Chronologically, the main exposures in the study area include; tonalite, granodiorite, adamellite, Hammamat Sediments, monzogranite, syenogranite, rapakivi syenogranite, alkali feldspar granite and dykes. This work aims to determine the suitability of the granitic rocks for using as ornamental stones through detecting their radiological and ecological impacts. The studied samples were measured radiometrically by using Na-I detector for determination of 226Ra, 232Th and 40K concentrations. External hazard indices (Hex) in some samples are more than unity, also, the (Raeq) are higher than the exemption limits (370 Bq.kg-1) exceeds the upper limit of exposure. The hierarchical cluster analysis (HCA) was applied to investigate the correlation between the radionuclides and the corresponding radiological hazard variables. Based on the statistical analysis, 232Th and 226Ra mainly contribute to the radioactive risk of the studied rocks. Regarding ecological indices, 42.1% of younger granite samples have Pollution load index values greater than 1, indicating deterioration, while the majority of older granite samples are lower than 1 suggesting perfection samples. Where, some sample from the older granitoids and younger granites have many radiological and ecological parameters greater than the recommended international limits, so, these samples should not be used in construction for safety reasons.
In this study, we emphasize the critical role of sample pretreatment. We report on the behavior of NdFeB magnet samples exposed to four different acid media for digestion. NdFeB magnets are becoming a significant source of neodymium, a rare-earth element critical to many technologies and a potential substitute for traditional mining of the element. To address this, we meticulously tested nitric acid, hydrochloric acid, acetic acid, and citric acid, all at a concentration of 1.6 M, as economical and environmentally friendly alternatives to the concentrated mineral acids commonly used in the leaching of these materials. The pivotal stage involves the initial characterization of samples in the solid state using SEM-EDX and XPS analysis to obtain their initial composition. Subsequently, the samples are dissolved in the four aforementioned acids. Finally, neodymium is quantified using ICP-OES. Throughout our investigation, we evaluated some analytical parameters to determine the best candidate for performing the digestion, including time, limits of detection and quantification, accuracy, recovery of spike samples, and robustness. After careful consideration, we unequivocally conclude that 1.6 M nitric acid stands out as the optimal choice for dissolving NdFeB magnet samples, with the pretreatment of the samples being the critical aspect of this report.
The present study proposes the monitoring of compounds of drugs of abuse through the use of passive samplers in water systems. Initially, four positive ion compounds of interest were determined according to national surveys, and then composite sampling and passive sampling were implemented using continuous-flow passive samplers containing two types of sorbents, the Empore disk and Gerstel Twister. Two study sites were established at the beginning and at the end of the middle Bogotá River basin. After 4 days, the sorbents were removed so that they could be desorbed and analyzed using UHPLC-MS in the laboratory. For the composite samples, the results were below the first calibration curve point (FCCP) of the chromatographic method, and for passive sampling, peaks of benzoylecgonine (BE) (21427.3 pg mL-1), methamphetamine (MET) (67101.5 pg mL-1), MDMA (ecstasy) (225844.8 pg mL-1) and 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) (15908.4 pg mL-1) were found. Therefore, passive sampling could be suggested as an alternative to composite sampling for the monitoring of compounds.
This study addresses the atmospheric deposition of trace elements investigated in Albania, Croatia and Macedonia in 2010 as part of the European Moss Study. This study provides data on the concentration of ten metals (Cd, Cr, Cu, Ni, Pb, V, Zn, Fe, Al, and Li) in naturally growing mosses. In general, all concentration data follow a lognormal distribution. Cd, Cr, Ni, and Zn show strong fluctuations in the moss samples from Albania and Macedonia, and Pb, Fe, and Al in the mosses from Croatia. The concentrations of Cd, Cu, and Zn were higher in the samples from Croatia than in those from Albania and Macedonia; the concentrations of Cr, Ni, V, Fe, Al, and Li were higher in the samples from Albania than in those from Croatia and Macedonia; and a higher concentration of Pb was found in the samples from Macedonia. The observed relationship between the concentration of lithogenic elements (Al, Fe, and V) and the air quality index (AQI) confirms that moss species have a high capacity to retain atmospheric deposition particles. The anthropogenic emission sources of these elements from local and long-range transport were considered to be the most important factors affecting air quality in the studied areas.
The concentrations of eight heavy metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) associated with PM2.5 and PM10 in Sarajevo air, Bosnia and Herzegovina (BiH) have been studied. A total of 136 PM2.5 and PM10 samples were simultaneously collected from 21 February to 11 November 2020. Metal contents were determined by atomic absorption spectrometry, flame (FAAS) and electrothermal (ETAAS) techniques. The mean concentrations of metals in PM10 are 2.93 ng/m3 (Cd), 7.21 ng/m3 (Cr), 12.02 ng/m3 (Cu), 126 ng/m3 (Fe), 20.74 ng/m3 (Mn), 6.98 ng/m3 (Ni), 8.74 ng/m3 (Pb) and 128 ng/m3 (Zn). In PM2.5 samples the mean concentrations of Cd, Cr, Cu, Fe, Mn, Ni and Zn are 0.39, 4.06, 2.26, 110, 0.63, 1.93 and 5.28 ng/m3, respectively. Pb was not detected in PM2.5 samples. Strong correlation was obtained for metal pairs Mn-Cu in PM10 and moderate for Ni-Fe in PM2.5. The health risk assessment shows that the adult population of Sarajevo is at increased lifetime risk of experiencing cancer because of exposure to Cd concentrations in PM10.
The study of microbial community in groundwater systems is considered to be essential to improve our understanding of arsenic (As) biogeochemical cycling in aquifers, mainly as it relates to the fate and transport of As. The present study was conducted to determine the microbial community composition and its functional potential using As-contaminated groundwater from part of the Bengal Delta Plain (BDP) in West Bengal, India. Geochemical analyses indicated low to moderate dissolved oxygen (0.42-3.02 mg/L), varying As (2.5-311 µg/L) and Fe (0.19-1.2 mg/L) content, while low concentrations of total organic carbon (TOC), total inorganic carbon (TIC), nitrate, and sulfate were detected. Proteobacteria was the most abundant phylum, while the indiscriminate presence of an array of archaeal phyla, Euryarchaeota, Crenarchaeota, Nanoarchaeota, etc., was noteworthy. The core community members were affiliated to Sideroxydans, Acidovorax, Pseudoxanthomonas, Brevundimonas, etc. However, diversity assessed over multiple seasons indicated a shift from Sideroxydans to Pseudomonas or Brevundimonas dominant community, suggestive of microbial response to seasonally fluctuating geochemical stimuli. Taxonomy-based functional potential showed prospects for As biotransformation, methanogenesis, sulfate respiration, denitrification, etc. Thus, this study strengthened existing reports from this region by capturing the less abundant or difficult-to-culture taxa collectively forming a major fraction of the microbial community.
Microplastics (MPs) in estuaries are sources of plastic debris that enter the marine environment. However, there is limited information on the seasonal effect on the accumulation of MPs in the estuaries of Thailand. The abundance and spatial distribution of MPs in the dry and wet seasons were investigated in the Chao Phraya River estuary, and possible emission sources were traced. Dominant factors affecting the distribution patterns of MPs have also been reported. All collected water samples contained MPs, with a mean abundance of 4.0 ± 2.8 × 105 particles/km2 in the wet season and 5.2 ± 3.3 × 105 particles/km2 in the dry season. Fragments were mostly observed, with polypropylene and polyethylene being the dominant polymers. The findings also showed that accumulation of MPs was directly influenced by the river discharge rate into the estuary. Further, the spatial distribution of MPs was closely related to seasonal variations in sea surface currents. Microplastic pollution status with seasonal variations and possible emission sources could provide important information to the government and local environmental organizations for MP pollution prevention and future MP studies in estuarine environments.
Microplastics (MPs), plastic particles of 1 nm to <5 mm, have been identified in the atmosphere, soil, and aquatic environments across the globe. MPs may act as vectors to transport environmental contaminants to sensitive receptors, including humans. In this review, the capability of MPs to sorb persistent organic pollutants (POPs) and metals is investigated, along with how sorption is affected by factors, such as pH, salinity, and temperature. Sensitive receptors may take up MPs through incidental ingestion. In the gastrointestinal tract (GIT), contaminants may desorb from MPs, and this desorbed portion is then considered bioaccessible. Understanding the sorption and bioaccessibility of such contaminants is important in determining potential risks of exposure to MPs. Thus, a review is presented on the bioaccessibility of contaminants sorbed to MPs in the human and avian GIT s. The current state of knowledge on MP-contaminant interactions in freshwater systems is limited; these interactions can differ considerably from those in marine environments. The bioaccessibility of contaminants sorbed to MPs can vary significantly, from near zero to 100%, depending on MP type, contaminant characteristics, and the digestive phase. Further research is needed to characterize the bioaccessibility and the potential risks, especially for POPs associated with MPs.
In this study, a leak detection and repair program was conducted on five pharmaceutical factories in China to analyze the volatile organic compounds (VOCs) emission characteristics of leaking equipment. The results indicated that the monitored components were mainly flanges, accounting for 70.23% of the total, and open-ended lines were the components most prone to leaks. The overall percentage of VOCs emissions reduction after the repair was 20.50%, and flanges were the most repairable components, with an average emission reduction of 47.5 kg/a for each flange. In addition, atmospheric predictions were conducted for the VOCs emissions before and after the repair of the components at the research factories. The atmospheric predictions showed that emissions from equipment and facilities have a noticeable impact on VOCs concentration at boundary and the emissions are positively correlated with the pollution source strength. The hazard quotient of the investigated factories was lower than the acceptable risk level set by the US Environmental Protection Agency (EPA). The quantitative assessment of the lifetime cancer risk showed that the risk levels of factories A, C, and D exceeded the EPA's acceptable risk level, and the on-site workers were exposed to inhalation cancer risk.