Down-flow hanging sponge (DHS) reactors, employed in domestic wastewater treatment, have demonstrated efficacy in eliminating Escherichia coli and other potentially pathogenic bacteria. The aim of this study was to elucidate the mechanism of removal of E. coli by employing a cube-shaped polyurethane sponge carrier within a compact hanging reactor. An E. coli removal experiment was conducted on this prepared sponge. Escherichia. coli level was found to decrease by more than 2 logs after passing through five nutrient-restricted DHS sponges. Conversely, a newly introduced sponge did not exhibit a comparable reduction in E. coli level. Furthermore, under conditions of optimal nutritional status, the reduction in E. coli level was limited to 0.5 logs, underscoring the crucial role of nutrient restriction in achieving effective elimination. Analysis of the sponge-associated bacterial community revealed the presence of a type VI secretion system (T6SS), a competitive mechanism observed in bacteria. This finding suggests that T6SS might play a pivotal role in contributing to the observed decline in E. coli level.
{"title":"<i>Escherichia coli</i> removal in down-flow hanging sponge reactors: insights from laboratory reactor studies.","authors":"Noriko Tomioka, Thao Tran P, Masataka Aoki, Yasuyuki Takemura, Kazuaki Syutsubo","doi":"10.1080/10934529.2024.2384205","DOIUrl":"10.1080/10934529.2024.2384205","url":null,"abstract":"<p><p>Down-flow hanging sponge (DHS) reactors, employed in domestic wastewater treatment, have demonstrated efficacy in eliminating <i>Escherichia coli</i> and other potentially pathogenic bacteria. The aim of this study was to elucidate the mechanism of removal of <i>E. coli</i> by employing a cube-shaped polyurethane sponge carrier within a compact hanging reactor. An <i>E. coli</i> removal experiment was conducted on this prepared sponge. <i>Escherichia. coli</i> level was found to decrease by more than 2 logs after passing through five nutrient-restricted DHS sponges. Conversely, a newly introduced sponge did not exhibit a comparable reduction in <i>E. coli</i> level. Furthermore, under conditions of optimal nutritional status, the reduction in <i>E. coli</i> level was limited to 0.5 logs, underscoring the crucial role of nutrient restriction in achieving effective elimination. Analysis of the sponge-associated bacterial community revealed the presence of a type VI secretion system (T6SS), a competitive mechanism observed in bacteria. This finding suggests that T6SS might play a pivotal role in contributing to the observed decline in <i>E. coli</i> level.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":" ","pages":"295-304"},"PeriodicalIF":1.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141874987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-05-14DOI: 10.1080/10934529.2024.2352312
Leila Fatolahi
The photocatalytic technology for indoor air disinfection has been broadly studied in the last decade. Selecting proper photocatalysts with high disinfection efficiency remains to be a challenge. By doping with the incorporation of metals, the bandgap can be narrowed while avoiding the recombination of photogenerated charge. Three photocatalysts (Ag-TiO2, MnO2-TiO2, and MnS2-TiO2) were tested in photocatalytic sterilization process. The results revealed that Ag-TiO2 had the best antibacterial performance. Within 20 min, the concentration of Serratia marcescens (the tested bacteria) decreased log number of ln 4.04 under 640 w/m2 light intensity with 1000 µg/mL of Ag-TiO2. During the process of inactivating bacteria, the cell membranes of bacterial was destructed and thus decreasing the activity of enzymes and releasing the cell contents, due to the generation of reactive oxygen species (O2•- and •OH) and thermal effect. Spectral regulation has the greatest impact on the sterilization efficiency of MnO2-TiO2, which reduces the probability of photocatalytic materials being excited.
{"title":"Evaluation of photocatalysis inactivation in indoor air purification of pathogenic microbes by using the different nanomaterials based on TiO<sub>2</sub> nanomaterials.","authors":"Leila Fatolahi","doi":"10.1080/10934529.2024.2352312","DOIUrl":"10.1080/10934529.2024.2352312","url":null,"abstract":"<p><p>The photocatalytic technology for indoor air disinfection has been broadly studied in the last decade. Selecting proper photocatalysts with high disinfection efficiency remains to be a challenge. By doping with the incorporation of metals, the bandgap can be narrowed while avoiding the recombination of photogenerated charge. Three photocatalysts (Ag-TiO<sub>2</sub>, MnO<sub>2</sub>-TiO<sub>2</sub>, and MnS<sub>2</sub>-TiO<sub>2</sub>) were tested in photocatalytic sterilization process. The results revealed that Ag-TiO<sub>2</sub> had the best antibacterial performance. Within 20 min, the concentration of <i>Serratia marcescens</i> (the tested bacteria) decreased log number of ln 4.04 under 640 w/m<sup>2</sup> light intensity with 1000 µg/mL of Ag-TiO<sub>2</sub>. During the process of inactivating bacteria, the cell membranes of bacterial was destructed and thus decreasing the activity of enzymes and releasing the cell contents, due to the generation of reactive oxygen species (O<sub>2</sub>•<sup>-</sup> and •OH) and thermal effect. Spectral regulation has the greatest impact on the sterilization efficiency of MnO<sub>2</sub>-TiO<sub>2</sub>, which reduces the probability of photocatalytic materials being excited.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":" ","pages":"213-222"},"PeriodicalIF":1.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140921871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-07-05DOI: 10.1080/10934529.2024.2375902
José L Domingo, Martí Nadal, Joaquim Rovira
Despite incineration is an important emission source of toxic pollutants, such as heavy metals and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), it is still one of the most widely used methods for the management of municipal solid waste. The current paper summarizes the results of a 20-year follow-up study of the emissions of PCDD/Fs by a municipal solid waste incinerator (MSWI) in Sant Adrià de Besòs (Catalonia, Spain). Samples of ambient air, soils and herbage were periodically collected near the facility and the content of PCDD/Fs was analyzed. In the last (2017) survey, mean levels in soil were 3.60 ng WHO-TEQ/kg (range: 0.40-10.6), being considerably higher than the mean concentrations of PCDD/Fs in soil samples collected near other MSWIs in Catalonia. Moreover, air PCDD/F concentrations were even higher than those found in a previous (2014) survey, as they increased from 0.026 to 0.044 pg WHO-TEQ/m3. Ultimately, the PCDD/F exposure would be associated to a cancer risk (2.5 × 10-6) for the population living in the surrounding area. Globally, this information indicates that the MSWI of Sant Adrià de Besòs could have had a negative impact on the environment and potentially on public health, being an example of a possible inappropriate management for years. The application of Best Available Techniques to minimize the emission of PCDD/Fs and other chemicals is critical.
{"title":"Regulatory compliance of PCDD/F emissions by a municipal solid waste incinerator. A case study in Sant Adrià de Besòs, Catalonia, Spain.","authors":"José L Domingo, Martí Nadal, Joaquim Rovira","doi":"10.1080/10934529.2024.2375902","DOIUrl":"10.1080/10934529.2024.2375902","url":null,"abstract":"<p><p>Despite incineration is an important emission source of toxic pollutants, such as heavy metals and polychlorinated dibenzo<i>-p-</i>dioxins and dibenzofurans (PCDD/Fs), it is still one of the most widely used methods for the management of municipal solid waste. The current paper summarizes the results of a 20-year follow-up study of the emissions of PCDD/Fs by a municipal solid waste incinerator (MSWI) in Sant Adrià de Besòs (Catalonia, Spain). Samples of ambient air, soils and herbage were periodically collected near the facility and the content of PCDD/Fs was analyzed. In the last (2017) survey, mean levels in soil were 3.60 ng WHO-TEQ/kg (range: 0.40-10.6), being considerably higher than the mean concentrations of PCDD/Fs in soil samples collected near other MSWIs in Catalonia. Moreover, air PCDD/F concentrations were even higher than those found in a previous (2014) survey, as they increased from 0.026 to 0.044 pg WHO-TEQ/m<sup>3</sup>. Ultimately, the PCDD/F exposure would be associated to a cancer risk (2.5 × 10<sup>-6</sup>) for the population living in the surrounding area. Globally, this information indicates that the MSWI of Sant Adrià de Besòs could have had a negative impact on the environment and potentially on public health, being an example of a possible inappropriate management for years. The application of Best Available Techniques to minimize the emission of PCDD/Fs and other chemicals is critical.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":" ","pages":"273-279"},"PeriodicalIF":1.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141534568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-08-19DOI: 10.1080/10934529.2024.2384803
Mohammad Hamid Hamdard, Saif Rahman Rahmani, Zakeria Shnizai, Bjørn Kløve
In Afghanistan, groundwater is widely used for drinking water, but its quality poses a health threat. This study investigates the physical, chemical, and bacteriological characteristics of groundwater in the Upper Kabul Sub-basin. Fifteen samples were collected and analyzed from different parts of the study area. The qualitative determination of parameters such as pH, Electrical conductivity (EC), Total dissolved solids (TDS), Salinity, Total hardness, Calcium, Magnesium, Sodium, Chloride, Fluoride, Sulfate, Phosphate, Potassium, Nitrite, Nitrate, Ammonia, Iron, Manganese, Copper, Aluminum, Arsenic, Total coliform, and Fecal coliform bacteria was carried out. The results were compared with WHO and ANSA standards to assess their suitability for drinking purposes. The analyzed samples indicate that physical parameters generally fall within permissible limits according to WHO and ANSA standards. However, certain wells exhibited elevated levels of chemical and bacteriological contaminants. Specifically, Magnesium concentrations exceeded the WHO guideline of 30 mg/L in all of the samples, and Calcium levels surpassed the recommended limit of 75 mg/L in 53% of the samples. Total coliform bacteria were detected in 33.33% of the samples, while fecal coliform bacteria were within the WHO and ANSA permissible limit for drinking water. The Pearson's correlation coefficient (R) suggested significant correlations between EC, TDS, and total hardness with other physical and chemical parameters. For instance, EC showed a strong positive correlation (R = 1.00) with TDS, EC and Salinity (R = 0.981), EC and Fluoride (R = 0.838) EC and Sulfate (R = 0.853), TDS and Salinity (R = 0. 981), TDS and Fluoride (R = 0.838), TDS and Sulfate (R = 0.853). The findings demonstrate that correlation coefficient analyses of water quality parameters provide a valuable means for monitoring water quality. These results offer critical insights for ensuring a safe water supply in the region.
{"title":"Groundwater quality assessment in upper Kabul basin and Paghman aquifer.","authors":"Mohammad Hamid Hamdard, Saif Rahman Rahmani, Zakeria Shnizai, Bjørn Kløve","doi":"10.1080/10934529.2024.2384803","DOIUrl":"10.1080/10934529.2024.2384803","url":null,"abstract":"<p><p>In Afghanistan, groundwater is widely used for drinking water, but its quality poses a health threat. This study investigates the physical, chemical, and bacteriological characteristics of groundwater in the Upper Kabul Sub-basin. Fifteen samples were collected and analyzed from different parts of the study area. The qualitative determination of parameters such as pH, Electrical conductivity (EC), Total dissolved solids (TDS), Salinity, Total hardness, Calcium, Magnesium, Sodium, Chloride, Fluoride, Sulfate, Phosphate, Potassium, Nitrite, Nitrate, Ammonia, Iron, Manganese, Copper, Aluminum, Arsenic, Total coliform, and Fecal coliform bacteria was carried out. The results were compared with WHO and ANSA standards to assess their suitability for drinking purposes. The analyzed samples indicate that physical parameters generally fall within permissible limits according to WHO and ANSA standards. However, certain wells exhibited elevated levels of chemical and bacteriological contaminants. Specifically, Magnesium concentrations exceeded the WHO guideline of 30 mg/L in all of the samples, and Calcium levels surpassed the recommended limit of 75 mg/L in 53% of the samples. Total coliform bacteria were detected in 33.33% of the samples, while fecal coliform bacteria were within the WHO and ANSA permissible limit for drinking water. The Pearson's correlation coefficient (R) suggested significant correlations between EC, TDS, and total hardness with other physical and chemical parameters. For instance, EC showed a strong positive correlation (<i>R</i> = 1.00) with TDS, EC and Salinity (<i>R</i> = 0.981), EC and Fluoride (<i>R</i> = 0.838) EC and Sulfate (<i>R</i> = 0.853), TDS and Salinity (<i>R</i> = 0. 981), TDS and Fluoride (<i>R</i> = 0.838), TDS and Sulfate (<i>R</i> = 0.853). The findings demonstrate that correlation coefficient analyses of water quality parameters provide a valuable means for monitoring water quality. These results offer critical insights for ensuring a safe water supply in the region.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":" ","pages":"321-333"},"PeriodicalIF":1.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
High level of aluminum content in Enteromorpha prolifera posed a growing threat to both its growth and human health. This study focused on exploring the factors, impacts, and process of removing aluminum from Enteromorpha prolifera using humic acid. The results showed that under experimental conditions of 0.0330 g·L-1 humic acid concentration, pH 3.80, 34 °C, and a duration of 40 min, the removal rate was up to 80.18%. The levels of major flavor components, proteins, and amino acids in Enteromorpha prolifera increased significantly after treatment, while polysaccharides and trace elements like calcium and magnesium decreased significantly. Infrared spectroscopy demonstrated that the main functional groups involved in binding with Al3+ during humic acid adsorption were hydroxyl, carboxyl, phenol, and other oxygen-containing groups. The adsorption process of Al3+ by humic acid was a spontaneous phenomenon divided into three key stages: fast adsorption, slow adsorption, and adsorption equilibrium, which resulted from both physical and chemical adsorption effects. This study provided a safe and efficient method in algae metal removal.
{"title":"Study on adsorption behavior of humic acid on aluminum in <i>Enteromorpha prolifera</i>.","authors":"Yuke Mo, Liping Zhou, Shiqian Fu, Huicheng Yang, Bangchu Lin, Jinjie Zhang, Yongjiang Lou, Yongyong Li","doi":"10.1080/10934529.2024.2396728","DOIUrl":"10.1080/10934529.2024.2396728","url":null,"abstract":"<p><p>High level of aluminum content in <i>Enteromorpha prolifera</i> posed a growing threat to both its growth and human health. This study focused on exploring the factors, impacts, and process of removing aluminum from <i>Enteromorpha prolifera</i> using humic acid. The results showed that under experimental conditions of 0.0330 g·L<sup>-1</sup> humic acid concentration, pH 3.80, 34 °C, and a duration of 40 min, the removal rate was up to 80.18%. The levels of major flavor components, proteins, and amino acids in <i>Enteromorpha prolifera</i> increased significantly after treatment, while polysaccharides and trace elements like calcium and magnesium decreased significantly. Infrared spectroscopy demonstrated that the main functional groups involved in binding with Al<sup>3+</sup> during humic acid adsorption were hydroxyl, carboxyl, phenol, and other oxygen-containing groups. The adsorption process of Al<sup>3+</sup> by humic acid was a spontaneous phenomenon divided into three key stages: fast adsorption, slow adsorption, and adsorption equilibrium, which resulted from both physical and chemical adsorption effects. This study provided a safe and efficient method in algae metal removal.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":" ","pages":"342-357"},"PeriodicalIF":1.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142107963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-08-01DOI: 10.1080/10934529.2024.2384216
Clessius Ribeiro de Souza, Gabriel Souza-Silva, Fernanda Viana Moreira Silva, Paula von Randow Cardoso, Walter Dos Santos Lima, Cíntia Aparecida de Jesus Pereira, Marcos Paulo Gomes Mol, Micheline Rosa Silveira
Artemia is a brine shrimp genus adapted to extreme habitats like ranges salinity from 5-25 g/L and in temperatures from 9 to 35 °C. It is widely distributed and used as an environmental quality biomarker. Artemia franciscana and Artemia salina species are commonly used in ecotoxicological studies and genotoxicity assays due to their short life cycle, high fecundity rate, easy culture, and availability. Thus, considering the importance of these tests in ecotoxicological studies, the present study aimed to present Artemia genus as a biological model in genotoxicity research. To this end, we reviewed the literature, analyzing data published until July 2023 in the Web of Science, SCOPUS, Embase, and PubMed databases. After screening, we selected 34 studies in which the genotoxicity of Artemia for various substances. This review presents the variability of the experimental planning of assays and biomarkers in genotoxicity using Artemia genus as a biological model for ecotoxicological studies and show the possibility of monitoring biochemical alterations and genetic damage effects. Also highlight innovative technologies such as transcriptomic and metabolomic analysis, as well as studies over successive generations to identify changes in DNA and consequently in gene expression.
蒿属盐水虾是一种适应极端生境的虾类,如盐度范围为 5-25 g/L,温度范围为 9-35 °C。它分布广泛,被用作环境质量的生物标志物。Artemia franciscana 和 Artemia salina 由于其生命周期短、繁殖率高、易于养殖且容易获得,通常用于生态毒理学研究和遗传毒性试验。因此,考虑到这些试验在生态毒理学研究中的重要性,本研究旨在将蒿属作为一种生物模型用于遗传毒性研究。为此,我们查阅了相关文献,分析了截至 2023 年 7 月在 Web of Science、SCOPUS、Embase 和 PubMed 数据库中发表的数据。经过筛选,我们选出了 34 篇研究Artemia 对各种物质的遗传毒性的文章。这篇综述介绍了以Artemia属作为生态毒理学研究的生物模型,在遗传毒性实验规划和生物标志物方面的可变性,并展示了监测生化改变和遗传损伤效应的可能性。此外,还重点介绍了转录组和代谢组分析等创新技术,以及对连续几代人进行的研究,以确定 DNA 的变化,进而确定基因表达的变化。
{"title":"Ecotoxicological studies of direct and indirect genotoxicity with <i>Artemia</i>: a integrative review.","authors":"Clessius Ribeiro de Souza, Gabriel Souza-Silva, Fernanda Viana Moreira Silva, Paula von Randow Cardoso, Walter Dos Santos Lima, Cíntia Aparecida de Jesus Pereira, Marcos Paulo Gomes Mol, Micheline Rosa Silveira","doi":"10.1080/10934529.2024.2384216","DOIUrl":"10.1080/10934529.2024.2384216","url":null,"abstract":"<p><p><i>Artemia</i> is a brine shrimp genus adapted to extreme habitats like ranges salinity from 5-25 g/L and in temperatures from 9 to 35 °C. It is widely distributed and used as an environmental quality biomarker. <i>Artemia franciscana</i> and <i>Artemia salina</i> species are commonly used in ecotoxicological studies and genotoxicity assays due to their short life cycle, high fecundity rate, easy culture, and availability. Thus, considering the importance of these tests in ecotoxicological studies, the present study aimed to present <i>Artemia</i> genus as a biological model in genotoxicity research. To this end, we reviewed the literature, analyzing data published until July 2023 in the Web of Science, SCOPUS, Embase, and PubMed databases. After screening, we selected 34 studies in which the genotoxicity of <i>Artemia</i> for various substances. This review presents the variability of the experimental planning of assays and biomarkers in genotoxicity using <i>Artemia</i> genus as a biological model for ecotoxicological studies and show the possibility of monitoring biochemical alterations and genetic damage effects. Also highlight innovative technologies such as transcriptomic and metabolomic analysis, as well as studies over successive generations to identify changes in DNA and consequently in gene expression.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":" ","pages":"305-320"},"PeriodicalIF":1.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141859977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Large volumes of wastewater are generated during petroleum refining processes. Petroleum refinery wastewater (PRW) can contain highly toxic compounds that can harm the environment. These toxic compounds can be a challenge in biological treatment technologies due to the effects of these compounds on microorganisms. These challenges can be overcome by using ozone (O3) as a standalone or as a pretreatment to the biological treatment. Ozone was used in this study to degrade the organic pollutants in the heavily contaminated PRW from a refinery in Mpumalanga province of South Africa. The objective was achieved by treating the raw PRW using ozone at different ozone treatment times (15, 30, 45, and 60 min) at a fixed ozone concentration of 3.53 mg/dm3. The ozone treatment was carried out in a 2-liter custom-designed plexiglass cylindrical reactor. Ozone was generated from an Eco-Lab-24 corona discharge ozone generator using clean, dry air from the Afrox air cylinder as feed. The chemical oxygen demand, gas chromatograph characterization, and pH analysis were performed on the pretreated and post-treated PRW samples to ascertain the impact of the ozone treatment. The ozone treatment was effective in reducing the benzene, toluene, ethylbenzene, and xylenes (BTEX) compounds in the PRW. The 60-min ozone treatment of different BTEX pollutants in the PRW resulted in the following percentage reduction: benzene 95%, toluene 77%, m + p-xylene 70%, ethylbenzene 69%, and o-xylene 65%. This study has shown the success of using ozone in reducing the toxic BTEX compounds in a heavily contaminated PRW.
{"title":"The impact of ozone treatment on the removal effectiveness of various refractory compounds in wastewater from petroleum refineries.","authors":"Nkosinathi Khoza, Tumisang Seodigeng, Musamba Banza, Aoyi Ochieng","doi":"10.1080/10934529.2024.2348417","DOIUrl":"10.1080/10934529.2024.2348417","url":null,"abstract":"<p><p>Large volumes of wastewater are generated during petroleum refining processes. Petroleum refinery wastewater (PRW) can contain highly toxic compounds that can harm the environment. These toxic compounds can be a challenge in biological treatment technologies due to the effects of these compounds on microorganisms. These challenges can be overcome by using ozone (O<sub>3</sub>) as a standalone or as a pretreatment to the biological treatment. Ozone was used in this study to degrade the organic pollutants in the heavily contaminated PRW from a refinery in Mpumalanga province of South Africa. The objective was achieved by treating the raw PRW using ozone at different ozone treatment times (15, 30, 45, and 60 min) at a fixed ozone concentration of 3.53 mg/dm<sup>3</sup>. The ozone treatment was carried out in a 2-liter custom-designed plexiglass cylindrical reactor. Ozone was generated from an Eco-Lab-24 corona discharge ozone generator using clean, dry air from the Afrox air cylinder as feed. The chemical oxygen demand, gas chromatograph characterization, and pH analysis were performed on the pretreated and post-treated PRW samples to ascertain the impact of the ozone treatment. The ozone treatment was effective in reducing the benzene, toluene, ethylbenzene, and xylenes (BTEX) compounds in the PRW. The 60-min ozone treatment of different BTEX pollutants in the PRW resulted in the following percentage reduction: benzene 95%, toluene 77%, m + p-xylene 70%, ethylbenzene 69%, and o-xylene 65%. This study has shown the success of using ozone in reducing the toxic BTEX compounds in a heavily contaminated PRW.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":" ","pages":"189-199"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140908790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-06-17DOI: 10.1080/10934529.2024.2367353
J B Reis, W M K Levandoski, M Krogel, S T Ferrazzo, G D L Pasquali, E P Korf
Water treatment plants (WTPs) produce thousands of tons of sludge annually, which is destined for landfill disposal, an environmentally and economically impractical alternative. Chemical, mineralogical, and morphological characterization besides environmental classification has been performed for WTP sludge and it was evaluated application potential in building materials, from a literature review. The characterization was carried out by X-ray fluorescence spectrometry, X-ray diffraction, scanning electron microscopy analysis, and leaching and solubilization tests. The results show that the presence of activated charcoal residues from water treatment in one type of sludge was of little relevance for changes in the properties of the waste. Both sludges have a wide range of particle sizes, consisting mainly of silica, aluminum and iron oxides, as well as kaolinite, quartz, and iron minerals. Special attention must be paid to the solubilization of metallic contaminants to avoid contamination risks and order to make the application safer and more effective, it is necessary to study deeply ways to inert the WTP sludge. The sludges studied have a high potential for application in ceramic products, mortars, geopolymers and concrete paving stones. Depending on the type of building material, different contents of sludge in natural or calcined state can be incorporated.
水处理厂(WTPs)每年产生数千吨污泥,这些污泥被送往垃圾填埋场处理,这在环境和经济上都是不切实际的选择。除了环境分类外,还对水处理厂污泥进行了化学、矿物学和形态学表征,并根据文献综述评估了其在建筑材料中的应用潜力。表征是通过 X 射线荧光光谱法、X 射线衍射法、扫描电子显微镜分析以及浸出和溶解试验进行的。结果表明,一种污泥中存在水处理活性炭残留物与废物性质的变化关系不大。这两种污泥的粒度范围很广,主要由二氧化硅、铝和铁氧化物以及高岭石、石英和铁矿物组成。必须特别注意金属污染物的溶解,以避免污染风险,为了使应用更安全、更有效,有必要深入研究水处理厂污泥的惰性化方法。所研究的污泥在陶瓷产品、灰泥、土工聚合物和混凝土铺路石中的应用潜力很大。根据建筑材料的类型,可以加入不同含量的天然或煅烧状态的污泥。
{"title":"Technological characterization and environment-friendly possibilities to reuse water treatment sludge in building materials.","authors":"J B Reis, W M K Levandoski, M Krogel, S T Ferrazzo, G D L Pasquali, E P Korf","doi":"10.1080/10934529.2024.2367353","DOIUrl":"10.1080/10934529.2024.2367353","url":null,"abstract":"<p><p>Water treatment plants (WTPs) produce thousands of tons of sludge annually, which is destined for landfill disposal, an environmentally and economically impractical alternative. Chemical, mineralogical, and morphological characterization besides environmental classification has been performed for WTP sludge and it was evaluated application potential in building materials, from a literature review. The characterization was carried out by X-ray fluorescence spectrometry, X-ray diffraction, scanning electron microscopy analysis, and leaching and solubilization tests. The results show that the presence of activated charcoal residues from water treatment in one type of sludge was of little relevance for changes in the properties of the waste. Both sludges have a wide range of particle sizes, consisting mainly of silica, aluminum and iron oxides, as well as kaolinite, quartz, and iron minerals. Special attention must be paid to the solubilization of metallic contaminants to avoid contamination risks and order to make the application safer and more effective, it is necessary to study deeply ways to inert the WTP sludge. The sludges studied have a high potential for application in ceramic products, mortars, geopolymers and concrete paving stones. Depending on the type of building material, different contents of sludge in natural or calcined state can be incorporated.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":" ","pages":"241-250"},"PeriodicalIF":1.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141331077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-02-23DOI: 10.1080/10934529.2024.2319510
Gnanaprakasam A, Thirumarimurugan M, Shanmathi N
Wastewater pollution caused by organic dyes is a growing concern due to its negative impact on human health and aquatic life. To tackle this issue, the use of advanced wastewater treatment with nano photocatalysts has emerged as a promising solution. However, experimental procedures for identifying the optimal conditions for dye degradation could be time-consuming and expensive. To overcome this, machine learning methods have been employed to predict the degradation of organic dyes in a more efficient manner by recognizing patterns in the process and addressing its feasibility. The objective of this study is to develop a machine learning model to predict the degradation of organic dyes and identify the main variables affecting the photocatalytic degradation capacity and removal of organic dyes from wastewater. Nine machine learning algorithms were tested including multiple linear regression, polynomial regression, decision trees, random forest, adaptive boosting, extreme gradient boosting, k-nearest neighbors, support vector machine, and artificial neural network. The study found that the XGBoosting algorithm outperformed the other models, making it ideal for predicting the photocatalytic degradation capacity of BiVO4. The results suggest that XGBoost is a suitable model for predicting the photocatalytic degradation of wastewater using BiVO4 with different dopants.
{"title":"Machine learning, a powerful tool for the prediction of BiVO<sub>4</sub> nanoparticles efficiency in photocatalytic degradation of organic dyes.","authors":"Gnanaprakasam A, Thirumarimurugan M, Shanmathi N","doi":"10.1080/10934529.2024.2319510","DOIUrl":"10.1080/10934529.2024.2319510","url":null,"abstract":"<p><p>Wastewater pollution caused by organic dyes is a growing concern due to its negative impact on human health and aquatic life. To tackle this issue, the use of advanced wastewater treatment with nano photocatalysts has emerged as a promising solution. However, experimental procedures for identifying the optimal conditions for dye degradation could be time-consuming and expensive. To overcome this, machine learning methods have been employed to predict the degradation of organic dyes in a more efficient manner by recognizing patterns in the process and addressing its feasibility. The objective of this study is to develop a machine learning model to predict the degradation of organic dyes and identify the main variables affecting the photocatalytic degradation capacity and removal of organic dyes from wastewater. Nine machine learning algorithms were tested including multiple linear regression, polynomial regression, decision trees, random forest, adaptive boosting, extreme gradient boosting, k-nearest neighbors, support vector machine, and artificial neural network. The study found that the XGBoosting algorithm outperformed the other models, making it ideal for predicting the photocatalytic degradation capacity of BiVO<sub>4</sub>. The results suggest that XGBoost is a suitable model for predicting the photocatalytic degradation of wastewater using BiVO<sub>4</sub> with different dopants.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":" ","pages":"15-24"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139940038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-05-01DOI: 10.1080/10934529.2024.2345026
Nur Kaluç, E Lal Çötelli, Salih Tuncay, Pınar B Thomas
Polyethylene terephthalate (PET) is a common plastic widely used in food and beverage packaging that poses a serious risk to human health and the environment due to the continual rise in its production and usage. After being produced and used, PET accumulates in the environment and breaks down into nanoplastics (NPs), which are then consumed by humans through water and food sources. The threats to human health and the environment posed by PET-NPs are of great concern worldwide, yet little is known about their biological impacts. Herein, the smallest sized PET-NPs so far (56 nm) with an unperturbed PET structure were produced by a modified dilution-precipitation method and their potential cytotoxicity was evaluated in Saccharomyces cerevisiae. Exposure to PET-NPs decreased cell viability due to oxidative stress induction revealed by the increased expression levels of stress response related-genes as well as increased lipid peroxidation. Cell death induced by PET-NP exposure was mainly through apoptosis, while autophagy had a protective role.
{"title":"Polyethylene terephthalate nanoplastics cause oxidative stress induced cell death in <i>Saccharomyces cerevisiae</i>.","authors":"Nur Kaluç, E Lal Çötelli, Salih Tuncay, Pınar B Thomas","doi":"10.1080/10934529.2024.2345026","DOIUrl":"10.1080/10934529.2024.2345026","url":null,"abstract":"<p><p>Polyethylene terephthalate (PET) is a common plastic widely used in food and beverage packaging that poses a serious risk to human health and the environment due to the continual rise in its production and usage. After being produced and used, PET accumulates in the environment and breaks down into nanoplastics (NPs), which are then consumed by humans through water and food sources. The threats to human health and the environment posed by PET-NPs are of great concern worldwide, yet little is known about their biological impacts. Herein, the smallest sized PET-NPs so far (56 nm) with an unperturbed PET structure were produced by a modified dilution-precipitation method and their potential cytotoxicity was evaluated in Saccharomyces cerevisiae. Exposure to PET-NPs decreased cell viability due to oxidative stress induction revealed by the increased expression levels of stress response related-genes as well as increased lipid peroxidation. Cell death induced by PET-NP exposure was mainly through apoptosis, while autophagy had a protective role.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":" ","pages":"180-188"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140863220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}