fast Gaussian process leave-one-out formulae to multiple-fold cross-validation, highlighting in turn the covariance structure of cross-validation residuals in simple and universal kri...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141091840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fast Variational Inference for Bayesian Factor Analysis in Single and Multi-Study Settings 单项和多项研究中贝叶斯因子分析的快速变量推理
IF 2.4 2区 数学 Q1 Mathematics Pub Date : 2024-05-15 DOI: 10.1080/10618600.2024.2356173
Blake Hansen, Alejandra Avalos-Pacheco, Massimiliano Russo, Roberta De Vito
Factors models are commonly used to analyze high-dimensional data in both single-study and multi-study settings. Bayesian inference for such models relies on Markov Chain Monte Carlo (MCMC) methods...
因素模型常用于分析单研究和多研究环境中的高维数据。这类模型的贝叶斯推断依赖于马尔可夫链蒙特卡罗(MCMC)方法...
{"title":"Fast Variational Inference for Bayesian Factor Analysis in Single and Multi-Study Settings","authors":"Blake Hansen, Alejandra Avalos-Pacheco, Massimiliano Russo, Roberta De Vito","doi":"10.1080/10618600.2024.2356173","DOIUrl":"https://doi.org/10.1080/10618600.2024.2356173","url":null,"abstract":"Factors models are commonly used to analyze high-dimensional data in both single-study and multi-study settings. Bayesian inference for such models relies on Markov Chain Monte Carlo (MCMC) methods...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141092014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance is not enough: the story told by a Rashomon quartet 光有表演是不够的:罗生门四重奏讲述的故事
IF 2.4 2区 数学 Q1 Mathematics Pub Date : 2024-05-14 DOI: 10.1080/10618600.2024.2344616
Przemysław Biecek, Hubert Baniecki, Mateusz Krzyziński, Dianne Cook
The usual goal of supervised learning is to find the best model, the one that optimizes a particular performance measure. However, what if the explanation provided by this model is completely diffe...
有监督学习的通常目标是找到最佳模型,即能优化特定性能指标的模型。然而,如果该模型提供的解释完全不同呢?
{"title":"Performance is not enough: the story told by a Rashomon quartet","authors":"Przemysław Biecek, Hubert Baniecki, Mateusz Krzyziński, Dianne Cook","doi":"10.1080/10618600.2024.2344616","DOIUrl":"https://doi.org/10.1080/10618600.2024.2344616","url":null,"abstract":"The usual goal of supervised learning is to find the best model, the one that optimizes a particular performance measure. However, what if the explanation provided by this model is completely diffe...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141091911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fast and Robust Low-Rank Learning over Networks: A Decentralized Matrix Quantile Regression Approach 网络上快速稳健的低级学习:分散式矩阵量化回归方法
IF 2.4 2区 数学 Q1 Mathematics Pub Date : 2024-05-09 DOI: 10.1080/10618600.2024.2353640
Nan Qiao, Canyi Chen
Decentralized low-rank learning is an active research domain with extensive practical applications. A common approach to producing low-rank and robust estimations is to employ a combination of the ...
分散低阶学习是一个活跃的研究领域,有着广泛的实际应用。产生低秩和稳健估计的一种常见方法是结合...
{"title":"Fast and Robust Low-Rank Learning over Networks: A Decentralized Matrix Quantile Regression Approach","authors":"Nan Qiao, Canyi Chen","doi":"10.1080/10618600.2024.2353640","DOIUrl":"https://doi.org/10.1080/10618600.2024.2353640","url":null,"abstract":"Decentralized low-rank learning is an active research domain with extensive practical applications. A common approach to producing low-rank and robust estimations is to employ a combination of the ...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140895406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Variance-Reduced Stochastic Optimization for Efficient Inference of Hidden Markov Models 用于隐马尔可夫模型高效推理的减方差随机优化技术
IF 2.4 2区 数学 Q1 Mathematics Pub Date : 2024-05-07 DOI: 10.1080/10618600.2024.2350476
Evan Sidrow, Nancy Heckman, Alexandre Bouchard-Côté, Sarah M. E. Fortune, Andrew W. Trites, Marie Auger-Méthé
Hidden Markov models (HMMs) are popular models to identify a finite number of latent states from sequential data. However, fitting them to large data sets can be computationally demanding because m...
隐马尔可夫模型(HMMs)是从连续数据中识别有限数量潜状态的常用模型。然而,将它们拟合到大型数据集可能对计算能力要求很高,因为这些数据集的潜在状态数量有限。
{"title":"Variance-Reduced Stochastic Optimization for Efficient Inference of Hidden Markov Models","authors":"Evan Sidrow, Nancy Heckman, Alexandre Bouchard-Côté, Sarah M. E. Fortune, Andrew W. Trites, Marie Auger-Méthé","doi":"10.1080/10618600.2024.2350476","DOIUrl":"https://doi.org/10.1080/10618600.2024.2350476","url":null,"abstract":"Hidden Markov models (HMMs) are popular models to identify a finite number of latent states from sequential data. However, fitting them to large data sets can be computationally demanding because m...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141092011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Universal inference meets random projections: a scalable test for log-concavity 通用推理与随机投影:对数凹性的可扩展测试
IF 2.4 2区 数学 Q1 Mathematics Pub Date : 2024-04-25 DOI: 10.1080/10618600.2024.2347338
Robin Dunn, Aditya Gangrade, Larry Wasserman, Aaditya Ramdas
Shape constraints yield flexible middle grounds between fully nonparametric and fully parametric approaches to modeling distributions of data. The specific assumption of log-concavity is motivated ...
形状约束在完全非参数和完全参数数据分布建模方法之间产生了灵活的中间地带。对数凹性这一特定假设的动机是...
{"title":"Universal inference meets random projections: a scalable test for log-concavity","authors":"Robin Dunn, Aditya Gangrade, Larry Wasserman, Aaditya Ramdas","doi":"10.1080/10618600.2024.2347338","DOIUrl":"https://doi.org/10.1080/10618600.2024.2347338","url":null,"abstract":"Shape constraints yield flexible middle grounds between fully nonparametric and fully parametric approaches to modeling distributions of data. The specific assumption of log-concavity is motivated ...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141091912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Computational and Graphical Statistics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1