Fan Zhang, Xiaomei Yu, Yimei Tian, Jia Zeng, Pan Zhuang, Wei Jia, Yu Zhang
There is an urgent need to address food safety concerns associated with multiple Maillard reaction‒derived chemical contaminants, such as acrylamide, heterocyclic aromatic amines, advanced glycation end products, and 5-hydroxymethylfurfural, which are present in processed foods. Current studies have focused on single contaminant generated by the Maillard reaction; however, there is a dearth of information regarding the interactions of multiple contaminants and their joint control methods. This review article comprehensively summarizes the state-of-the-art progress in the simultaneous analysis, coformation, joint hazardous control, and risk assessment of multiple food processing contaminants generated by the Maillard reaction. The Maillard reaction is associated with caramelization, lipid oxidation, protein oxidation, and ascorbic acid browning reactions. Mass spectrometry‒based chromatography is currently the preferred method for the simultaneous quantification of multiple contaminants, with metabolomics and indirect detection methodologies providing new insights. Mitigation strategies for multiple contaminants include optimizing pretreatment, introducing exogenous additives, regulating processing parameters, and utilizing emerging technologies. Limited animal studies on the metabolism of various contaminants have yielded diverse results, guided by biomarkers for deep understanding. Integrated risk assessment should be conducted to quantify multihazard health impacts. In future research, a unique framework should be developed for assessing multiple contaminants, characterizing their metabolic profiles, and optimizing control measures for Maillard reaction‒derived contaminants.
{"title":"Joint control of multiple food processing contaminants in Maillard reaction: A comprehensive review of health risks and prevention","authors":"Fan Zhang, Xiaomei Yu, Yimei Tian, Jia Zeng, Pan Zhuang, Wei Jia, Yu Zhang","doi":"10.1111/1541-4337.70138","DOIUrl":"https://doi.org/10.1111/1541-4337.70138","url":null,"abstract":"<p>There is an urgent need to address food safety concerns associated with multiple Maillard reaction‒derived chemical contaminants, such as acrylamide, heterocyclic aromatic amines, advanced glycation end products, and 5-hydroxymethylfurfural, which are present in processed foods. Current studies have focused on single contaminant generated by the Maillard reaction; however, there is a dearth of information regarding the interactions of multiple contaminants and their joint control methods. This review article comprehensively summarizes the state-of-the-art progress in the simultaneous analysis, coformation, joint hazardous control, and risk assessment of multiple food processing contaminants generated by the Maillard reaction. The Maillard reaction is associated with caramelization, lipid oxidation, protein oxidation, and ascorbic acid browning reactions. Mass spectrometry‒based chromatography is currently the preferred method for the simultaneous quantification of multiple contaminants, with metabolomics and indirect detection methodologies providing new insights. Mitigation strategies for multiple contaminants include optimizing pretreatment, introducing exogenous additives, regulating processing parameters, and utilizing emerging technologies. Limited animal studies on the metabolism of various contaminants have yielded diverse results, guided by biomarkers for deep understanding. Integrated risk assessment should be conducted to quantify multihazard health impacts. In future research, a unique framework should be developed for assessing multiple contaminants, characterizing their metabolic profiles, and optimizing control measures for Maillard reaction‒derived contaminants.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"24 2","pages":""},"PeriodicalIF":12.0,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143379962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pesticides production, consumption, and disposal around the world are raising concerns day by day for their human and environmental health impacts. Among developing treatment technologies, ozonation has attracted the attention of many researchers in recent years. It is an emerging and promising technology for removing pesticides in the aqueous environment and degrading the residual pesticides from the fruits and vegetables (F&V) surfaces. This systematic review presents an extensive study of the degradation of different types of residual pesticides from F&V using ozonation, micro- and nanobubble (MNB) ozonation, or other advanced techniques such as microwaves/ultrasonication and advanced oxidation process. This review compiles the studies that reported the effect of MNB size on the dissolution of ozone gas in the washing medium and its effect on the degradation of residual pesticides from F&V. The mechanism and routes of pesticide degradation and how integrating MNB technology (MNBT) can help overcome economic losses, reduce health issues for consumers, and save the environment from harmful chemicals used in the pesticides are also discussed. The article encourages the development and utilization of MNBT not only in agriculture, but aquaculture, fisheries, food industries, food storage, and packing, for reducing/degrading the residual pesticides from foods and support environmental sustainability as well as improve international trade.
{"title":"Micro and nanobubbles enhanced ozonation technology: A synergistic approach for pesticides removal","authors":"Preeti Pal, Arata Kioka","doi":"10.1111/1541-4337.70133","DOIUrl":"https://doi.org/10.1111/1541-4337.70133","url":null,"abstract":"<p>Pesticides production, consumption, and disposal around the world are raising concerns day by day for their human and environmental health impacts. Among developing treatment technologies, ozonation has attracted the attention of many researchers in recent years. It is an emerging and promising technology for removing pesticides in the aqueous environment and degrading the residual pesticides from the fruits and vegetables (F&V) surfaces. This systematic review presents an extensive study of the degradation of different types of residual pesticides from F&V using ozonation, micro- and nanobubble (MNB) ozonation, or other advanced techniques such as microwaves/ultrasonication and advanced oxidation process. This review compiles the studies that reported the effect of MNB size on the dissolution of ozone gas in the washing medium and its effect on the degradation of residual pesticides from F&V. The mechanism and routes of pesticide degradation and how integrating MNB technology (MNBT) can help overcome economic losses, reduce health issues for consumers, and save the environment from harmful chemicals used in the pesticides are also discussed. The article encourages the development and utilization of MNBT not only in agriculture, but aquaculture, fisheries, food industries, food storage, and packing, for reducing/degrading the residual pesticides from foods and support environmental sustainability as well as improve international trade.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"24 2","pages":""},"PeriodicalIF":12.0,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1541-4337.70133","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143380669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohsin Rasheed, Xiangqi Fan, Boli Guo, Jikai Jiang, Ming Li, Yingquan Zhang, Bo Zhang, Yutong Cui
In recent decades, frozen dough has become an attractive means of preserving and offering the convenience of fresh-tasting foods while retaining their nutritional benefits. However, the frozen dough industry still faces significant challenges related to processing, freezing, and storage that affect the dough's quality and stability during thawing. Understanding the complex interactions between proteins (gluten, glutenin, gliadin, and glutenin macropolymers), starch dynamics (gelatinization and retrogradation), and water distribution—particularly how ice crystals interact with the gluten–starch matrix—is essential for improving frozen dough quality. This review also delves into the rheological properties resulting from the interplay of these components, emphasizing their collective impact on dough texture and stability. Additionally, it explores various freezing mechanisms and innovative strategies to reduce freeze damage, as well as practical challenges in translating theoretical insights into industrial applications. Finally, it proposes future strategies for improving the shelf life and quality of frozen dough by optimizing freezing methods and water distribution. Through a comprehensive synthesis of current literature, this review underscores the critical importance of gluten–starch–water interactions in frozen dough and highlights promising strategies for enhancing product performance and quality.
{"title":"Unveiling the dynamic interactions of gluten–starch–water in frozen dough: An in-depth review","authors":"Mohsin Rasheed, Xiangqi Fan, Boli Guo, Jikai Jiang, Ming Li, Yingquan Zhang, Bo Zhang, Yutong Cui","doi":"10.1111/1541-4337.70120","DOIUrl":"https://doi.org/10.1111/1541-4337.70120","url":null,"abstract":"<p>In recent decades, frozen dough has become an attractive means of preserving and offering the convenience of fresh-tasting foods while retaining their nutritional benefits. However, the frozen dough industry still faces significant challenges related to processing, freezing, and storage that affect the dough's quality and stability during thawing. Understanding the complex interactions between proteins (gluten, glutenin, gliadin, and glutenin macropolymers), starch dynamics (gelatinization and retrogradation), and water distribution—particularly how ice crystals interact with the gluten–starch matrix—is essential for improving frozen dough quality. This review also delves into the rheological properties resulting from the interplay of these components, emphasizing their collective impact on dough texture and stability. Additionally, it explores various freezing mechanisms and innovative strategies to reduce freeze damage, as well as practical challenges in translating theoretical insights into industrial applications. Finally, it proposes future strategies for improving the shelf life and quality of frozen dough by optimizing freezing methods and water distribution. Through a comprehensive synthesis of current literature, this review underscores the critical importance of gluten–starch–water interactions in frozen dough and highlights promising strategies for enhancing product performance and quality.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"24 2","pages":""},"PeriodicalIF":12.0,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143362589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Md Zakir Hossain, Max L. Feuerstein, Benedikt Warth
Humans are exposed to a complex mixture of environmental and food-related chemicals throughout their lifetime. Exposome research intends to explore the nongenetic, that is, environmental causes of chronic disease and their interactions comprehensively. Residual antibiotics can enter the human body through therapeutics, foods of animal origin, aquatic products, or drinking water. In the last decade, significant levels of residual antibiotics in human urine have been described, demonstrating frequent exposure throughout populations. To which extent they contribute to human health risks is debated. Human biomonitoring (HBM) aims to determine and quantify concentrations of xenobiotics in human specimens and provides the toolbox to monitor exposure to diverse chemical exposures. Due to their public health implications, priority-listed xenobiotics are routinely monitored in the European Union and other countries. However, antibiotics, an important class of (food-derived) xenobiotics, are still not systematically investigated for a better and more holistic understanding in the context of exposomics. This review provides a comprehensive summary of HBM research related to antibiotics, existing liquid chromatography–mass spectrometry (LC–MS)-based analytical methods, and potential health risks caused by unintended exposure. Incorporating antibiotics into the chemical exposome framework through routine HBM using multiclass analytical methods will provide a better understanding of the toxicological or pharmacological mixture effects and, ultimately, the chemical exposome.
{"title":"The role of residual (veterinary) antibiotics in chemical exposome analysis: Current progress and future perspectives","authors":"Md Zakir Hossain, Max L. Feuerstein, Benedikt Warth","doi":"10.1111/1541-4337.70105","DOIUrl":"https://doi.org/10.1111/1541-4337.70105","url":null,"abstract":"<p>Humans are exposed to a complex mixture of environmental and food-related chemicals throughout their lifetime. Exposome research intends to explore the nongenetic, that is, environmental causes of chronic disease and their interactions comprehensively. Residual antibiotics can enter the human body through therapeutics, foods of animal origin, aquatic products, or drinking water. In the last decade, significant levels of residual antibiotics in human urine have been described, demonstrating frequent exposure throughout populations. To which extent they contribute to human health risks is debated. Human biomonitoring (HBM) aims to determine and quantify concentrations of xenobiotics in human specimens and provides the toolbox to monitor exposure to diverse chemical exposures. Due to their public health implications, priority-listed xenobiotics are routinely monitored in the European Union and other countries. However, antibiotics, an important class of (food-derived) xenobiotics, are still not systematically investigated for a better and more holistic understanding in the context of exposomics. This review provides a comprehensive summary of HBM research related to antibiotics, existing liquid chromatography–mass spectrometry (LC–MS)-based analytical methods, and potential health risks caused by unintended exposure. Incorporating antibiotics into the chemical exposome framework through routine HBM using multiclass analytical methods will provide a better understanding of the toxicological or pharmacological mixture effects and, ultimately, the chemical exposome.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"24 2","pages":""},"PeriodicalIF":12.0,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1541-4337.70105","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143111881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Spices and herbs are a crucial component of the global food industry, valued for their unique flavors, aromas, and bioactive properties. However, microbial contamination and quality degradation during production, storage, and distribution pose significant challenges. Ultraviolet (UV) and pulsed light (PL) processing have emerged as nonthermal technologies offering effective, eco-friendly solutions for microbial decontamination and quality retention in spices. This review explores recent advancements and applications of UV and PL treatments in the spice industry, highlighting their impact on pathogenic and spoilage microbial safety, physicochemical properties, and bioactive compound retention. UV processing, primarily involving UV-C radiation, inactivates microorganisms by disrupting DNA, offering effective surface decontamination without compromising quality of spices and herbs. PL, which utilizes high-intensity, broad-spectrum light pulses, extends this capability to irregularly shaped surfaces, further enhancing microbial inactivation. Both methods preserve key quality attributes such as phenolics, flavonoids, antioxidant activity, ascorbic acids, and color while mitigating sensory losses, making them attractive alternatives to conventional thermal and chemical treatments. The review also examines critical factors influencing the efficacy of these technologies, including processing parameters, spice morphology, and microbial load. Despite promising results, challenges related to regulatory approval, equipment design, and consumer acceptance remain. This comprehensive analysis underscores the potential of UV and PL technologies to revolutionize spices and herbs processing, ensuring safety and quality while aligning with sustainable and consumer-driven demands in the food industry.
{"title":"Ultraviolet and pulsed light treatment of spices and herbs and their products: Microbial safety, enzyme inactivation, bioactive retention, and shelf-life extension","authors":"Kosana Pravallika, Swadhin Pradhan, Abhirami Prabha, Snehasis Chakraborty","doi":"10.1111/1541-4337.70107","DOIUrl":"https://doi.org/10.1111/1541-4337.70107","url":null,"abstract":"<p>Spices and herbs are a crucial component of the global food industry, valued for their unique flavors, aromas, and bioactive properties. However, microbial contamination and quality degradation during production, storage, and distribution pose significant challenges. Ultraviolet (UV) and pulsed light (PL) processing have emerged as nonthermal technologies offering effective, eco-friendly solutions for microbial decontamination and quality retention in spices. This review explores recent advancements and applications of UV and PL treatments in the spice industry, highlighting their impact on pathogenic and spoilage microbial safety, physicochemical properties, and bioactive compound retention. UV processing, primarily involving UV-C radiation, inactivates microorganisms by disrupting DNA, offering effective surface decontamination without compromising quality of spices and herbs. PL, which utilizes high-intensity, broad-spectrum light pulses, extends this capability to irregularly shaped surfaces, further enhancing microbial inactivation. Both methods preserve key quality attributes such as phenolics, flavonoids, antioxidant activity, ascorbic acids, and color while mitigating sensory losses, making them attractive alternatives to conventional thermal and chemical treatments. The review also examines critical factors influencing the efficacy of these technologies, including processing parameters, spice morphology, and microbial load. Despite promising results, challenges related to regulatory approval, equipment design, and consumer acceptance remain. This comprehensive analysis underscores the potential of UV and PL technologies to revolutionize spices and herbs processing, ensuring safety and quality while aligning with sustainable and consumer-driven demands in the food industry.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"24 2","pages":""},"PeriodicalIF":12.0,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143111819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Edible coatings are a combination of substances that are applied onto foods to enhance their shelf life and that can be consumed by humans. Coatings are often composed of a combination of proteins, lipids, and/or polysaccharides and can contain plasticizers to increase flexibility and elongation. Surfactants and emulsifiers are sometimes added to decrease surface water activity and prevent moisture loss. The ideal edible coating slows the loss of desirable flavor volatiles and water vapor as well as restricts the exchange of gases, creating a modified atmosphere but not creating anaerobic conditions, all while not adding off-flavors to the food. In this review, the different components used in edible films and coatings are examined, along with their benefits and weaknesses. Additionally, this study reviews possible safety issues associated with consuming ingredients used in edible films and coatings. Edible films and coatings are more successful when multiple ingredients are used together to create a good moisture and gas barrier, thus creating the possibility for interactions. Most, but not all, ingredients used in edible films and coatings do not pose a risk to people when consumed at the levels present in coatings. Thus, it is imperative to review and consider new data on the safety of ingredients used in coatings.
{"title":"Safety of edible coatings on fruits and vegetables","authors":"Sarah Gammage, Alejandro G. Marangoni","doi":"10.1111/1541-4337.70108","DOIUrl":"10.1111/1541-4337.70108","url":null,"abstract":"<p>Edible coatings are a combination of substances that are applied onto foods to enhance their shelf life and that can be consumed by humans. Coatings are often composed of a combination of proteins, lipids, and/or polysaccharides and can contain plasticizers to increase flexibility and elongation. Surfactants and emulsifiers are sometimes added to decrease surface water activity and prevent moisture loss. The ideal edible coating slows the loss of desirable flavor volatiles and water vapor as well as restricts the exchange of gases, creating a modified atmosphere but not creating anaerobic conditions, all while not adding off-flavors to the food. In this review, the different components used in edible films and coatings are examined, along with their benefits and weaknesses. Additionally, this study reviews possible safety issues associated with consuming ingredients used in edible films and coatings. Edible films and coatings are more successful when multiple ingredients are used together to create a good moisture and gas barrier, thus creating the possibility for interactions. Most, but not all, ingredients used in edible films and coatings do not pose a risk to people when consumed at the levels present in coatings. Thus, it is imperative to review and consider new data on the safety of ingredients used in coatings.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"24 2","pages":""},"PeriodicalIF":12.0,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143078104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Janice Adaeze Nwankwo, Wenxue Liu, Xiusheng Guo, Yunzhuoya Lin, Mudassar Hussain, Imad Khan, Magezi Joshua, Ajibola Nihmot Ibrahim, Okafor Jennifer Ngozi, Ahmad Ali, Xiaoqiang Zou
Microemulsion gels (MGs) are nanostructured systems created by the addition of thickening agents/biopolymers to a microemulsion's aqueous or oily phases, offering benefits like improved solubilization, enhanced stability, high encapsulation efficiency, and sustained release with versatile applications in food, pharmaceuticals, and cosmetology. MGs are intricate systems with thermodynamic robustness and controllable rheological characteristics crucial for obtaining high structural integrity and achieving innovative results regarding food product development in diverse areas of food, including colloidal carriers, food packaging, active compound delivery, antimicrobial vectors, and production of biopolymer nanoparticles. Therefore, a comprehensive analysis, hence understanding about MG systems, is needed to identify trends and gaps, helping researchers to identify promising areas for innovation and providing direction for future research. This review offers a comprehensive analysis of MG systems, their characteristics, formulation, formation mechanisms, design approaches, digestion dynamics, and rheological properties. MGs excel in solubilizing hydrophilic and lipophilic bioactives due to their enhanced viscosity and interconnected droplet network within the gel matrix. Despite their advantages, challenges, such as formulation complexity, require further understanding. This article also explores innovative biopolymers, characterization, and extensive applications, while addressing case studies, and emerging trends leveraging the potential of MG systems for enhancing food stability, functionality, and nutritional value.
{"title":"Microemulsion gel systems: Formulation, stability studies, biopolymer interactions, and functionality in food product development","authors":"Janice Adaeze Nwankwo, Wenxue Liu, Xiusheng Guo, Yunzhuoya Lin, Mudassar Hussain, Imad Khan, Magezi Joshua, Ajibola Nihmot Ibrahim, Okafor Jennifer Ngozi, Ahmad Ali, Xiaoqiang Zou","doi":"10.1111/1541-4337.70110","DOIUrl":"10.1111/1541-4337.70110","url":null,"abstract":"<p>Microemulsion gels (MGs) are nanostructured systems created by the addition of thickening agents/biopolymers to a microemulsion's aqueous or oily phases, offering benefits like improved solubilization, enhanced stability, high encapsulation efficiency, and sustained release with versatile applications in food, pharmaceuticals, and cosmetology. MGs are intricate systems with thermodynamic robustness and controllable rheological characteristics crucial for obtaining high structural integrity and achieving innovative results regarding food product development in diverse areas of food, including colloidal carriers, food packaging, active compound delivery, antimicrobial vectors, and production of biopolymer nanoparticles. Therefore, a comprehensive analysis, hence understanding about MG systems, is needed to identify trends and gaps, helping researchers to identify promising areas for innovation and providing direction for future research. This review offers a comprehensive analysis of MG systems, their characteristics, formulation, formation mechanisms, design approaches, digestion dynamics, and rheological properties. MGs excel in solubilizing hydrophilic and lipophilic bioactives due to their enhanced viscosity and interconnected droplet network within the gel matrix. Despite their advantages, challenges, such as formulation complexity, require further understanding. This article also explores innovative biopolymers, characterization, and extensive applications, while addressing case studies, and emerging trends leveraging the potential of MG systems for enhancing food stability, functionality, and nutritional value.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"24 2","pages":""},"PeriodicalIF":12.0,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143078136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gas chromatography-ion mobility spectrometry (GC–IMS) technology boasts several salient features, including fast detection, portability, simple sample preparation, and nondestructive detection, making it a highly appealing tool in tea research. By harnessing its prowess in detecting and analyzing volatile compounds present in tea, GC–IMS has found numerous applications within the broad realm of tea studies. These applications encompass discerning geographical origins, analyzing aroma profiles, classifying tea grades, distinguishing harvest seasons, monitoring aroma variations during processing, and storage, differentiating tea varieties and categories. In the current study, the development history and performance characteristics of GC–IMS technology are presented. Furthermore, the relevant research studies of the application of GC–IMS in tea field are summarized, highlighting its practical applications and impacts. Additionally, the promotion strategies and improvement methods for enhancing of GC–IMS in the qualitative analysis of volatile compounds are put forward. Looking ahead, the potential avenues for the application of GC–IMS in tea quality control, online monitoring of tea manufacturing, detection of tea adulteration, and tea storage environment management are proposed. The versatility and precision of GC–IMS make it a promising technology that can to some extent change the tea industry's understanding and assurance of product quality.
{"title":"Application of gas chromatography-ion mobility spectrometry in tea (Camellia sinensis): A comprehensive review","authors":"Xiangyang Guo, Xiaochun Wan, Chi-Tang Ho","doi":"10.1111/1541-4337.70119","DOIUrl":"10.1111/1541-4337.70119","url":null,"abstract":"<p>Gas chromatography-ion mobility spectrometry (GC–IMS) technology boasts several salient features, including fast detection, portability, simple sample preparation, and nondestructive detection, making it a highly appealing tool in tea research. By harnessing its prowess in detecting and analyzing volatile compounds present in tea, GC–IMS has found numerous applications within the broad realm of tea studies. These applications encompass discerning geographical origins, analyzing aroma profiles, classifying tea grades, distinguishing harvest seasons, monitoring aroma variations during processing, and storage, differentiating tea varieties and categories. In the current study, the development history and performance characteristics of GC–IMS technology are presented. Furthermore, the relevant research studies of the application of GC–IMS in tea field are summarized, highlighting its practical applications and impacts. Additionally, the promotion strategies and improvement methods for enhancing of GC–IMS in the qualitative analysis of volatile compounds are put forward. Looking ahead, the potential avenues for the application of GC–IMS in tea quality control, online monitoring of tea manufacturing, detection of tea adulteration, and tea storage environment management are proposed. The versatility and precision of GC–IMS make it a promising technology that can to some extent change the tea industry's understanding and assurance of product quality.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"24 2","pages":""},"PeriodicalIF":12.0,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143078115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biopolymeric oil-in-water (O/W) high internal phase Pickering emulsions (HIPPEs) due to their unique rheological behaviors of HIPPEs such as shear-thinning property, viscoelasticity, and thixotropic recovery have emerged as highly promising printing inks in the 3D printing process. O/W biopolymer-based HIPPEs are categorized as complex fluids, where rheological parameters are crucial for optimizing printability. However, existing reviews have not fully elucidated the interrelationship between rheology and printability for HIPPEs in enhancing the quality and performance of printed parts. This review delved into the influence factors of the continuous phase (e.g., biopolymer type, concentration, pH, and ionic strength) and the oil phase (e.g., oil type, volume fraction, and encapsulated components) on their rheology, to adjust their rheological behaviors in order to prepare more eligible HIPPEs as printing inks. Moreover, a spectrum of rheology–printability relationships, derived from empirical trends and rigorous analytical models, is examined to provide generalized rheological guidelines for achieving successful printability in O/W biopolymer-based HIPPEs. Furthermore, unique challenges and future perspectives on preparing their complex rheological behaviors suitable for additive manufacturing in O/W biopolymer-based HIPPEs were presented. Leveraging these insights significantly reduces reliance on trial-and-error methods in printing, thereby fostering the robust development of novel O/W biopolymer-based HIPPEs and enhancing the overall quality of printed products.
{"title":"Rheology and printability of biopolymeric oil-in-water high internal phase Pickering emulsions: a review","authors":"Lu-yao Zheng, Dong Li, Li-jun Wang","doi":"10.1111/1541-4337.70125","DOIUrl":"10.1111/1541-4337.70125","url":null,"abstract":"<p>Biopolymeric oil-in-water (O/W) high internal phase Pickering emulsions (HIPPEs) due to their unique rheological behaviors of HIPPEs such as shear-thinning property, viscoelasticity, and thixotropic recovery have emerged as highly promising printing inks in the 3D printing process. O/W biopolymer-based HIPPEs are categorized as complex fluids, where rheological parameters are crucial for optimizing printability. However, existing reviews have not fully elucidated the interrelationship between rheology and printability for HIPPEs in enhancing the quality and performance of printed parts. This review delved into the influence factors of the continuous phase (e.g., biopolymer type, concentration, pH, and ionic strength) and the oil phase (e.g., oil type, volume fraction, and encapsulated components) on their rheology, to adjust their rheological behaviors in order to prepare more eligible HIPPEs as printing inks. Moreover, a spectrum of rheology–printability relationships, derived from empirical trends and rigorous analytical models, is examined to provide generalized rheological guidelines for achieving successful printability in O/W biopolymer-based HIPPEs. Furthermore, unique challenges and future perspectives on preparing their complex rheological behaviors suitable for additive manufacturing in O/W biopolymer-based HIPPEs were presented. Leveraging these insights significantly reduces reliance on trial-and-error methods in printing, thereby fostering the robust development of novel O/W biopolymer-based HIPPEs and enhancing the overall quality of printed products.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"24 2","pages":""},"PeriodicalIF":12.0,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143078103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The lack of nutrient accumulation during the last trimester and the physiological immaturity at birth make nutrition for preterm infants a significant challenge. Lipids are essential for preterm infant growth, neurodevelopment, immune function, and intestinal health. However, the inclusion of novel lipids in preterm formulas has rarely been discussed. This study discusses specific lipid recommendations for preterm infants according to authoritative legislation based on their physiological characteristics. The gaps in lipid composition, such as fatty acids, triacylglycerols, and complex lipids, between preterm formulas and human milk have been summarized. The focus of this study is mainly on the vital roles of lipids in nutritional support, including long-chain polyunsaturated fatty acids, structural lipids, milk fat global membrane ingredients, and other minor components. These lipids have potential applications in preterm formulas for improving lipid absorption, regulating lipid metabolism, and protecting against intestinal inflammation. The lipidome and microbiome can be used to provide adequately powered evidence of the effects of lipids. This study proposes nutritional strategies for preterm infants and suggests approaches to enhance their lipid quality in preterm formula.
{"title":"A review on lipid inclusion in preterm formula: Characteristics, nutritional support, challenges, and future perspectives","authors":"Jiahui Yu, Yandan Wang, Wei Wei, Xingguo Wang","doi":"10.1111/1541-4337.70099","DOIUrl":"10.1111/1541-4337.70099","url":null,"abstract":"<p>The lack of nutrient accumulation during the last trimester and the physiological immaturity at birth make nutrition for preterm infants a significant challenge. Lipids are essential for preterm infant growth, neurodevelopment, immune function, and intestinal health. However, the inclusion of novel lipids in preterm formulas has rarely been discussed. This study discusses specific lipid recommendations for preterm infants according to authoritative legislation based on their physiological characteristics. The gaps in lipid composition, such as fatty acids, triacylglycerols, and complex lipids, between preterm formulas and human milk have been summarized. The focus of this study is mainly on the vital roles of lipids in nutritional support, including long-chain polyunsaturated fatty acids, structural lipids, milk fat global membrane ingredients, and other minor components. These lipids have potential applications in preterm formulas for improving lipid absorption, regulating lipid metabolism, and protecting against intestinal inflammation. The lipidome and microbiome can be used to provide adequately powered evidence of the effects of lipids. This study proposes nutritional strategies for preterm infants and suggests approaches to enhance their lipid quality in preterm formula.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"24 2","pages":""},"PeriodicalIF":12.0,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143078107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}