首页 > 最新文献

Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering最新文献

英文 中文
Behavioral and biochemical effects of environmental concentrations of caffeine in zebrafish after long-term exposure. 长期接触环境浓度咖啡因对斑马鱼行为和生化的影响。
IF 1.9 4区 环境科学与生态学 Q4 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-01-01 Epub Date: 2024-10-29 DOI: 10.1080/10934529.2024.2420482
Niedja Santos, Victor Picolo, Inês Domingues, Diego Sousa-Moura, Cesar Koppe Grisolia, Miguel Oliveira

Caffeine (CAF) is widely detected in aquatic environments, serving as an indicator of anthropogenic contamination. Its high consumption, and persistence raise environmental concerns. This study was to evaluate the chronic effects in terms of growth rate, weight, behavior, and biochemical parameters of environmental concentrations of CAF on adult zebrafish. Adult zebrafish were exposed, for 30 d, to 0, 0.5, 1.5, and 300 µg L-1 CAF, with behavior (feeding latency, exploration, aggression, sociability, sound response) and biochemical endpoints (acetylcholinesterase (AChE), lactate dehydrogenase (LDH), and cortisol levels) assessed at the end of the exposure. CAF 0.5 µg L-1 increased feeding latency time, while 300 µg L-1 reduced growth and weight. Exposure to CAF affect fish behavior in terms of vertical exploration, aggressiveness, shoaling, and sound responses although were concentration specific. All concentrations tested increased social behavior, with fish swimming closer to the shoal. At a biochemical level, CAF exposed showed reduced AChE activity, while LDH activity, and cortisol levels increased at 300 µg L-1. Low concentrations of CAF caused neurotoxicity in zebrafish which may compromise their feeding behavior, and social interactions in the wild. These changes suggest potential ecological impacts of chronic exposure to CAF, such as impaired feeding and stress responses.

咖啡因(CAF)在水生环境中被广泛检测到,是人为污染的一个指标。咖啡因的高消耗量和持久性引发了环境问题。本研究旨在评估环境浓度 CAF 对成年斑马鱼生长速度、体重、行为和生化指标的慢性影响。成年斑马鱼分别暴露于 0、0.5、1.5 和 300 µg L-1 的 CAF 中 30 天,并在暴露结束时对其行为(摄食潜伏期、探索、攻击性、社会性、声音反应)和生化终点(乙酰胆碱酯酶(AChE)、乳酸脱氢酶(LDH)和皮质醇水平)进行评估。CAF 0.5 µg L-1 增加了摄食潜伏时间,而 300 µg L-1 则降低了生长速度和体重。暴露于 CAF 会影响鱼类在垂直探索、攻击性、浅滩和声音反应等方面的行为,但与浓度有关。所有测试浓度都会增加鱼类的社会行为,使它们游得更靠近鱼群。在生化水平上,暴露于 CAF 的鱼类的 AChE 活性降低,而 LDH 活性和皮质醇水平在 300 µg L-1 浓度时升高。低浓度的 CAF 会对斑马鱼造成神经毒性,这可能会影响它们在野外的摄食行为和社会交往。这些变化表明,长期接触CAF可能会对生态产生影响,如影响摄食和应激反应。
{"title":"Behavioral and biochemical effects of environmental concentrations of caffeine in zebrafish after long-term exposure.","authors":"Niedja Santos, Victor Picolo, Inês Domingues, Diego Sousa-Moura, Cesar Koppe Grisolia, Miguel Oliveira","doi":"10.1080/10934529.2024.2420482","DOIUrl":"10.1080/10934529.2024.2420482","url":null,"abstract":"<p><p>Caffeine (CAF) is widely detected in aquatic environments, serving as an indicator of anthropogenic contamination. Its high consumption, and persistence raise environmental concerns. This study was to evaluate the chronic effects in terms of growth rate, weight, behavior, and biochemical parameters of environmental concentrations of CAF on adult zebrafish. Adult zebrafish were exposed, for 30 d, to 0, 0.5, 1.5, and 300 µg L<sup>-1</sup> CAF, with behavior (feeding latency, exploration, aggression, sociability, sound response) and biochemical endpoints (acetylcholinesterase (AChE), lactate dehydrogenase (LDH), and cortisol levels) assessed at the end of the exposure. CAF 0.5 µg L<sup>-1</sup> increased feeding latency time, while 300 µg L<sup>-1</sup> reduced growth and weight. Exposure to CAF affect fish behavior in terms of vertical exploration, aggressiveness, shoaling, and sound responses although were concentration specific. All concentrations tested increased social behavior, with fish swimming closer to the shoal. At a biochemical level, CAF exposed showed reduced AChE activity, while LDH activity, and cortisol levels increased at 300 µg L<sup>-1</sup>. Low concentrations of CAF caused neurotoxicity in zebrafish which may compromise their feeding behavior, and social interactions in the wild. These changes suggest potential ecological impacts of chronic exposure to CAF, such as impaired feeding and stress responses.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":" ","pages":"453-465"},"PeriodicalIF":1.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142545806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synchronously degradation of biogas slurry and decarbonization of biogas using microbial fuel cells.
IF 1.9 4区 环境科学与生态学 Q4 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-01-01 Epub Date: 2025-01-29 DOI: 10.1080/10934529.2025.2455300
Zhen Liu, Kai Gu, Kai Du, Jia Guo, Lei Gong, Mingjing Li, Jun Zhou

Two-chamber microbial fuel cell (MFC) with biogas slurry (BS) of corn stover as the anode substrate and Chlorella as the cathode substrate was investigated to solve the problem of the accumulation of wastewater generated from biogas plants and to achieve low-cost separation of CO2 from biogas. A simple two-compartment MFC was constructed using biocatalysis and inexpensive materials without expensive catalysts. The performance of MFC (X1-W, Y1-W, Z1-W) with different biogas solution concentrations as anode substrate and MFC (X2-C, Y2-C, Z2-C) with Chlorella as biocathode were compared, respectively. The MFCs (Z1-W,) can start quickly and maintain a stable power production (286.82 mV ± 184.59 mV). The growth rate of Chlorella at the MFCs (X2-C, Y2-C, Z2-C) biocathode was highly coincident with the output voltage. The MFC (Z2-C) has a maximum power density of 489.7 mW/m2 when the external resistance is varied to 200 Ω. The removal rates of chemical oxygen demand (COD) and ammonia nitrogen (NH3-N) are 93.42% and 92.59%. The maximum cell growth (Xmax) of Chlorella was 125.61 mg d-1, biomass productivity (Pmax) was 95.60 g L-1 d-1 and the maximum CO2 biofixation rate (RCO2) was 175.26 mg L-1 d-1. The microbial community analysis showed that the microorganisms in the anode solution were mainly from the biogas slurry and belonged to the hydrolytic bacteria. At the same time, the electroactive microbial community was mainly from anaerobic sludge. Therefore, MFCs can effectively degrade the organic matter in the biogas solution and generate electricity, and use Chlorella to absorb CO2 from the biogas, providing a new method for the development of biogas industry.

{"title":"Synchronously degradation of biogas slurry and decarbonization of biogas using microbial fuel cells.","authors":"Zhen Liu, Kai Gu, Kai Du, Jia Guo, Lei Gong, Mingjing Li, Jun Zhou","doi":"10.1080/10934529.2025.2455300","DOIUrl":"10.1080/10934529.2025.2455300","url":null,"abstract":"<p><p>Two-chamber microbial fuel cell (MFC) with biogas slurry (BS) of corn stover as the anode substrate and <i>Chlorella</i> as the cathode substrate was investigated to solve the problem of the accumulation of wastewater generated from biogas plants and to achieve low-cost separation of CO<sub>2</sub> from biogas. A simple two-compartment MFC was constructed using biocatalysis and inexpensive materials without expensive catalysts. The performance of MFC (X1-W, Y1-W, Z1-W) with different biogas solution concentrations as anode substrate and MFC (X2-C, Y2-C, Z2-C) with <i>Chlorella</i> as biocathode were compared, respectively. The MFCs (Z1-W,) can start quickly and maintain a stable power production (286.82 mV ± 184.59 mV). The growth rate of <i>Chlorella</i> at the MFCs (X2-C, Y2-C, Z2-C) biocathode was highly coincident with the output voltage. The MFC (Z2-C) has a maximum power density of 489.7 mW/m<sup>2</sup> when the external resistance is varied to 200 Ω. The removal rates of chemical oxygen demand (COD) and ammonia nitrogen (NH<sub>3</sub>-N) are 93.42% and 92.59%. The maximum cell growth (X<sub>max</sub>) of <i>Chlorella</i> was 125.61 mg d<sup>-1</sup>, biomass productivity (P<sub>max</sub>) was 95.60 g L<sup>-1</sup> d<sup>-1</sup> and the maximum CO<sub>2</sub> biofixation rate (R<sub>CO2</sub>) was 175.26 mg L<sup>-1</sup> d<sup>-1</sup>. The microbial community analysis showed that the microorganisms in the anode solution were mainly from the biogas slurry and belonged to the hydrolytic bacteria. At the same time, the electroactive microbial community was mainly from anaerobic sludge. Therefore, MFCs can effectively degrade the organic matter in the biogas solution and generate electricity, and use <i>Chlorella</i> to absorb CO<sub>2</sub> from the biogas, providing a new method for the development of biogas industry.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":" ","pages":"593-605"},"PeriodicalIF":1.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143066076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of machine learning for environmentally friendly advancement: exploring biomass-derived materials in wastewater treatment and agricultural sector - a review.
IF 1.9 4区 环境科学与生态学 Q4 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-01-01 Epub Date: 2025-02-02 DOI: 10.1080/10934529.2025.2458979
Banza M Jean Claude, Linda L Sibali

There are several uses for biomass-derived materials (BDMs) in the irrigation and farming industries. To solve problems with material, process, and supply chain design, BDM systems have started to use machine learning (ML), a new technique approach. This study examined articles published since 2015 to understand better the current status, future possibilities, and capabilities of ML in supporting environmentally friendly development and BDM applications. Previous ML applications were classified into three categories according to their objectives: material and process design, performance prediction and sustainability evaluation. ML helps optimize BDMs systems, predict material properties and performance, reverse engineering, and solve data difficulties in sustainability evaluations. Ensemble models and cutting-edge Neural Networks operate satisfactorily on these datasets and are easily generalized. Ensemble and neural network models have poor interpretability, and there have not been any studies in sustainability assessment that consider geo-temporal dynamics; thus, building ML methods for BDM systems is currently not practical. Future ML research for BDM systems should follow a workflow. Investigating the potential uses of ML in BDM system optimization, evaluation and sustainable development requires further investigation.

{"title":"Application of machine learning for environmentally friendly advancement: exploring biomass-derived materials in wastewater treatment and agricultural sector - a review.","authors":"Banza M Jean Claude, Linda L Sibali","doi":"10.1080/10934529.2025.2458979","DOIUrl":"10.1080/10934529.2025.2458979","url":null,"abstract":"<p><p>There are several uses for biomass-derived materials (BDMs) in the irrigation and farming industries. To solve problems with material, process, and supply chain design, BDM systems have started to use machine learning (ML), a new technique approach. This study examined articles published since 2015 to understand better the current status, future possibilities, and capabilities of ML in supporting environmentally friendly development and BDM applications. Previous ML applications were classified into three categories according to their objectives: material and process design, performance prediction and sustainability evaluation. ML helps optimize BDMs systems, predict material properties and performance, reverse engineering, and solve data difficulties in sustainability evaluations. Ensemble models and cutting-edge Neural Networks operate satisfactorily on these datasets and are easily generalized. Ensemble and neural network models have poor interpretability, and there have not been any studies in sustainability assessment that consider geo-temporal dynamics; thus, building ML methods for BDM systems is currently not practical. Future ML research for BDM systems should follow a workflow. Investigating the potential uses of ML in BDM system optimization, evaluation and sustainable development requires further investigation.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":" ","pages":"606-621"},"PeriodicalIF":1.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143074642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of Artificial Neural Network (ANN) as a predictive tool for the removal of pharmaceutical from wastewater streams using biochar: a multifunctional technology for environment sustainability. 应用人工神经网络(ANN)作为预测工具,利用生物炭去除废水中的药物:一种促进环境可持续性的多功能技术。
IF 2.1 4区 环境科学与生态学 Q4 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-01-01 Epub Date: 2024-03-25 DOI: 10.1080/10934529.2024.2329033
Mohammed Saleem Mansoor, Asmita Mishra, David Lokhat, B C Meikap

This study investigates biochar as an attractive option for removing pharmaceuticals from wastewater streams utilizing data from various literature sources and also explores the sensitivity of the characteristics and implementation of biochar. ANN 1 was designed to determine the optimal biochar characteristics (Surface Area, Pore Volume) to achieve the maximum percentage removal of pharmaceuticals in wastewater streams. ANN 2 was developed to identify the optimal biomass feedstock composition, pyrolysis conditions (temperature and time), and chemical activation (acid or base) to produce the optimal biochar from ANN 1. ANN 3 was developed to investigate the effectiveness of the biochar produced in ANN 1 and 2 in removing dye from water. Biomass feedstock with a high lignin content and high volatile matter at a high pyrolysis temperature, whether using an acid or base, achieves a high mesopore volume and high surface area. The biochar with the highest surface area and mesopore volume achieved the highest removal percentage. Regardless of hydrophobicity conditions, at low dosages (0.2), a high surface area and pore volume are required for a high percent removal. And with a higher dosage, a lower surface area and pore volume is necessary to achieve a high percent removal.

本研究利用各种文献资料中的数据,对生物炭作为去除废水中药物的一种有吸引力的选择进行了研究,同时还探讨了生物炭特性和实施的敏感性。设计 ANN 1 的目的是确定生物炭的最佳特性(表面积、孔隙率),以实现最大比例地去除废水中的药物。开发 ANN 2 的目的是确定最佳的生物质原料成分、热解条件(温度和时间)以及化学活化(酸或碱),以便根据 ANN 1 生成最佳生物炭。开发 ANN 3 的目的是研究 ANN 1 和 ANN 2 生成的生物炭去除水中染料的效果。高木质素含量和高挥发性物质的生物质原料在高热解温度下,无论是使用酸还是碱,都能获得高的中孔体积和高的表面积。表面积和中孔体积最大的生物炭的去除率最高。无论疏水性条件如何,在低剂量(0.2)条件下,高去除率需要高表面积和高孔隙率。而当添加量较高时,则需要较小的表面积和孔体积才能达到较高的去除率。
{"title":"Application of Artificial Neural Network (ANN) as a predictive tool for the removal of pharmaceutical from wastewater streams using biochar: a multifunctional technology for environment sustainability.","authors":"Mohammed Saleem Mansoor, Asmita Mishra, David Lokhat, B C Meikap","doi":"10.1080/10934529.2024.2329033","DOIUrl":"10.1080/10934529.2024.2329033","url":null,"abstract":"<p><p>This study investigates biochar as an attractive option for removing pharmaceuticals from wastewater streams utilizing data from various literature sources and also explores the sensitivity of the characteristics and implementation of biochar. ANN 1 was designed to determine the optimal biochar characteristics (Surface Area, Pore Volume) to achieve the maximum percentage removal of pharmaceuticals in wastewater streams. ANN 2 was developed to identify the optimal biomass feedstock composition, pyrolysis conditions (temperature and time), and chemical activation (acid or base) to produce the optimal biochar from ANN 1. ANN 3 was developed to investigate the effectiveness of the biochar produced in ANN 1 and 2 in removing dye from water. Biomass feedstock with a high lignin content and high volatile matter at a high pyrolysis temperature, whether using an acid or base, achieves a high mesopore volume and high surface area. The biochar with the highest surface area and mesopore volume achieved the highest removal percentage. Regardless of hydrophobicity conditions, at low dosages (0.2), a high surface area and pore volume are required for a high percent removal. And with a higher dosage, a lower surface area and pore volume is necessary to achieve a high percent removal.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":"59 1","pages":"40-53"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140207060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uranium adsorption efficiency of diglycolamic acid functionalized graphitic carbon nitride adsorbent: Kinetic, isotherm, and thermodynamic studies. 二甘醇酸功能化氮化石墨碳吸附剂的铀吸附效率:动力学、等温线和热力学研究。
IF 1.9 4区 环境科学与生态学 Q4 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-01-01 Epub Date: 2024-07-23 DOI: 10.1080/10934529.2024.2380956
A Dhanasekaran, Ilaiyaraja Perumal

This study proposes the use of diglycolamic acid-functionalized graphitic carbon nitride (HDGA-gCN) as an adsorbent for uranium removal. Our experiments showed that at pH 6.0, HDGA-gCN had a high adsorption capacity of 263.2 mg g-1 and achieved equilibrium in 30 min. The adsorption isotherm was well-fitted by the Langmuir model, and the adsorption kinetics followed a pseudo-second-order equation. U(VI) adsorption on HDGA-gCN is due to electrostatic interactions between the amine, diglycolamic acid, and uranium species. The thermodynamic parameters indicate that adsorption is spontaneous and exothermic. The loaded U(VI) can be desorbed using 0.1 M Na2CO3, and HDGA-gCN exhibited an exceptional adsorption percentage for U(VI) compared to other coexisting ions. HDGA-gCN had faster kinetics, adsorption capacity, and reusability, making it suitable for U(VI) remediation.

本研究提出使用二甘醇胺酸功能化氮化石墨(HDGA-gCN)作为吸附剂来去除铀。实验表明,在 pH 值为 6.0 时,HDGA-gCN 的吸附容量高达 263.2 mg g-1,并在 30 分钟内达到平衡。吸附等温线与 Langmuir 模型拟合良好,吸附动力学遵循假二阶方程。U(VI)在 HDGA-gCN 上的吸附是由于胺、二甘醇酸和铀物种之间的静电作用。热力学参数表明,吸附是自发和放热的。与其他共存离子相比,HDGA-gCN 对铀(VI)的吸附率更高。HDGA-gCN 具有更快的动力学、吸附能力和可重复使用性,因此适用于六价铬的修复。
{"title":"Uranium adsorption efficiency of diglycolamic acid functionalized graphitic carbon nitride adsorbent: Kinetic, isotherm, and thermodynamic studies.","authors":"A Dhanasekaran, Ilaiyaraja Perumal","doi":"10.1080/10934529.2024.2380956","DOIUrl":"10.1080/10934529.2024.2380956","url":null,"abstract":"<p><p>This study proposes the use of diglycolamic acid-functionalized graphitic carbon nitride (HDGA-gCN) as an adsorbent for uranium removal. Our experiments showed that at pH 6.0, HDGA-gCN had a high adsorption capacity of 263.2 mg g<sup>-1</sup> and achieved equilibrium in 30 min. The adsorption isotherm was well-fitted by the Langmuir model, and the adsorption kinetics followed a pseudo-second-order equation. U(VI) adsorption on HDGA-gCN is due to electrostatic interactions between the amine, diglycolamic acid, and uranium species. The thermodynamic parameters indicate that adsorption is spontaneous and exothermic. The loaded U(VI) can be desorbed using 0.1 M Na<sub>2</sub>CO<sub>3</sub>, and HDGA-gCN exhibited an exceptional adsorption percentage for U(VI) compared to other coexisting ions. HDGA-gCN had faster kinetics, adsorption capacity, and reusability, making it suitable for U(VI) remediation.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":" ","pages":"280-294"},"PeriodicalIF":1.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141751847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green synthesis of gold nanoparticles via Moringa oleifera seed extract: antioxidant, antibacterial and anticarcinogenic activity on lung cancer. 通过油辣木籽提取物绿色合成金纳米粒子:对肺癌的抗氧化、抗菌和抗癌活性。
IF 1.9 4区 环境科学与生态学 Q4 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-01-01 Epub Date: 2024-06-16 DOI: 10.1080/10934529.2024.2366736
D C Bouttier-Figueroa, M A Loreto-Romero, Manuel A Roldan, F H González-Gutiérrez, M Cortez-Valadez, M Flores-Acosta, R E Robles-Zepeda

Plant-mediated biosynthesis of nanoparticles is a green method that allows synthesis in one-pot process. Synthesis of gold nanoparticles with plant extracts has gained interest in the field of biomedicine due to its variety of applications. This study presents the synthesis via green chemistry of gold nanoparticles (AuNPs) using the methanol extract of Moringa oleifera seeds. The AuNPs were synthesized at room temperature. UV-Vis spectroscopy confirmed the formation of AuNPs by identifying the surface plasmon resonance located at 546 nm. TEM analysis shows spherical nanoparticles. FTIR analysis demonstrated the presence of specific bioactive molecules responsible for the Au3+ ion reduction process. The antioxidant activity of the nanoparticles was evaluated on the stabilization of the DPPH radical (1,1-diphenyl-2-picrylhydrazyl, 2,2-diphenyl-1-(2,4,6-trinitrophenyl) hydrazyl). The antimicrobial activity analysis was developed by broth microdilution method at different concentrations against Escherichia coli and Staphylococcus aureus. Minimum inhibitory concentration were 400 µg/mL and 200 µg/mL, respectively. A549 lung cancer cell proliferation was measured according to the MTT protocol, indicating a dose-dependent response and a IC50 of 163.9 ± 13.27 µg/mL. The AuNPs synthesized using M. oleifera seeds showed promise as active materials for antimicrobial or anticancer products.

植物介导的纳米粒子生物合成法是一种绿色方法,可实现一锅合成。利用植物提取物合成金纳米粒子因其用途广泛而在生物医学领域备受关注。本研究采用绿色化学方法,利用油辣木籽的甲醇提取物合成了金纳米粒子(AuNPs)。AuNPs 在室温下合成。紫外可见光谱通过识别位于 546 纳米处的表面等离子共振证实了 AuNPs 的形成。TEM 分析显示纳米颗粒呈球形。傅立叶变换红外光谱分析表明,在 Au3+ 离子还原过程中存在特定的生物活性分子。纳米颗粒的抗氧化活性是通过稳定 DPPH 自由基(1,1-二苯基-2-苦基肼,2,2-二苯基-1-(2,4,6-三硝基苯基)肼)来评估的。采用肉汤微量稀释法对不同浓度的大肠杆菌和金黄色葡萄球菌进行了抗菌活性分析。最低抑菌浓度分别为 400 µg/mL 和 200 µg/mL。根据 MTT 方案测量了 A549 肺癌细胞的增殖情况,结果表明其反应与剂量有关,IC50 为 163.9 ± 13.27 µg/mL。利用油橄榄种子合成的 AuNPs 有望成为抗菌或抗癌产品的活性材料。
{"title":"Green synthesis of gold nanoparticles via <i>Moringa oleifera</i> seed extract: antioxidant, antibacterial and anticarcinogenic activity on lung cancer.","authors":"D C Bouttier-Figueroa, M A Loreto-Romero, Manuel A Roldan, F H González-Gutiérrez, M Cortez-Valadez, M Flores-Acosta, R E Robles-Zepeda","doi":"10.1080/10934529.2024.2366736","DOIUrl":"10.1080/10934529.2024.2366736","url":null,"abstract":"<p><p>Plant-mediated biosynthesis of nanoparticles is a green method that allows synthesis in one-pot process. Synthesis of gold nanoparticles with plant extracts has gained interest in the field of biomedicine due to its variety of applications. This study presents the synthesis <i>via</i> green chemistry of gold nanoparticles (AuNPs) using the methanol extract of <i>Moringa oleifera</i> seeds. The AuNPs were synthesized at room temperature. UV-Vis spectroscopy confirmed the formation of AuNPs by identifying the surface plasmon resonance located at 546 nm. TEM analysis shows spherical nanoparticles. FTIR analysis demonstrated the presence of specific bioactive molecules responsible for the Au<sup>3+</sup> ion reduction process. The antioxidant activity of the nanoparticles was evaluated on the stabilization of the DPPH radical (1,1-diphenyl-2-picrylhydrazyl, 2,2-diphenyl-1-(2,4,6-trinitrophenyl) hydrazyl). The antimicrobial activity analysis was developed by broth microdilution method at different concentrations against <i>Escherichia coli</i> and <i>Staphylococcus aureus</i>. Minimum inhibitory concentration were 400 µg/mL and 200 µg/mL, respectively. A549 lung cancer cell proliferation was measured according to the MTT protocol, indicating a dose-dependent response and a IC<sub>50</sub> of 163.9 ± 13.27 µg/mL. The AuNPs synthesized using <i>M. oleifera</i> seeds showed promise as active materials for antimicrobial or anticancer products.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":" ","pages":"231-240"},"PeriodicalIF":1.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141331057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In-situ synthesis of sunlight-driven CuO-ZnO heterostructure photocatalyst for enhanced elimination of organic pollutants and CO2 reduction. 原位合成阳光驱动的 CuO-ZnO 异质结构光催化剂,用于增强有机污染物的消除和二氧化碳的还原。
IF 1.9 4区 环境科学与生态学 Q4 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-01-01 Epub Date: 2024-10-21 DOI: 10.1080/10934529.2024.2418713
Nada Ahmed Rasheed, Omar Faridh Fawzi, Haidar Abdulkareem Almashhadani, Ahmed Ismail, Sharafat Ali, Muhammad Zahid

Removing hazardous organic pollutants, such as 4-nitrophenol (4-NP) and Congo red (CR) dyes from aqueous media and CO2 from the atmospheric medium remains a significant challenge. Herein, we report a facile in-situ synthetic approach for fabricating CuO-ZnO heterostructure photocatalysts through the surfactant-assisted co-precipitation method. The catalytic results demonstrate that the Cu1O-ZnO photocatalyst exhibits excellent activity under direct sunlight irradiation, owing to the heterostructure formation between the CuO and ZnO. The Cu1O-ZnO photocatalyst showed higher reaction rate constant (k) values of 0.20 min-1 for 4-NP and 0.09 min-1 for CR compared to previous reports. Additionally, efficient CO2 reduction was also achieved over Cu1O-ZnO photocatalyst. The optical and structural characterization results indicate that the improved photocatalytic reduction and degradation observed for the Cu1O-ZnO photocatalyst can be attributed to the strong synergistic interaction between p-type CuO and n-type ZnO and the construction of the p-n heterojunction. As a result, the absorption of visible light distinctly increased and inhibited the recombination rate of the photo-created electron-hole (e-/h+). Furthermore, the Cu1O-ZnO photocatalyst exhibited remarkable durability and recyclability, retaining high photoactivity (≥ 93%) after five cycles, demonstrating its potential for real-world applications in the photocatalytic reduction and degradation reactions under direct sunlight irradiation.

去除水介质中的有害有机污染物(如 4-硝基苯酚(4-NP)和刚果红(CR)染料)以及大气介质中的二氧化碳仍然是一项重大挑战。在此,我们报告了一种通过表面活性剂辅助共沉淀法制造 CuO-ZnO 异质结构光催化剂的简便原位合成方法。催化结果表明,由于 CuO 和 ZnO 之间形成了异质结构,Cu1O-ZnO 光催化剂在阳光直射下表现出优异的活性。与之前的报告相比,Cu1O-ZnO 光催化剂对 4-NP 和 CR 的反应速率常数 (k) 分别为 0.20 min-1 和 0.09 min-1。此外,Cu1O-ZnO 光催化剂还实现了高效的 CO2 还原。光学和结构表征结果表明,Cu1O-ZnO 光催化剂的光催化还原和降解性能之所以得到改善,是因为 p 型 CuO 和 n 型 ZnO 之间的强协同作用以及 p-n 异质结的构建。因此,可见光的吸收明显增加,并抑制了光生电子-空穴(e-/h+)的重组速率。此外,Cu1O-ZnO 光催化剂表现出显著的耐久性和可回收性,在五个周期后仍能保持较高的光活性(≥ 93%),证明了其在阳光直射下的光催化还原和降解反应中的实际应用潜力。
{"title":"In-situ synthesis of sunlight-driven CuO-ZnO heterostructure photocatalyst for enhanced elimination of organic pollutants and CO<sub>2</sub> reduction.","authors":"Nada Ahmed Rasheed, Omar Faridh Fawzi, Haidar Abdulkareem Almashhadani, Ahmed Ismail, Sharafat Ali, Muhammad Zahid","doi":"10.1080/10934529.2024.2418713","DOIUrl":"10.1080/10934529.2024.2418713","url":null,"abstract":"<p><p>Removing hazardous organic pollutants, such as 4-nitrophenol (4-NP) and Congo red (CR) dyes from aqueous media and CO<sub>2</sub> from the atmospheric medium remains a significant challenge. Herein, we report a facile in-situ synthetic approach for fabricating CuO-ZnO heterostructure photocatalysts through the surfactant-assisted co-precipitation method. The catalytic results demonstrate that the Cu<sub>1</sub>O-ZnO photocatalyst exhibits excellent activity under direct sunlight irradiation, owing to the heterostructure formation between the CuO and ZnO. The Cu<sub>1</sub>O-ZnO photocatalyst showed higher reaction rate constant (k) values of 0.20 min<sup>-1</sup> for 4-NP and 0.09 min<sup>-1</sup> for CR compared to previous reports. Additionally, efficient CO<sub>2</sub> reduction was also achieved over Cu<sub>1</sub>O-ZnO photocatalyst. The optical and structural characterization results indicate that the improved photocatalytic reduction and degradation observed for the Cu<sub>1</sub>O-ZnO photocatalyst can be attributed to the strong synergistic interaction between p-type CuO and n-type ZnO and the construction of the p-n heterojunction. As a result, the absorption of visible light distinctly increased and inhibited the recombination rate of the photo-created electron-hole (e<sup>-</sup>/h<sup>+</sup>). Furthermore, the Cu<sub>1</sub>O-ZnO photocatalyst exhibited remarkable durability and recyclability, retaining high photoactivity (≥ 93%) after five cycles, demonstrating its potential for real-world applications in the photocatalytic reduction and degradation reactions under direct sunlight irradiation.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":" ","pages":"440-452"},"PeriodicalIF":1.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142467204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In vitro assessment of acute airway effects from real-life mixtures of ozone-initiated oxidation products of limonene and printer exhaust. 体外评估现实生活中臭氧引发的柠檬烯氧化产物和打印机废气混合物对气道的急性影响。
IF 1.9 4区 环境科学与生态学 Q4 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-01-01 Epub Date: 2024-09-26 DOI: 10.1080/10934529.2024.2406113
Sandra Verstraelen, Frederick Maes, An Jacobs, Sylvie Remy, Evelien Frijns, Eddy Goelen, Inge Nelissen

In indoor air the reaction of ozone (O3) with terpenes may lead to the formation of irritating gas-phase products which may induce acute airway effects (i.e. sudden, short-term changes or symptoms related to the respiratory system). We aimed to perform an in vitro study on possible health effects of products from the O3-initiated reaction of limonene with printer exhaust, representing real-life mixtures in offices. Human bronchial epithelial cells were exposed for 1 hour (h) to limonene and O3, combined with printer exhaust. The resulting concentrations represented 34% and 6% of the generated initial concentrations of limonene (400 µg/m³) and O3 (417 µg/cm³), respectively, which were in range of high end realistic indoor concentrations. We observed that the reaction of limonene with O3 generated an increase of ultrafine particles within 1 h, with a significant increase of secondary reaction products 4-oxopentanal and 3-isopropenyl-6-oxo-heptanal at high end indoor air levels. Simultaneous printing activity caused the additional release of micron-sized particles and a further increase in reaction products. Relevant cellular endpoints to evaluate the possible induction of acute airway effects were measured. However, none of the test atmospheres representing office air was observed to induce these effects.

在室内空气中,臭氧(O3)与萜烯反应可能会形成刺激性气相产物,这些产物可能会诱发急性气道效应(即与呼吸系统有关的突然、短期变化或症状)。我们的目的是对 O3 引发的柠檬烯与打印机废气反应产生的产物可能对健康造成的影响进行体外研究,这些产物代表了办公室中的真实混合物。人类支气管上皮细胞与柠檬烯和 O3 以及打印机废气接触 1 小时。所产生的浓度分别是所产生的柠檬烯(400 微克/立方米)和臭氧(417 微克/立方厘米)初始浓度的 34% 和 6%,处于现实室内浓度的高端范围。我们观察到,在 1 小时内,柠檬烯与 O3 反应产生的超细粒子增加,在室内空气的高端水平,次级反应产物 4-氧代戊醛和 3-异丙烯基-6-氧代庚醛显著增加。同时进行的印刷活动会释放出更多微米大小的颗粒,并进一步增加反应产物。测量了相关的细胞终点,以评估可能诱发的急性气道效应。不过,在代表办公室空气的测试气氛中,没有观察到任何一种气体会诱发这些效应。
{"title":"<i>In vitro</i> assessment of acute airway effects from real-life mixtures of ozone-initiated oxidation products of limonene and printer exhaust.","authors":"Sandra Verstraelen, Frederick Maes, An Jacobs, Sylvie Remy, Evelien Frijns, Eddy Goelen, Inge Nelissen","doi":"10.1080/10934529.2024.2406113","DOIUrl":"10.1080/10934529.2024.2406113","url":null,"abstract":"<p><p>In indoor air the reaction of ozone (O<sub>3</sub>) with terpenes may lead to the formation of irritating gas-phase products which may induce acute airway effects (i.e. sudden, short-term changes or symptoms related to the respiratory system). We aimed to perform an <i>in vitro</i> study on possible health effects of products from the O<sub>3</sub>-initiated reaction of limonene with printer exhaust, representing real-life mixtures in offices. Human bronchial epithelial cells were exposed for 1 hour (h) to limonene and O<sub>3</sub>, combined with printer exhaust. The resulting concentrations represented 34% and 6% of the generated initial concentrations of limonene (400 µg/m³) and O<sub>3</sub> (417 µg/cm³), respectively, which were in range of high end realistic indoor concentrations. We observed that the reaction of limonene with O<sub>3</sub> generated an increase of ultrafine particles within 1 h, with a significant increase of secondary reaction products 4-oxopentanal and 3-isopropenyl-6-oxo-heptanal at high end indoor air levels. Simultaneous printing activity caused the additional release of micron-sized particles and a further increase in reaction products. Relevant cellular endpoints to evaluate the possible induction of acute airway effects were measured. However, none of the test atmospheres representing office air was observed to induce these effects.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":" ","pages":"403-419"},"PeriodicalIF":1.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TXSELECT: a web-based decision support system for regional assessment of potential E. coli loads using a spatially explicit approach. TXSELECT:一个基于网络的决策支持系统,用于使用空间显式方法对潜在的大肠杆菌负荷进行区域评估。
IF 1.9 4区 环境科学与生态学 Q4 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-01-01 Epub Date: 2025-01-03 DOI: 10.1080/10934529.2024.2445953
Shubham Jain, Raghavan Srinivasan, Thomas J Helton, Raghupathy Karthikeyan

Bacterial source characterization and allocation are imperative to watershed planning and identifying best management practices. The Spatially Explicit Load Enrichment Calculation Tool (SELECT) has been extensively utilized in watershed protection plans to evaluate the potential bacteria loads and sources in impaired watersheds. However, collecting data, compiling inputs, and spatially mapping sources can be arduous, time-intensive, expensive, and iterative until potential bacteria loads are appropriately allocated to sources based on stakeholder recommendations. We developed a web-based decision support system (DSS), TXSELECT (https://tx.select.tamu.edu), providing a user-friendly interface to run the SELECT model on Texas watersheds. The DSS includes pre-determined watershed-specific inputs that can be readily adjusted within the interface based on user preference and stakeholder recommendations, obviating the necessity for expensive GIS tools and data extraction. To illustrate the applications of TXSELECT, we implemented it in the entire coverage area to identify the potential hotspots and source contributions for Escherichia coli at a regional scale. Median potential E. coli loads were significantly higher in subwatersheds not supporting recreation use. Overall, the large-scale application of SELECT has the potential to aid in prioritizing management measures in watersheds that are less frequently monitored but could have an elevated risk of impairment.

细菌源的表征和分配对流域规划和确定最佳管理实践至关重要。空间显式负荷富集计算工具(spatial Explicit Load Enrichment Calculation Tool, SELECT)已被广泛应用于流域保护规划中,以评估受损流域潜在的细菌负荷和来源。然而,收集数据、编译输入和空间映射源可能是艰巨的、耗时的、昂贵的和反复的,直到潜在的细菌负荷根据涉众的建议被适当地分配到源。我们开发了一个基于网络的决策支持系统(DSS) TXSELECT (https://tx.select.tamu.edu),提供了一个用户友好的界面来运行德克萨斯州流域的SELECT模型。DSS包括预先确定的流域特定输入,可以根据用户偏好和利益相关者的建议在界面内轻松调整,从而避免了昂贵的GIS工具和数据提取的必要性。为了说明TXSELECT的应用,我们在整个覆盖区域实施TXSELECT,以确定区域范围内大肠杆菌的潜在热点和来源贡献。在不支持娱乐用途的地下水流域,潜在大肠杆菌负荷的中位数明显更高。总的来说,SELECT的大规模应用有可能有助于在监测频率较低但可能存在较高损害风险的流域确定管理措施的优先次序。
{"title":"TXSELECT: a web-based decision support system for regional assessment of potential <i>E. coli</i> loads using a spatially explicit approach.","authors":"Shubham Jain, Raghavan Srinivasan, Thomas J Helton, Raghupathy Karthikeyan","doi":"10.1080/10934529.2024.2445953","DOIUrl":"10.1080/10934529.2024.2445953","url":null,"abstract":"<p><p>Bacterial source characterization and allocation are imperative to watershed planning and identifying best management practices. The Spatially Explicit Load Enrichment Calculation Tool (SELECT) has been extensively utilized in watershed protection plans to evaluate the potential bacteria loads and sources in impaired watersheds. However, collecting data, compiling inputs, and spatially mapping sources can be arduous, time-intensive, expensive, and iterative until potential bacteria loads are appropriately allocated to sources based on stakeholder recommendations. We developed a web-based decision support system (DSS), TXSELECT (https://tx.select.tamu.edu), providing a user-friendly interface to run the SELECT model on Texas watersheds. The DSS includes pre-determined watershed-specific inputs that can be readily adjusted within the interface based on user preference and stakeholder recommendations, obviating the necessity for expensive GIS tools and data extraction. To illustrate the applications of TXSELECT, we implemented it in the entire coverage area to identify the potential hotspots and source contributions for <i>Escherichia coli</i> at a regional scale. Median potential <i>E. coli</i> loads were significantly higher in subwatersheds not supporting recreation use. Overall, the large-scale application of SELECT has the potential to aid in prioritizing management measures in watersheds that are less frequently monitored but could have an elevated risk of impairment.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":" ","pages":"550-561"},"PeriodicalIF":1.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142921105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Municipal anaerobic filter effluent treatment using advanced oxidation processes for potential use in unrestricted crop production. 城市厌氧过滤器污水处理采用先进的氧化工艺,用于无限制作物生产的潜在用途。
IF 1.9 4区 环境科学与生态学 Q4 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-01-01 Epub Date: 2025-01-10 DOI: 10.1080/10934529.2025.2450918
Barnabas Oluoch, William Musazura, Benton Otieno, Stephen Ojwach, Alfred Odindo

To meet wastewater treatment quality standards for reuse, integrating advanced oxidation processes (AOPs) with Decentralized Wastewater Treatment Systems (DEWATS) is promising. This study aimed to optimize AOPs (ozonolysis, UV photolysis, TiO2 photocatalysis) for polishing anaerobic filter (AF) effluent from DEWATS, as an alternative to constructed wetlands. Metrics included pathogen reduction efficiency, post-disinfection regrowth, and effects on physical parameters (pH, EC, turbidity), organic matter (soluble COD, BOD, DOC, humic), and nutrient concentration (ammonium, nitrates, ortho-P). Ozonolysis and TiO2 photocatalysis achieved a 6.4-log pathogen reduction, while UV photolysis achieved a 6-log. No pathogen regrowth occurred with ozonolysis, but TiO2 photocatalysis showed E. coli and Total coliforms regrowth of 2.5-log and 2.7-log, respectively. UV photolysis showed 0.5-log and 2.2-log regrowth for E. coli and Total coliforms, respectively. TiO2 photocatalysis significantly reduced BOD, soluble COD, humic substances, ortho-P, turbidity, and nitrates, while increasing pH, EC, ammonium, and DOC. Ozonolysis significantly lowered BOD, soluble COD, humics, and turbidity, but increased ortho-P, nitrates, pH, EC, ammonium, and DOC. UV-photolysis showed marginal reductions in BOD, nitrates, and turbidity, with increased EC, pH, ammonium, DOC, ortho-P, and humic levels. Ozonolysis emerged as the best AOP, demonstrating efficient effluent treatment with no pathogen regrowth.

为了满足废水处理的质量标准,将高级氧化工艺(AOPs)与分散式废水处理系统(DEWATS)相结合是很有前途的。本研究旨在优化AOPs(臭氧分解、紫外光解、TiO2光催化)对DEWATS厌氧过滤器(AF)出水的抛光,作为人工湿地的替代方案。指标包括病原体减少效率、消毒后再生以及对物理参数(pH、EC、浊度)、有机物(可溶性COD、BOD、DOC、腐殖质)和养分浓度(铵、硝酸盐、正磷)的影响。臭氧分解和TiO2光催化实现了6.4 log的病原体还原,而UV光分解实现了6 log的病原体还原。臭氧分解未产生病原菌的再生,但TiO2光催化的大肠杆菌和总大肠菌群的再生分别为2.5 log和2.7 log。在紫外光解作用下,大肠杆菌和总大肠菌群的再生率分别为0.5 log和2.2 log。TiO2光催化显著降低了BOD、可溶性COD、腐殖质、邻磷、浊度和硝酸盐,同时提高了pH、EC、铵和DOC。臭氧分解显著降低了BOD、可溶性COD、腐殖质和浊度,但增加了正磷、硝酸盐、pH、EC、铵和DOC。紫外光解作用显示BOD、硝酸盐和浊度的边际降低,EC、pH、铵、DOC、正磷和腐殖质水平增加。臭氧分解被认为是最好的AOP,证明了有效的污水处理,没有病原体再生。
{"title":"Municipal anaerobic filter effluent treatment using advanced oxidation processes for potential use in unrestricted crop production.","authors":"Barnabas Oluoch, William Musazura, Benton Otieno, Stephen Ojwach, Alfred Odindo","doi":"10.1080/10934529.2025.2450918","DOIUrl":"10.1080/10934529.2025.2450918","url":null,"abstract":"<p><p>To meet wastewater treatment quality standards for reuse, integrating advanced oxidation processes (AOPs) with Decentralized Wastewater Treatment Systems (DEWATS) is promising. This study aimed to optimize AOPs (ozonolysis, UV photolysis, TiO<sub>2</sub> photocatalysis) for polishing anaerobic filter (AF) effluent from DEWATS, as an alternative to constructed wetlands. Metrics included pathogen reduction efficiency, post-disinfection regrowth, and effects on physical parameters (pH, EC, turbidity), organic matter (soluble COD, BOD, DOC, humic), and nutrient concentration (ammonium, nitrates, ortho-P). Ozonolysis and TiO<sub>2</sub> photocatalysis achieved a 6.4-log pathogen reduction, while UV photolysis achieved a 6-log. No pathogen regrowth occurred with ozonolysis, but TiO<sub>2</sub> photocatalysis showed <i>E. coli</i> and Total coliforms regrowth of 2.5-log and 2.7-log, respectively. UV photolysis showed 0.5-log and 2.2-log regrowth for <i>E. coli</i> and Total coliforms, respectively. TiO<sub>2</sub> photocatalysis significantly reduced BOD, soluble COD, humic substances, ortho-P, turbidity, and nitrates, while increasing pH, EC, ammonium, and DOC. Ozonolysis significantly lowered BOD, soluble COD, humics, and turbidity, but increased ortho-P, nitrates, pH, EC, ammonium, and DOC. UV-photolysis showed marginal reductions in BOD, nitrates, and turbidity, with increased EC, pH, ammonium, DOC, ortho-P, and humic levels. Ozonolysis emerged as the best AOP, demonstrating efficient effluent treatment with no pathogen regrowth.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":" ","pages":"563-573"},"PeriodicalIF":1.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142965214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1