Jiaqi Ma, Jinghan Dai, Chenyang Cao, Li Su, Mengyuan Cao, Yuanjie He, Mei Li, Zengfeng Zhang, Jia Chen, Shenghui Cui, Baowei Yang
This research presents a comprehensive review of Salmonella presence in retail fresh fruits and vegetables from 2010 to 2023, utilizing data from recognized sources such as PubMed, Scopus, and Web of Science. The study incorporates a meta-analysis of prevalence, serovar distribution, antimicrobial susceptibility, and antimicrobial resistance genes (ARGs). Additionally, it scrutinizes the heterogeneous sources across various food categories and geographical regions The findings show a pooled prevalence of 2.90% (95% CI: 0.0180−0.0430), with an increase from 4.63% in 2010 to 5.32% in 2022. Dominant serovars include S. Typhimurium (29.14%, 95% CI: 0.0202−0.6571) and S. Enteritidis (21.06%, 95% CI: 0.0181−0.4872). High resistance rates were noted for antimicrobials like erythromycin (60.70%, 95% CI: 0.0000−1.0000) and amoxicillin (39.92%, 95% CI: 0.0589−0.8020). The most prevalent ARGs were blaTEM (80.23%, 95% CI: 0.5736−0.9692) and parC mutation (66.67%, 95% CI: 0.3213−0.9429). Factors such as pH, water activity, and nutrient content, along with external factors like the quality of irrigation water and prevailing climatic conditions, have significant implications on Salmonella contamination. Nonthermal sterilization technologies, encompassing chlorine dioxide, ozone, and ultraviolet light, are emphasized as efficacious measures to control Salmonella. This review stresses the imperative need to bolster prevention strategies and control measures against Salmonella in retail fresh fruits and vegetables to alleviate related food safety risks.
{"title":"Prevalence, serotype, antimicrobial susceptibility, contamination factors, and control methods of Salmonella spp. in retail fresh fruits and vegetables: A systematic review and meta-analysis","authors":"Jiaqi Ma, Jinghan Dai, Chenyang Cao, Li Su, Mengyuan Cao, Yuanjie He, Mei Li, Zengfeng Zhang, Jia Chen, Shenghui Cui, Baowei Yang","doi":"10.1111/1541-4337.13407","DOIUrl":"https://doi.org/10.1111/1541-4337.13407","url":null,"abstract":"<p>This research presents a comprehensive review of <i>Salmonella</i> presence in retail fresh fruits and vegetables from 2010 to 2023, utilizing data from recognized sources such as PubMed, Scopus, and Web of Science. The study incorporates a meta-analysis of prevalence, serovar distribution, antimicrobial susceptibility, and antimicrobial resistance genes (ARGs). Additionally, it scrutinizes the heterogeneous sources across various food categories and geographical regions The findings show a pooled prevalence of 2.90% (95% CI: 0.0180−0.0430), with an increase from 4.63% in 2010 to 5.32% in 2022. Dominant serovars include <i>S</i>. Typhimurium (29.14%, 95% CI: 0.0202−0.6571) and <i>S</i>. Enteritidis (21.06%, 95% CI: 0.0181−0.4872). High resistance rates were noted for antimicrobials like erythromycin (60.70%, 95% CI: 0.0000−1.0000) and amoxicillin (39.92%, 95% CI: 0.0589−0.8020). The most prevalent ARGs were <i>bla<sub>TEM</sub></i> (80.23%, 95% CI: 0.5736−0.9692) and <i>parC</i> mutation (66.67%, 95% CI: 0.3213−0.9429). Factors such as pH, water activity, and nutrient content, along with external factors like the quality of irrigation water and prevailing climatic conditions, have significant implications on <i>Salmonella</i> contamination. Nonthermal sterilization technologies, encompassing chlorine dioxide, ozone, and ultraviolet light, are emphasized as efficacious measures to control <i>Salmonella</i>. This review stresses the imperative need to bolster prevention strategies and control measures against <i>Salmonella</i> in retail fresh fruits and vegetables to alleviate related food safety risks.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"23 4","pages":""},"PeriodicalIF":12.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141730046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aysun Yurdunuseven Yildiz, Noemí Echegaray, Sebahat Öztekin, José Manuel Lorenzo
Frying is a popular cooking method that produces delicious and crispy foods but can also lead to oil degradation and the formation of health-detrimental compounds in the dishes. Chemical reactions such as oxidation, hydrolysis, and polymerization contribute to these changes. In this context, emerging technologies like ultrasound-assisted frying (USF) and microwave (MW)-assisted frying show promise in enhancing the quality and stability of frying oils and fried foods. This review examines the impact of these innovative technologies, delving into the principles of these processes, their influence on the chemical composition of oils, and their implications for the overall quality of fried food products with a focus on reducing oil degradation and enhancing the nutritional and sensory properties of the fried food. Additionally, the article initially addresses the various reactions occurring in oils during the frying process and their influencing factors. The advantages and challenges of USF and MW-assisted frying are also highlighted in comparison to traditional frying methods, demonstrating how these innovative techniques have the potential to improve the quality and stability of oils and fried foods.
{"title":"Quality and stability of frying oils and fried foods in ultrasound and microwave–assisted frying processes and hybrid technologies","authors":"Aysun Yurdunuseven Yildiz, Noemí Echegaray, Sebahat Öztekin, José Manuel Lorenzo","doi":"10.1111/1541-4337.13405","DOIUrl":"https://doi.org/10.1111/1541-4337.13405","url":null,"abstract":"<p>Frying is a popular cooking method that produces delicious and crispy foods but can also lead to oil degradation and the formation of health-detrimental compounds in the dishes. Chemical reactions such as oxidation, hydrolysis, and polymerization contribute to these changes. In this context, emerging technologies like ultrasound-assisted frying (USF) and microwave (MW)-assisted frying show promise in enhancing the quality and stability of frying oils and fried foods. This review examines the impact of these innovative technologies, delving into the principles of these processes, their influence on the chemical composition of oils, and their implications for the overall quality of fried food products with a focus on reducing oil degradation and enhancing the nutritional and sensory properties of the fried food. Additionally, the article initially addresses the various reactions occurring in oils during the frying process and their influencing factors. The advantages and challenges of USF and MW-assisted frying are also highlighted in comparison to traditional frying methods, demonstrating how these innovative techniques have the potential to improve the quality and stability of oils and fried foods.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"23 4","pages":""},"PeriodicalIF":12.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1541-4337.13405","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141730044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuang Liang, Ying Gao, Daniel Granato, Jian-Hui Ye, Weibiao Zhou, Jun-Feng Yin, Yong-Quan Xu
Tea is the second largest nonalcoholic beverage in the world due to its characteristic flavor and well-known functional properties in vitro and in vivo. Global tea production reaches 6.397 million tons in 2022 and continues to rise. Fresh tea leaves are mainly harvested in spring, whereas thousands of tons are discarded in summer and autumn. Herein, pruned tea biomass refers to abandon-plucked leaves being pruned in the non-plucking period, especially in summer and autumn. At present, no relevant concluding remarks have been made on this undervalued biomass. This review summarizes the seasonal differences of intrinsic metabolites and pays special attention to the most critical bioactive and flavor compounds, including polyphenols, theanine, and caffeine. Additionally, meaningful and profound methods to transform abandon-plucked fresh tea leaves into high-value products are reviewed. In summer and autumn, tea plants accumulate much more phenols than in spring, especially epigallocatechin gallate (galloyl catechin), anthocyanins (catechin derivatives), and proanthocyanidins (polymerized catechins). Vigorous carbon metabolism induced by high light intensity and temperature in summer and autumn also accumulates carbohydrates, such as soluble sugars and cellulose. The characteristics of abandon-plucked tea leaves make them not ideal raw materials for tea, but suitable for novel tea products like beverages and food ingredients using traditional or hybrid technologies such as enzymatic transformation, microbial fermentation, formula screening, and extraction, with the abundant polyphenols in summer and autumn tea serving as prominent flavor and bioactive contributors.
{"title":"Pruned tea biomass plays a significant role in functional food production: A review on characterization and comprehensive utilization of abandon-plucked fresh tea leaves","authors":"Shuang Liang, Ying Gao, Daniel Granato, Jian-Hui Ye, Weibiao Zhou, Jun-Feng Yin, Yong-Quan Xu","doi":"10.1111/1541-4337.13406","DOIUrl":"https://doi.org/10.1111/1541-4337.13406","url":null,"abstract":"<p>Tea is the second largest nonalcoholic beverage in the world due to its characteristic flavor and well-known functional properties in vitro and in vivo. Global tea production reaches 6.397 million tons in 2022 and continues to rise. Fresh tea leaves are mainly harvested in spring, whereas thousands of tons are discarded in summer and autumn. Herein, pruned tea biomass refers to abandon-plucked leaves being pruned in the non-plucking period, especially in summer and autumn. At present, no relevant concluding remarks have been made on this undervalued biomass. This review summarizes the seasonal differences of intrinsic metabolites and pays special attention to the most critical bioactive and flavor compounds, including polyphenols, theanine, and caffeine. Additionally, meaningful and profound methods to transform abandon-plucked fresh tea leaves into high-value products are reviewed. In summer and autumn, tea plants accumulate much more phenols than in spring, especially epigallocatechin gallate (galloyl catechin), anthocyanins (catechin derivatives), and proanthocyanidins (polymerized catechins). Vigorous carbon metabolism induced by high light intensity and temperature in summer and autumn also accumulates carbohydrates, such as soluble sugars and cellulose. The characteristics of abandon-plucked tea leaves make them not ideal raw materials for tea, but suitable for novel tea products like beverages and food ingredients using traditional or hybrid technologies such as enzymatic transformation, microbial fermentation, formula screening, and extraction, with the abundant polyphenols in summer and autumn tea serving as prominent flavor and bioactive contributors.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"23 4","pages":""},"PeriodicalIF":12.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141730155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pantu Kumar Roy, Anamika Roy, Eun Bi Jeon, Christina A. Mireles DeWitt, Jae W. Park, Shin Young Park
Given the growing global demand for seafood, it is imperative to conduct a comprehensive study on the prevalence and persistence patterns of pathogenic bacteria and viruses associated with specific seafood varieties. This assessment thoroughly examines the safety of seafood products, considering the diverse processing methods employed in the industry. The importance of understanding the behavior of foodborne pathogens, such as Salmonella typhimurium, Vibrio parahaemolyticus, Clostridium botulinum, Listeria monocytogenes, human norovirus, and hepatitis A virus, is emphasized by recent cases of gastroenteritis outbreaks linked to contaminated seafood. This analysis examines outbreaks linked to seafood in the United States and globally, with a particular emphasis on the health concerns posed by pathogenic bacteria and viruses to consumers. Ensuring the safety of seafood is crucial since it directly relates to consumer preferences on sustainability, food safety, provenance, and availability. The review focuses on assessing the frequency, growth, and durability of infections that arise during the processing of seafood. It utilizes next-generation sequencing to identify the bacteria responsible for these illnesses. Additionally, it analyzes methods for preventing and intervening of infections while also considering the forthcoming challenges in ensuring the microbiological safety of seafood products. This evaluation emphasizes the significance of the seafood processing industry in promptly responding to evolving consumer preferences by offering current information on seafood hazards and future consumption patterns. To ensure the continuous safety and sustainable future of seafood products, it is crucial to identify and address possible threats.
{"title":"Comprehensive analysis of predominant pathogenic bacteria and viruses in seafood products","authors":"Pantu Kumar Roy, Anamika Roy, Eun Bi Jeon, Christina A. Mireles DeWitt, Jae W. Park, Shin Young Park","doi":"10.1111/1541-4337.13410","DOIUrl":"https://doi.org/10.1111/1541-4337.13410","url":null,"abstract":"<p>Given the growing global demand for seafood, it is imperative to conduct a comprehensive study on the prevalence and persistence patterns of pathogenic bacteria and viruses associated with specific seafood varieties. This assessment thoroughly examines the safety of seafood products, considering the diverse processing methods employed in the industry. The importance of understanding the behavior of foodborne pathogens, such as <i>Salmonella typhimurium, Vibrio parahaemolyticus, Clostridium botulinum, Listeria monocytogenes</i>, human norovirus, and hepatitis A virus, is emphasized by recent cases of gastroenteritis outbreaks linked to contaminated seafood. This analysis examines outbreaks linked to seafood in the United States and globally, with a particular emphasis on the health concerns posed by pathogenic bacteria and viruses to consumers. Ensuring the safety of seafood is crucial since it directly relates to consumer preferences on sustainability, food safety, provenance, and availability. The review focuses on assessing the frequency, growth, and durability of infections that arise during the processing of seafood. It utilizes next-generation sequencing to identify the bacteria responsible for these illnesses. Additionally, it analyzes methods for preventing and intervening of infections while also considering the forthcoming challenges in ensuring the microbiological safety of seafood products. This evaluation emphasizes the significance of the seafood processing industry in promptly responding to evolving consumer preferences by offering current information on seafood hazards and future consumption patterns. To ensure the continuous safety and sustainable future of seafood products, it is crucial to identify and address possible threats.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"23 4","pages":""},"PeriodicalIF":12.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1541-4337.13410","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141730154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
During food production, food processing, and supply chain, large amounts of food byproducts are generated and thrown away as waste, which to a great extent brings about adverse consequences on the environment and economic development. The sweet potato (Ipomoea batatas L.) is cultivated and consumed in many countries. Sweet potato peels (SPPs) are the main byproducts generated by the tuber processing. These residues contain abundant nutrition elements, bioactive compounds, and other high value-added substances; therefore, the reutilization of SPP holds significance in improving their overall added value. SPPs contain abundant phenolic compounds and carotenoids, which might contribute significantly to their nutraceutical properties, including antioxidant, antimicrobial, anticancer, prebiotic, anti-inflammatory, wound-healing, and lipid-lowering effects. It has been demonstrated that SPP could be promisingly revalorized into food industry, including: (1) applications in diverse food products; (2) applications in food packaging; and (3) applications in the recovery of pectin and cellulose nanocrystals. Furthermore, SPP could be used as promising feedstocks for the bioconversion of diverse value-added bioproducts through biological processing.
{"title":"Advances in valorization of sweet potato peels: A comprehensive review on the nutritional compositions, phytochemical profiles, nutraceutical properties, and potential industrial applications","authors":"Haitao Jiang, Fan Wang, Rongrong Ma, Tianyi Yang, Chang Liu, Wangyang Shen, Weiping Jin, Yaoqi Tian","doi":"10.1111/1541-4337.13400","DOIUrl":"https://doi.org/10.1111/1541-4337.13400","url":null,"abstract":"<p>During food production, food processing, and supply chain, large amounts of food byproducts are generated and thrown away as waste, which to a great extent brings about adverse consequences on the environment and economic development. The sweet potato (<i>Ipomoea batatas</i> L.) is cultivated and consumed in many countries. Sweet potato peels (SPPs) are the main byproducts generated by the tuber processing. These residues contain abundant nutrition elements, bioactive compounds, and other high value-added substances; therefore, the reutilization of SPP holds significance in improving their overall added value. SPPs contain abundant phenolic compounds and carotenoids, which might contribute significantly to their nutraceutical properties, including antioxidant, antimicrobial, anticancer, prebiotic, anti-inflammatory, wound-healing, and lipid-lowering effects. It has been demonstrated that SPP could be promisingly revalorized into food industry, including: (1) applications in diverse food products; (2) applications in food packaging; and (3) applications in the recovery of pectin and cellulose nanocrystals. Furthermore, SPP could be used as promising feedstocks for the bioconversion of diverse value-added bioproducts through biological processing.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"23 4","pages":""},"PeriodicalIF":12.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141730040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The modern food industry is undergoing a rapid change with the trend of production of plant-based food products that are more sustainable and have less impact on nature. Plant-based dairy analogues have been increasingly popular due to their suitability for individuals with milk protein allergy or lactose intolerance and those preferring a plant-based diet. Nevertheless, plant-based products still have insufficient nutritional quality, undesirable structure, and earthy, green, and bean-like flavor compared to dairy products. In addition, most plant-based foods contain lesser amounts of essential nutrients, antinutrients limiting the bioavailability of some nutrients, and allergenic proteins. Novel processing technologies can be applied to have a homogeneous and stable structure. On the other hand, fermentation of plant-based matrix with lactic acid bacteria can provide a solution to most of these problems. Additional nutrients can be produced and antinutrients can be degraded by bacterial metabolism, thereby increasing nutritional value. Allergenic proteins can be hydrolyzed reducing their immunoreactivity. In addition, fermentation has been found to reduce undesired flavors and to enhance various bioactivities of plant foods. However, the main challenge in the production of fermented plant-based dairy analogues is to mimic familiar dairy-like flavors by producing the major flavor compounds other than organic acids, yielding a flavor profile similar to those of fermented dairy products. Further studies are required for the improvement of the flavor of fermented plant-based dairy analogues through the selection of special microbial cultures and formulations.
{"title":"The role of fermentation with lactic acid bacteria in quality and health effects of plant-based dairy analogues","authors":"Erenay Erem, Meral Kilic-Akyilmaz","doi":"10.1111/1541-4337.13402","DOIUrl":"https://doi.org/10.1111/1541-4337.13402","url":null,"abstract":"<p>The modern food industry is undergoing a rapid change with the trend of production of plant-based food products that are more sustainable and have less impact on nature. Plant-based dairy analogues have been increasingly popular due to their suitability for individuals with milk protein allergy or lactose intolerance and those preferring a plant-based diet. Nevertheless, plant-based products still have insufficient nutritional quality, undesirable structure, and earthy, green, and bean-like flavor compared to dairy products. In addition, most plant-based foods contain lesser amounts of essential nutrients, antinutrients limiting the bioavailability of some nutrients, and allergenic proteins. Novel processing technologies can be applied to have a homogeneous and stable structure. On the other hand, fermentation of plant-based matrix with lactic acid bacteria can provide a solution to most of these problems. Additional nutrients can be produced and antinutrients can be degraded by bacterial metabolism, thereby increasing nutritional value. Allergenic proteins can be hydrolyzed reducing their immunoreactivity. In addition, fermentation has been found to reduce undesired flavors and to enhance various bioactivities of plant foods. However, the main challenge in the production of fermented plant-based dairy analogues is to mimic familiar dairy-like flavors by producing the major flavor compounds other than organic acids, yielding a flavor profile similar to those of fermented dairy products. Further studies are required for the improvement of the flavor of fermented plant-based dairy analogues through the selection of special microbial cultures and formulations.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"23 4","pages":""},"PeriodicalIF":12.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1541-4337.13402","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141730045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Low-cost, reliable, and efficient biosensors are crucial in detecting residual heavy metal ions (HMIs) in food products. At present, based on distance-induced localized surface plasmon resonance of noble metal nanoparticles, enzyme-mimetic reaction of nanozymes, and chelation reaction of metal chelators, the constructed optical sensors have attracted wide attention in HMIs detection. Besides, based on the enrichment and signal amplification strategy of nanomaterials on HMIs and the construction of electrochemical aptamer sensing platforms, the developed electrochemical biosensors have overcome the plague of low sensitivity, poor selectivity, and the inability of multiplexed detection in the optical strategy. Moreover, along with an in-depth discussion of these different types of biosensors, a detailed overview of the design and application of innovative devices based on these sensing principles was provided, including microfluidic systems, hydrogel-based platforms, and test strip technologies. Finally, the challenges that hinder commercial application have also been mentioned. Overall, this review aims to establish a theoretical foundation for developing accurate and reliable sensing technologies and devices for HMIs, thereby promoting the widespread application of biosensors in the detection of HMIs in food.
{"title":"Recent advances and trends in innovative biosensor-based devices for heavy metal ion detection in food","authors":"Aihemaitijiang Aihaiti, Jingkang Wang, Wenrui Zhang, Mingping Shen, Fanxing Meng, Zongda Li, Yukun Zhang, Mengyao Ren, Minwei Zhang","doi":"10.1111/1541-4337.13358","DOIUrl":"10.1111/1541-4337.13358","url":null,"abstract":"<p>Low-cost, reliable, and efficient biosensors are crucial in detecting residual heavy metal ions (HMIs) in food products. At present, based on distance-induced localized surface plasmon resonance of noble metal nanoparticles, enzyme-mimetic reaction of nanozymes, and chelation reaction of metal chelators, the constructed optical sensors have attracted wide attention in HMIs detection. Besides, based on the enrichment and signal amplification strategy of nanomaterials on HMIs and the construction of electrochemical aptamer sensing platforms, the developed electrochemical biosensors have overcome the plague of low sensitivity, poor selectivity, and the inability of multiplexed detection in the optical strategy. Moreover, along with an in-depth discussion of these different types of biosensors, a detailed overview of the design and application of innovative devices based on these sensing principles was provided, including microfluidic systems, hydrogel-based platforms, and test strip technologies. Finally, the challenges that hinder commercial application have also been mentioned. Overall, this review aims to establish a theoretical foundation for developing accurate and reliable sensing technologies and devices for HMIs, thereby promoting the widespread application of biosensors in the detection of HMIs in food.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"23 4","pages":""},"PeriodicalIF":12.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141454087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guillaume Legrand Ngolong Ngea, Qiya Yang, Meiqiu Xu, Giuseppe Ianiri, Solairaj Dhanasekaran, Xiaoyun Zhang, Yang Bi, Hongyin Zhang
Fungal infections of fresh fruits and vegetables (FFVs) can lead to safety problems, including consumer poisoning by mycotoxins. Various strategies exist to control fungal infections of FFVs, but their effectiveness and sustainability are limited. Recently, new concepts based on the microbiome and pathobiome have emerged and offer a more holistic perspective for advancing postharvest pathogen control techniques. Understanding the role of the microbiome in FFV infections is essential for developing sustainable control strategies. This review examines current and emerging approaches to postharvest pathology. It reviews what is known about the initiation and development of infections in FFVs. As a promising concept, the pathobiome offers new insights into the basic mechanisms of microbial infections in FFVs. The underlying mechanisms uncovered by the pathobiome are being used to develop more relevant global antifungal strategies. This review will also focus on new technologies developed to target the microbiome and members of the pathobiome to control infections in FFVs and improve safety by limiting mycotoxin contamination. Specifically, this review stresses emerging technologies related to FFVs that are relevant for modifying the interaction between FFVs and the microbiome and include the use of microbial consortia, the use of genomic technology to manipulate host and microbial community genes, and the use of databases, deep learning, and artificial intelligence to identify pathobiome markers. Other approaches include programming the behavior of FFVs using synthetic biology, modifying the microbiome using sRNA technology, phages, quorum sensing, and quorum quenching strategies. Rapid adoption and commercialization of these technologies are recommended to further improve the overall safety of FFVs.
{"title":"Revisiting the current and emerging concepts of postharvest fresh fruit and vegetable pathology for next-generation antifungal technologies","authors":"Guillaume Legrand Ngolong Ngea, Qiya Yang, Meiqiu Xu, Giuseppe Ianiri, Solairaj Dhanasekaran, Xiaoyun Zhang, Yang Bi, Hongyin Zhang","doi":"10.1111/1541-4337.13397","DOIUrl":"10.1111/1541-4337.13397","url":null,"abstract":"<p>Fungal infections of fresh fruits and vegetables (FFVs) can lead to safety problems, including consumer poisoning by mycotoxins. Various strategies exist to control fungal infections of FFVs, but their effectiveness and sustainability are limited. Recently, new concepts based on the microbiome and pathobiome have emerged and offer a more holistic perspective for advancing postharvest pathogen control techniques. Understanding the role of the microbiome in FFV infections is essential for developing sustainable control strategies. This review examines current and emerging approaches to postharvest pathology. It reviews what is known about the initiation and development of infections in FFVs. As a promising concept, the pathobiome offers new insights into the basic mechanisms of microbial infections in FFVs. The underlying mechanisms uncovered by the pathobiome are being used to develop more relevant global antifungal strategies. This review will also focus on new technologies developed to target the microbiome and members of the pathobiome to control infections in FFVs and improve safety by limiting mycotoxin contamination. Specifically, this review stresses emerging technologies related to FFVs that are relevant for modifying the interaction between FFVs and the microbiome and include the use of microbial consortia, the use of genomic technology to manipulate host and microbial community genes, and the use of databases, deep learning, and artificial intelligence to identify pathobiome markers. Other approaches include programming the behavior of FFVs using synthetic biology, modifying the microbiome using sRNA technology, phages, quorum sensing, and quorum quenching strategies. Rapid adoption and commercialization of these technologies are recommended to further improve the overall safety of FFVs.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"23 4","pages":""},"PeriodicalIF":12.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141454104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qing Shen, Shitong Wang, Honghai Wang, Jingjing Liang, Qiaoling Zhao, Keyun Cheng, Muhammad Imran, Jing Xue, Zhujun Mao
Food science encounters increasing complexity and challenges, necessitating more efficient, accurate, and sensitive analytical techniques. Mass spectrometry imaging (MSI) emerges as a revolutionary tool, offering more molecular-level insights. This review delves into MSI's applications and challenges in food science. It introduces MSI principles and instruments such as matrix-assisted laser desorption/ionization, desorption electrospray ionization, secondary ion mass spectrometry, and laser ablation inductively coupled plasma mass spectrometry, highlighting their application in chemical composition analysis, variety identification, authenticity assessment, endogenous substance, exogenous contaminant and residue analysis, quality control, and process monitoring in food processing and food storage. Despite its potential, MSI faces hurdles such as the complexity and cost of instrumentation, complexity in sample preparation, limited analytical capabilities, and lack of standardization of MSI for food samples. While MSI has a wide range of applications in food analysis and can provide more comprehensive and accurate analytical results, challenges persist, demanding further research and solutions. The future development directions include miniaturization of imaging devices, high-resolution and high-speed MSI, multiomics and multimodal data fusion, as well as the application of data analysis and artificial intelligence. These findings and conclusions provide valuable references and insights for the field of food science and offer theoretical and methodological support for further research and practice in food science.
{"title":"Revolutionizing food science with mass spectrometry imaging: A comprehensive review of applications and challenges","authors":"Qing Shen, Shitong Wang, Honghai Wang, Jingjing Liang, Qiaoling Zhao, Keyun Cheng, Muhammad Imran, Jing Xue, Zhujun Mao","doi":"10.1111/1541-4337.13398","DOIUrl":"10.1111/1541-4337.13398","url":null,"abstract":"<p>Food science encounters increasing complexity and challenges, necessitating more efficient, accurate, and sensitive analytical techniques. Mass spectrometry imaging (MSI) emerges as a revolutionary tool, offering more molecular-level insights. This review delves into MSI's applications and challenges in food science. It introduces MSI principles and instruments such as matrix-assisted laser desorption/ionization, desorption electrospray ionization, secondary ion mass spectrometry, and laser ablation inductively coupled plasma mass spectrometry, highlighting their application in chemical composition analysis, variety identification, authenticity assessment, endogenous substance, exogenous contaminant and residue analysis, quality control, and process monitoring in food processing and food storage. Despite its potential, MSI faces hurdles such as the complexity and cost of instrumentation, complexity in sample preparation, limited analytical capabilities, and lack of standardization of MSI for food samples. While MSI has a wide range of applications in food analysis and can provide more comprehensive and accurate analytical results, challenges persist, demanding further research and solutions. The future development directions include miniaturization of imaging devices, high-resolution and high-speed MSI, multiomics and multimodal data fusion, as well as the application of data analysis and artificial intelligence. These findings and conclusions provide valuable references and insights for the field of food science and offer theoretical and methodological support for further research and practice in food science.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"23 4","pages":""},"PeriodicalIF":12.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141454105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Salome Dini, Fatih Oz, Alaa El-Din A. Bekhit, Alan Carne, Dominic Agyei
Lipopeptides are a class of lipid–peptide-conjugated compounds with differing structural features. This structural diversity is responsible for their diverse range of biological properties, including antimicrobial, antioxidant, and anti-inflammatory activities. Lipopeptides have been attracting the attention of food scientists due to their potential as food additives and preservatives. This review provides a comprehensive overview of lipopeptides, their production, structural characteristics, and functional properties. First, the classes, chemical features, structure–activity relationships, and sources of lipopeptides are summarized. Then, the gene expression and biosynthesis of lipopeptides in microbial cell factories and strategies to optimize lipopeptide production are discussed. In addition, the main methods of purification and characterization of lipopeptides have been described. Finally, some biological activities of the lipopeptides, especially those relevant to food systems along with their mechanism of action, are critically examined.
{"title":"Production, characterization, and potential applications of lipopeptides in food systems: A comprehensive review","authors":"Salome Dini, Fatih Oz, Alaa El-Din A. Bekhit, Alan Carne, Dominic Agyei","doi":"10.1111/1541-4337.13394","DOIUrl":"10.1111/1541-4337.13394","url":null,"abstract":"<p>Lipopeptides are a class of lipid–peptide-conjugated compounds with differing structural features. This structural diversity is responsible for their diverse range of biological properties, including antimicrobial, antioxidant, and anti-inflammatory activities. Lipopeptides have been attracting the attention of food scientists due to their potential as food additives and preservatives. This review provides a comprehensive overview of lipopeptides, their production, structural characteristics, and functional properties. First, the classes, chemical features, structure–activity relationships, and sources of lipopeptides are summarized. Then, the gene expression and biosynthesis of lipopeptides in microbial cell factories and strategies to optimize lipopeptide production are discussed. In addition, the main methods of purification and characterization of lipopeptides have been described. Finally, some biological activities of the lipopeptides, especially those relevant to food systems along with their mechanism of action, are critically examined.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"23 4","pages":""},"PeriodicalIF":12.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1541-4337.13394","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141454086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}