首页 > 最新文献

Journal of Energy Resources Technology-transactions of The Asme最新文献

英文 中文
Experimental research on effects of combustion air humidification on energy and environment performance of a gas boiler 燃烧空气加湿对燃气锅炉能源环境性能影响的实验研究
3区 工程技术 Q1 Engineering Pub Date : 2023-09-14 DOI: 10.1115/1.4063432
Qunli Zhang, Yanxin Li, Qiuyue Zhang, Yuqin Jiao, Qiu Shi, Xiaoshu Lü
Abstract To increase the waste heat recovery (WHR) efficiency of gas boiler and decrease NOx emissions, a flue gas total heat recovery (FGTHR) system integrating direct contact heat exchanger (DCHE) and combustion air humidification (CAH) is put forward. The experimental bench and technical and economic analysis models are setup to simulate and evaluate the WHR performance and NOx emissions on various operation situations. The results show that when the air humidity ratio elevates from 3 g/kgdry air to 60 g/kgdry air, the dew point temperature increases by 7.9 °C. When the flue gas temperature approaches the dew point temperature, the rate of improvement of the FGTHR system's total heat efficiency notably rises. With spray water (SW) flow rate and temperature of 0.075 kg/s and 45 °C, the WHR efficiency relatively increases by up to 8.4%. The maximum sensible and latent heat can be recovered by 4468 w and 3774 w, respectively. The flue gas temperature can be reduced to 46.55 °C and the average NOx concentration is 39.6 mg/m3. Compared with the non-humidified condition, the NOx and CO2 emissions relative reduction of the FGTHR system are 61.2% and 8.7%. The payback period of FGTHR system is 2 years. Through simulation, it can be concluded that the decrease in exhaust flue gas temperature and velocity, as well as the increase in exhaust flue gas humidity, have a negative impact on the diffusion of NOx in the atmosphere.
摘要为提高燃气锅炉余热回收效率,降低NOx排放,提出了一种集直接接触式换热器(DCHE)和燃烧空气加湿(CAH)为一体的烟气全热回收(FGTHR)系统。建立了实验平台和技术经济分析模型,模拟和评估了各种运行工况下的水冷比性能和氮氧化物排放。结果表明:当空气湿度比由3 g/kgdry空气增加到60 g/kgdry空气时,露点温度升高7.9℃;当烟气温度接近露点温度时,FGTHR系统总热效率的提高速度明显加快。当喷淋水流量为0.075 kg/s,温度为45℃时,WHR效率相对提高8.4%。最大感热可回收4468 w,最大潜热可回收3774 w。烟气温度降至46.55℃,NOx平均浓度为39.6 mg/m3。与不加湿相比,FGTHR系统的NOx和CO2排放量相对减少了61.2%和8.7%。FGTHR系统的投资回收期为2年。通过模拟可以得出,废气温度和速度的降低,以及废气湿度的增加,对NOx在大气中的扩散有负面影响。
{"title":"Experimental research on effects of combustion air humidification on energy and environment performance of a gas boiler","authors":"Qunli Zhang, Yanxin Li, Qiuyue Zhang, Yuqin Jiao, Qiu Shi, Xiaoshu Lü","doi":"10.1115/1.4063432","DOIUrl":"https://doi.org/10.1115/1.4063432","url":null,"abstract":"Abstract To increase the waste heat recovery (WHR) efficiency of gas boiler and decrease NOx emissions, a flue gas total heat recovery (FGTHR) system integrating direct contact heat exchanger (DCHE) and combustion air humidification (CAH) is put forward. The experimental bench and technical and economic analysis models are setup to simulate and evaluate the WHR performance and NOx emissions on various operation situations. The results show that when the air humidity ratio elevates from 3 g/kgdry air to 60 g/kgdry air, the dew point temperature increases by 7.9 °C. When the flue gas temperature approaches the dew point temperature, the rate of improvement of the FGTHR system's total heat efficiency notably rises. With spray water (SW) flow rate and temperature of 0.075 kg/s and 45 °C, the WHR efficiency relatively increases by up to 8.4%. The maximum sensible and latent heat can be recovered by 4468 w and 3774 w, respectively. The flue gas temperature can be reduced to 46.55 °C and the average NOx concentration is 39.6 mg/m3. Compared with the non-humidified condition, the NOx and CO2 emissions relative reduction of the FGTHR system are 61.2% and 8.7%. The payback period of FGTHR system is 2 years. Through simulation, it can be concluded that the decrease in exhaust flue gas temperature and velocity, as well as the increase in exhaust flue gas humidity, have a negative impact on the diffusion of NOx in the atmosphere.","PeriodicalId":15676,"journal":{"name":"Journal of Energy Resources Technology-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134914058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the Impact of CO2 Atmosphere on Propane Moderate or Intense Low-oxygen Dilution Combustion: A Numerical Simulation Study 探讨CO2气氛对丙烷中强低氧稀释燃烧的影响:数值模拟研究
3区 工程技术 Q1 Engineering Pub Date : 2023-09-14 DOI: 10.1115/1.4063433
Pengsheng Shi, Tianyou Zhang, Weijuan Yang, Zhijun Zhou, Junhu Zhou, Jianzhong Liu
Abstract Moderate or intense low-oxygen dilution (MILD) combustion is a promising combustion technology widely recognized by the international combustion community. In this study, numerical simulation was used to investigate the effects of CO2 atmosphere on MILD combustion of propane in a 20 KW furnace. The results show that the O2/CO2 atmosphere leads to a lower average temperature in the furnace, better temperature uniformity, and more uniform distribution of OH and CH2O compared to MILD combustion in N2/O2 atmosphere. Propane MILD combustion is established well under the physical and chemical effects of CO2. An analytical approach is proposed to describe the physical and chemical effects of CO2 on MILD combustion. The physical effect of CO2 shortens the ignition delay time and advances the pyrolysis and ignition of propane, which causes a high-temperature zone in the front furnace and reduces the temperature uniformity in MILD combustion. However, the chemical effect of CO2 dominates the establishment of the MILD combustion by increasing the ignition delay time and reducing burning rates, with the help of the physical effects of CO2 by intensifying the entrainment in the furnace. Thus, the overall effects of CO2 lead to enhanced temperature uniformity by enlarging the area and evening the temperature of both the ignition zone and combustion zone. These findings provide valuable insights into the physical and chemical mechanisms of CO2 in MILD combustion and have important implications for optimizing combustion processes for improved efficiency and reduced emissions.
中度或强烈低氧稀释(MILD)燃烧是一种很有前途的燃烧技术,得到了国际燃烧界的广泛认可。本文采用数值模拟的方法研究了CO2气氛对丙烷在20 KW炉内轻度燃烧的影响。结果表明:与N2/O2气氛下的轻度燃烧相比,O2/CO2气氛下的炉内平均温度更低,温度均匀性更好,OH和CH2O分布更均匀;丙烷在CO2的物理和化学作用下可以很好地建立轻度燃烧。提出了一种分析方法来描述CO2对轻度燃烧的物理和化学影响。CO2的物理作用缩短了点火延迟时间,提前了丙烷的热解和点火,导致前炉出现高温区,降低了MILD燃烧时的温度均匀性。然而,CO2的化学作用通过增加点火延迟时间和降低燃烧速率来主导轻度燃烧的建立,而CO2的物理作用通过加强炉内的夹带来帮助建立轻度燃烧。因此,CO2的总体作用是通过扩大点火区和燃烧区面积和降低温度来提高温度均匀性。这些发现为轻度燃烧中二氧化碳的物理和化学机制提供了有价值的见解,并对优化燃烧过程以提高效率和减少排放具有重要意义。
{"title":"Exploring the Impact of CO2 Atmosphere on Propane Moderate or Intense Low-oxygen Dilution Combustion: A Numerical Simulation Study","authors":"Pengsheng Shi, Tianyou Zhang, Weijuan Yang, Zhijun Zhou, Junhu Zhou, Jianzhong Liu","doi":"10.1115/1.4063433","DOIUrl":"https://doi.org/10.1115/1.4063433","url":null,"abstract":"Abstract Moderate or intense low-oxygen dilution (MILD) combustion is a promising combustion technology widely recognized by the international combustion community. In this study, numerical simulation was used to investigate the effects of CO2 atmosphere on MILD combustion of propane in a 20 KW furnace. The results show that the O2/CO2 atmosphere leads to a lower average temperature in the furnace, better temperature uniformity, and more uniform distribution of OH and CH2O compared to MILD combustion in N2/O2 atmosphere. Propane MILD combustion is established well under the physical and chemical effects of CO2. An analytical approach is proposed to describe the physical and chemical effects of CO2 on MILD combustion. The physical effect of CO2 shortens the ignition delay time and advances the pyrolysis and ignition of propane, which causes a high-temperature zone in the front furnace and reduces the temperature uniformity in MILD combustion. However, the chemical effect of CO2 dominates the establishment of the MILD combustion by increasing the ignition delay time and reducing burning rates, with the help of the physical effects of CO2 by intensifying the entrainment in the furnace. Thus, the overall effects of CO2 lead to enhanced temperature uniformity by enlarging the area and evening the temperature of both the ignition zone and combustion zone. These findings provide valuable insights into the physical and chemical mechanisms of CO2 in MILD combustion and have important implications for optimizing combustion processes for improved efficiency and reduced emissions.","PeriodicalId":15676,"journal":{"name":"Journal of Energy Resources Technology-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134913962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of carbon dioxide hydrate growth kinetics in carbon micron tube oil-water system 碳微米管油水体系中二氧化碳水合物生长动力学表征
IF 3 3区 工程技术 Q1 Engineering Pub Date : 2023-08-31 DOI: 10.1115/1.4063328
Xiaofang Lv, Xingya Ni, Yi Zhao, TianHui Liu, Shun Jing, Boyu Bai, Shangbin Liang, Yang Liu, Q. Ma, Chuanshuo Wang, S. Zhou
Carbon nanotubes have a significant impact on hydrate formation. However, as the effect and mechanism of carbon micrometer tubes, which have a similar structure to carbon nanotubes, on the promotion of hydrate growth is not yet clear. Therefore, in this paper, experiments on the growth kinetics of CO2 hydrate in oil-water systems under the effect of multi-walled carbon microtubes(MWCMTs) were carried out. The effects of pressure, temperature, and oil- water ratio on the induction period and gas consumption of CO2 hydrate were investigated. It also revealed the hydrate growth promotion mechanism of MWCMTs. The conclusions were as follows: (1) MWCMTs could significantly improve the hydrate gas storage capacity in an oil-water system by up to 80.3% over the pure water system. (2) Pressure and temperature had a large effect on the storage capacity and induction time of CO2 hydrate, and the results showed that the induction time decreased significantly with increasing pressure and decreasing temperature. At the same time, the hydrate growth time was significantly shortened, but the gas storage capacity first increased and then decreased. One reason for this was that the hydrate film hindered gas-water mass transfer, and the other was that the gas dissolved by the oil droplets rapidly generated hydrates and could not continue to transfer gas molecules. (3) In the oil-water system, lipophilic MWCMTs carried adsorbed CO2 to contact water, at the same time provided a large number of hydrate nucleation sites to promote hydrate formation.
碳纳米管对水合物的形成有重要影响。然而,由于与碳纳米管结构相似的碳纳米管对水合物生长的促进作用和机理尚不清楚。因此,本文对多壁碳纳米管(MWCMTs)作用下油水系统中CO2水合物的生长动力学进行了实验研究。研究了压力、温度和油水比对CO2水合物诱导期和耗气量的影响。同时揭示了MWCMTs的水合物生长促进机制。结果表明:(1)MWCMTs能显著提高油水系统中水合物气体的储存能力,比纯水系统提高80.3%。(2) 压力和温度对CO2水合物的储存能力和诱导时间有很大影响,结果表明,诱导时间随着压力的增加和温度的降低而显著缩短。同时,水合物生长时间明显缩短,但储气能力先增大后减小。原因之一是水合物膜阻碍了气水传质,另一个原因是油滴溶解的气体迅速生成水合物,无法继续传递气体分子。(3) 在油水系统中,亲脂性MWCMTs携带吸附的CO2与水接触,同时提供了大量的水合物成核位点,促进水合物的形成。
{"title":"Characterization of carbon dioxide hydrate growth kinetics in carbon micron tube oil-water system","authors":"Xiaofang Lv, Xingya Ni, Yi Zhao, TianHui Liu, Shun Jing, Boyu Bai, Shangbin Liang, Yang Liu, Q. Ma, Chuanshuo Wang, S. Zhou","doi":"10.1115/1.4063328","DOIUrl":"https://doi.org/10.1115/1.4063328","url":null,"abstract":"\u0000 Carbon nanotubes have a significant impact on hydrate formation. However, as the effect and mechanism of carbon micrometer tubes, which have a similar structure to carbon nanotubes, on the promotion of hydrate growth is not yet clear. Therefore, in this paper, experiments on the growth kinetics of CO2 hydrate in oil-water systems under the effect of multi-walled carbon microtubes(MWCMTs) were carried out. The effects of pressure, temperature, and oil- water ratio on the induction period and gas consumption of CO2 hydrate were investigated. It also revealed the hydrate growth promotion mechanism of MWCMTs. The conclusions were as follows: (1) MWCMTs could significantly improve the hydrate gas storage capacity in an oil-water system by up to 80.3% over the pure water system. (2) Pressure and temperature had a large effect on the storage capacity and induction time of CO2 hydrate, and the results showed that the induction time decreased significantly with increasing pressure and decreasing temperature. At the same time, the hydrate growth time was significantly shortened, but the gas storage capacity first increased and then decreased. One reason for this was that the hydrate film hindered gas-water mass transfer, and the other was that the gas dissolved by the oil droplets rapidly generated hydrates and could not continue to transfer gas molecules. (3) In the oil-water system, lipophilic MWCMTs carried adsorbed CO2 to contact water, at the same time provided a large number of hydrate nucleation sites to promote hydrate formation.","PeriodicalId":15676,"journal":{"name":"Journal of Energy Resources Technology-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41384090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Instantaneous Starting Pump on Fluid Transient Flow in Managed Pressure Cementing 控压固井中瞬时启动泵对流体瞬态流动的影响
IF 3 3区 工程技术 Q1 Engineering Pub Date : 2023-08-31 DOI: 10.1115/1.4063327
Zhi Zhang, Shilin Xiang, Jian Ding, Yuanjin Zhao
The fluctuating pressure generated by the instantaneous starting pump of cementing operation might easily cause formation fracture in narrow safety window formations. Accurate transient fluctuating pressure calculation and dynamically managed backpressure are required to achieve precise control of wellbore pressure in managed pressure cementing. Considering the transient flow characteristics of cementing fluids in the wellbore, unsteady transient friction, and the variation of high pressure-high temperature (HTHP) cementing fluid properties, a transient flow mathematical model of instantaneous starting pump during managed pressure cementing is established, and the method of characteristics is used for solution. Based on tht established model analyzes the magnitude and variation of wellbore pressure under different model factors, temperature conditions, pump start duration, and target pump flowrate, which can achieve more accurate analysis of transient flow. The pressure and flow fluctuations generated during the instantaneous starting pump of cementing are significant, and the dynamically managed wellhead backpressure can effectively control the wellbore pressure in the safe pressure window formations. This can reduce the risk of well leakage and provide reliable technical support for safe operations of instantaneous starting pumps during managed pressure cementing.
在安全窗较窄的地层中,固井作业瞬时启动泵产生的压力波动很容易引起地层破裂。在管理压力固井中,为了实现井筒压力的精确控制,需要精确的瞬态波动压力计算和动态管理背压。考虑固井液在井筒中的瞬态流动特性、非稳态瞬态摩擦以及高压高温(HTHP)固井液性质的变化,建立了管理压力固井过程中瞬时启动泵的瞬态流动数学模型,并采用特征法进行求解。在此基础上,建立的模型分析了不同模型因素、温度条件、泵启动时间和目标泵流量下井筒压力的大小和变化,可以实现更准确的瞬态流量分析。固井瞬时启动泵过程中产生的压力和流量波动很大,动态管理的井口背压可以有效控制安全压力窗口地层中的井筒压力。这可以降低油井泄漏的风险,并为管理压力固井过程中瞬时启动泵的安全操作提供可靠的技术支持。
{"title":"Effect of Instantaneous Starting Pump on Fluid Transient Flow in Managed Pressure Cementing","authors":"Zhi Zhang, Shilin Xiang, Jian Ding, Yuanjin Zhao","doi":"10.1115/1.4063327","DOIUrl":"https://doi.org/10.1115/1.4063327","url":null,"abstract":"\u0000 The fluctuating pressure generated by the instantaneous starting pump of cementing operation might easily cause formation fracture in narrow safety window formations. Accurate transient fluctuating pressure calculation and dynamically managed backpressure are required to achieve precise control of wellbore pressure in managed pressure cementing. Considering the transient flow characteristics of cementing fluids in the wellbore, unsteady transient friction, and the variation of high pressure-high temperature (HTHP) cementing fluid properties, a transient flow mathematical model of instantaneous starting pump during managed pressure cementing is established, and the method of characteristics is used for solution. Based on tht established model analyzes the magnitude and variation of wellbore pressure under different model factors, temperature conditions, pump start duration, and target pump flowrate, which can achieve more accurate analysis of transient flow. The pressure and flow fluctuations generated during the instantaneous starting pump of cementing are significant, and the dynamically managed wellhead backpressure can effectively control the wellbore pressure in the safe pressure window formations. This can reduce the risk of well leakage and provide reliable technical support for safe operations of instantaneous starting pumps during managed pressure cementing.","PeriodicalId":15676,"journal":{"name":"Journal of Energy Resources Technology-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41570983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physics-Informed Deep Learning-Based Modeling of a Novel Elastohydrodynamic Seal for Supercritical CO2 Turbomachinery 基于物理信息的基于深度学习的新型超临界CO2涡轮弹性流体动力密封建模
IF 3 3区 工程技术 Q1 Engineering Pub Date : 2023-08-31 DOI: 10.1115/1.4063326
K. R. Lyathakula, S. Cesmeci, Matthew DeMond, M. Hassan, Hanping Xu, Jing Tang
Supercritical carbon dioxide (sCO2) power cycles show promising potential of higher plant efficiencies and power densities for a wide range of power generation applications such as fossil fuel power plants, nuclear power production, solar power, and geothermal power generation. sCO2 leakage through the turbomachinery has been one of the main concerns in such applications. To offer a potential solution, we propose an Elasto-Hydrodynamic (EHD) seal that can work at elevated pressures and temperatures with low leakage and minimal wear. The EHD seal has a very simple, sleeve-like structure, wrapping on the rotor with minimal initial clearance at µm levels. In this work, a proof-of-concept study for the proposed EHD seal was presented by using the simplified Reynolds equation and Lame's formula for the fluid flow in the clearance and for seal deformation, respectively. The set of nonlinear equations was solved by using both the conventional Prediction-Correction (PC) method and modern Physics-Informed Neural Network (PINN). It was shown that the physics-informed deep learning method provided good computational efficiency in resolving the steep pressure gradient in the clearance with good accuracy. The results showed that the leakage rates increased quadratically with working pressures and reached a steady state at high-pressure values of 15 ~ 20 MPa, where Q = 300 g/s at 20 MPa for an initial seal clearance of 255 µm. This indicates that the EHD seal could be tailored to become a potential solution to minimize the sCO2 discharge in power plants.
超临界二氧化碳(sCO2)动力循环在化石燃料发电厂、核能发电、太阳能发电和地热发电等广泛的发电应用中显示出提高电厂效率和功率密度的潜力。通过涡轮机械的sCO2泄漏一直是此类应用中主要关注的问题之一。为了提供一个潜在的解决方案,我们提出了一种弹性流体动力(EHD)密封,它可以在高压和高温下工作,泄漏少,磨损最小。EHD密封具有非常简单的套筒状结构,包裹在转子上,初始间隙最小,为μ m级别。在这项工作中,提出了EHD密封的概念验证研究,分别使用简化的雷诺方程和Lame公式来计算流体在间隙中的流动和密封变形。采用传统的预测校正(PC)方法和现代物理信息神经网络(PINN)方法对非线性方程组进行求解。结果表明,基于物理的深度学习方法在求解间隙陡峭压力梯度方面具有良好的计算效率和精度。结果表明:泄漏率随工作压力的增大呈二次曲线增长,在15 ~ 20 MPa高压条件下达到稳定状态,即当初始密封间隙为255µm时,20 MPa时Q = 300 g/s;这表明EHD密封可以量身定制,成为减少发电厂sCO2排放的潜在解决方案。
{"title":"Physics-Informed Deep Learning-Based Modeling of a Novel Elastohydrodynamic Seal for Supercritical CO2 Turbomachinery","authors":"K. R. Lyathakula, S. Cesmeci, Matthew DeMond, M. Hassan, Hanping Xu, Jing Tang","doi":"10.1115/1.4063326","DOIUrl":"https://doi.org/10.1115/1.4063326","url":null,"abstract":"\u0000 Supercritical carbon dioxide (sCO2) power cycles show promising potential of higher plant efficiencies and power densities for a wide range of power generation applications such as fossil fuel power plants, nuclear power production, solar power, and geothermal power generation. sCO2 leakage through the turbomachinery has been one of the main concerns in such applications. To offer a potential solution, we propose an Elasto-Hydrodynamic (EHD) seal that can work at elevated pressures and temperatures with low leakage and minimal wear. The EHD seal has a very simple, sleeve-like structure, wrapping on the rotor with minimal initial clearance at µm levels. In this work, a proof-of-concept study for the proposed EHD seal was presented by using the simplified Reynolds equation and Lame's formula for the fluid flow in the clearance and for seal deformation, respectively. The set of nonlinear equations was solved by using both the conventional Prediction-Correction (PC) method and modern Physics-Informed Neural Network (PINN). It was shown that the physics-informed deep learning method provided good computational efficiency in resolving the steep pressure gradient in the clearance with good accuracy. The results showed that the leakage rates increased quadratically with working pressures and reached a steady state at high-pressure values of 15 ~ 20 MPa, where Q = 300 g/s at 20 MPa for an initial seal clearance of 255 µm. This indicates that the EHD seal could be tailored to become a potential solution to minimize the sCO2 discharge in power plants.","PeriodicalId":15676,"journal":{"name":"Journal of Energy Resources Technology-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43850219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Exploring the Limits of Empirical Correlations for the Design of Energy Systems with Complex Fluids: Liquid Sulfur Thermal Energy Storage as a Case Study 探索复杂流体能量系统设计的经验关联极限——以液硫储能为例
IF 3 3区 工程技术 Q1 Engineering Pub Date : 2023-08-25 DOI: 10.1115/1.4063256
M. Oliver, Munjal Shah, Janna Martinek, K. Nithyanandam, Zhiwen Ma, Michael Martin
Sustainable energy technologies often use fluids with complex properties. As an example, sulfur is a promising fluid for use in thermal energy storage systems, with highly non-linear thermophysical properties. The viscosity of liquid-phase sulfur varies by four orders of magnitude due to polymerization of sulfur rings between 400 K and 500 K, followed by depolymerization of long rigid chains, and a decrease in viscosity, as temperature increases. These properties may compromise the accuracy of long-established empirical correlations in the design of TES systems. This work uses omputational fluid dynamics to compute steady-state free convection heat transfer coefficients of sulfur in concentric cylinders at temperatures between 400 K and 600 K. The results show that uneven distributions of high and low viscosity sulfur in the system cause variations in flow patterns and highly nonlinear heat transfer coefficients as temperature gradients increase. As a result, existing empirical correlations for describing system performance become inaccurate. Comparison of simulation results to predictions from well-established literature correlations show that errors may surpass 50%. Nusselt versus Rayleigh number correlations for heat transfer are significantly affected by the loss of self-similarity. The analysis proves that existing correlations are not able to capture the complex properties of sulfur in this temperature range, suggesting that alternative modeling techniques are needed for design and optimization of sulfur TES systems. These challenges are unlikely to be limited to sulfur as a working fluid or TES, but will appear in a range of energy systems.
可持续能源技术通常使用具有复杂性质的流体。例如,硫是一种很有前途的流体,用于热能储存系统,具有高度非线性的热物理性质。液相硫的粘度变化为4个数量级,这是由于硫环在400k至500k之间发生聚合,随后是长刚性链的解聚,随着温度的升高,粘度降低。这些性质可能会损害TES系统设计中长期建立的经验相关性的准确性。本文采用计算流体动力学方法,计算了温度在400 K至600 K之间的同心圆柱体中硫的稳态自由对流换热系数。结果表明,随着温度梯度的增大,高粘度硫和低粘度硫在体系中的不均匀分布导致了流动模式的变化和传热系数的高度非线性。结果,现有的描述系统性能的经验相关性变得不准确。将模拟结果与已建立的文献相关性的预测进行比较,结果表明误差可能超过50%。热传递的努塞尔与瑞利数相关性受到自相似性损失的显著影响。分析证明,现有的相关性无法捕获该温度范围内硫的复杂特性,这表明需要替代建模技术来设计和优化硫TES系统。这些挑战不太可能局限于作为工作流体或TES的硫,而是将出现在一系列能源系统中。
{"title":"Exploring the Limits of Empirical Correlations for the Design of Energy Systems with Complex Fluids: Liquid Sulfur Thermal Energy Storage as a Case Study","authors":"M. Oliver, Munjal Shah, Janna Martinek, K. Nithyanandam, Zhiwen Ma, Michael Martin","doi":"10.1115/1.4063256","DOIUrl":"https://doi.org/10.1115/1.4063256","url":null,"abstract":"\u0000 Sustainable energy technologies often use fluids with complex properties. As an example, sulfur is a promising fluid for use in thermal energy storage systems, with highly non-linear thermophysical properties. The viscosity of liquid-phase sulfur varies by four orders of magnitude due to polymerization of sulfur rings between 400 K and 500 K, followed by depolymerization of long rigid chains, and a decrease in viscosity, as temperature increases. These properties may compromise the accuracy of long-established empirical correlations in the design of TES systems. This work uses omputational fluid dynamics to compute steady-state free convection heat transfer coefficients of sulfur in concentric cylinders at temperatures between 400 K and 600 K. The results show that uneven distributions of high and low viscosity sulfur in the system cause variations in flow patterns and highly nonlinear heat transfer coefficients as temperature gradients increase. As a result, existing empirical correlations for describing system performance become inaccurate. Comparison of simulation results to predictions from well-established literature correlations show that errors may surpass 50%. Nusselt versus Rayleigh number correlations for heat transfer are significantly affected by the loss of self-similarity. The analysis proves that existing correlations are not able to capture the complex properties of sulfur in this temperature range, suggesting that alternative modeling techniques are needed for design and optimization of sulfur TES systems. These challenges are unlikely to be limited to sulfur as a working fluid or TES, but will appear in a range of energy systems.","PeriodicalId":15676,"journal":{"name":"Journal of Energy Resources Technology-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44740317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HEAT TRANSFER ENHANCEMENT DUE TO COLD CAP MOTION FROM BUBBLING IN A WASTE GLASS MELTER 在废玻璃熔炼机中冒泡引起的冷帽运动引起的传热增强
IF 3 3区 工程技术 Q1 Engineering Pub Date : 2023-08-25 DOI: 10.1115/1.4063253
D. Guillen, Alexander W. Abboud
In this study, a computational fluid dynamics (CFD) model was developed to model the motion of a solid cold cap in a waste glass melter. Forced convection bubblers at the base of the melter release air into the molten glass, which forms large bubbles that travel upwards to the cold cap and augment heat transfer from the glass to the cold cap. The CFD model employs the Navier- Stokes equations to solve for the fluctuating flowfield using a rigid body motion dynamic fluid body interaction module. This allows for movement of the floating body in response to the bubbling forces calculated at each time step. The heat flux delivered to the cold cap by the convective bubbling is studied as a function of the bubbling rate. Results for the moving cold cap are compared with the computed heat flux trends for a stationary cold cap. The heat flux delivered to the cold cap from the glass is 25% higher for the case with the moving cold cap. The heat flux was found to be proportional to v0.6 as opposed to v0.9 (where v is the normalized bubbling rate) for the stationary cold cap.
在这项研究中,建立了一个计算流体动力学(CFD)模型来模拟废玻璃熔炼机中固体冷帽的运动。熔体底部的强制对流起泡器将空气释放到熔融玻璃中,形成大气泡向上移动到冷帽,增加了玻璃到冷帽的热量传递。CFD模型使用刚体运动动态流体相互作用模块采用Navier- Stokes方程求解波动流场。这允许浮动体的运动,以响应在每个时间步计算的冒泡力。研究了对流冒泡向冷帽传递的热流密度随冒泡速率的变化规律。将移动冷帽的结果与固定冷帽的计算热流密度趋势进行了比较。对于移动冷帽的情况,从玻璃传递到冷帽的热流密度高出25%。对于固定冷帽,热流密度与v0.6成正比,而与v0.9(其中v是标准化的冒泡率)成正比。
{"title":"HEAT TRANSFER ENHANCEMENT DUE TO COLD CAP MOTION FROM BUBBLING IN A WASTE GLASS MELTER","authors":"D. Guillen, Alexander W. Abboud","doi":"10.1115/1.4063253","DOIUrl":"https://doi.org/10.1115/1.4063253","url":null,"abstract":"\u0000 In this study, a computational fluid dynamics (CFD) model was developed to model the motion of a solid cold cap in a waste glass melter. Forced convection bubblers at the base of the melter release air into the molten glass, which forms large bubbles that travel upwards to the cold cap and augment heat transfer from the glass to the cold cap. The CFD model employs the Navier- Stokes equations to solve for the fluctuating flowfield using a rigid body motion dynamic fluid body interaction module. This allows for movement of the floating body in response to the bubbling forces calculated at each time step. The heat flux delivered to the cold cap by the convective bubbling is studied as a function of the bubbling rate. Results for the moving cold cap are compared with the computed heat flux trends for a stationary cold cap. The heat flux delivered to the cold cap from the glass is 25% higher for the case with the moving cold cap. The heat flux was found to be proportional to v0.6 as opposed to v0.9 (where v is the normalized bubbling rate) for the stationary cold cap.","PeriodicalId":15676,"journal":{"name":"Journal of Energy Resources Technology-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47443467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of Thermal Energy Storage Material from Blends of Jatropha Biodiesel and Paraffin Wax for Augmenting Freshwater Generation Capacity in a Solar Desalination System 麻疯树生物柴油与石蜡混合物储热材料的研制,以提高太阳能海水淡化系统的淡水发电能力
IF 3 3区 工程技术 Q1 Engineering Pub Date : 2023-08-25 DOI: 10.1115/1.4063255
Subbarama Kousik Suraparaju, S. Natarajan
Enhancing nocturnal productivity holds promise for boosting the effectiveness of solar desalination setups. Current research concentrates on an innovative strategy: integration of Paraffin wax and Jatropha biodiesel as a composite energy storage material (CESM) to amplify distilled water output during nighttime. The composite material, comprising Jatropha biodiesel and paraffin wax in a 1:1 ratio by weight, is meticulously examined for its impact on productivity, juxtaposed against a conventional solar still (CSS). Results reveal a substantial improvement in thermal conductivity with CESM, exhibiting a noteworthy 58.33% surge compared to pure paraffin wax. Furthermore, a Solar Still with Biodiesel and Phase Change Material (SSBDPCM) is pitted against a CSS, with continuous monitoring of water and absorber temperatures alongside distillate production. The findings illustrate that SSBDPCM achieves a 16% upsurge in water temperature and a 10% elevation in absorber temperature compared to CSS. Impressively, SSBDPCM achieves a staggering 63% increase in distillate production, yielding 3.6 and 3.4 liters per square meter, in sharp contrast to CSS, which only manages 2.2 and 2.1 liters per square meter over a two-day test period.Furthermore, a comprehensive cost analysis showcases the economic superiority of SSBDPCM over CSS. SSBDPCM demonstrates a compelling 29.2% reduction in cost per liter and a significant 25.9% decrease in payback period in comparison to CSS. These compelling outcomes underscore the substantial potential of the SSBDPCM approach in delivering heightened efficiency and cost-effectiveness, paving the way for a promising advancement in solar stills.
提高夜间生产力有望提高太阳能海水淡化装置的有效性。目前的研究集中在一种创新策略上:将石蜡和麻疯树生物柴油整合为一种复合储能材料(CESM),以提高夜间蒸馏水的产量。该复合材料由麻风树生物柴油和石蜡以1:1的重量比组成,与传统的太阳能蒸馏器(CSS)并列,仔细检查了其对生产力的影响。结果显示,与纯石蜡相比,CESM的热导率显著提高,表现出显著的58.33%的激增。此外,采用生物柴油和相变材料的太阳能蒸馏器(SSBDPCM)与CSS进行了对比,在蒸馏物生产的同时,对水和吸收器的温度进行了连续监测。研究结果表明,与CSS相比,SSBDPCM实现了16%的水温升高和10%的吸收器温度升高。令人印象深刻的是,SSBDPCM实现了惊人的63%的馏分油产量增长,每平方米产量分别为3.6和3.4升,与CSS形成鲜明对比,CSS在两天的测试期内仅管理每平方米2.2和2.1升。此外,综合成本分析显示了SSBDPCM相对于CSS的经济优势。与CSS相比,SSBDPCM每升成本显著降低29.2%,回收期显著缩短25.9%。这些令人信服的结果强调了SSBDPCM方法在提高效率和成本效益方面的巨大潜力,为太阳能蒸馏器的发展铺平了道路。
{"title":"Development of Thermal Energy Storage Material from Blends of Jatropha Biodiesel and Paraffin Wax for Augmenting Freshwater Generation Capacity in a Solar Desalination System","authors":"Subbarama Kousik Suraparaju, S. Natarajan","doi":"10.1115/1.4063255","DOIUrl":"https://doi.org/10.1115/1.4063255","url":null,"abstract":"\u0000 Enhancing nocturnal productivity holds promise for boosting the effectiveness of solar desalination setups. Current research concentrates on an innovative strategy: integration of Paraffin wax and Jatropha biodiesel as a composite energy storage material (CESM) to amplify distilled water output during nighttime. The composite material, comprising Jatropha biodiesel and paraffin wax in a 1:1 ratio by weight, is meticulously examined for its impact on productivity, juxtaposed against a conventional solar still (CSS). Results reveal a substantial improvement in thermal conductivity with CESM, exhibiting a noteworthy 58.33% surge compared to pure paraffin wax. Furthermore, a Solar Still with Biodiesel and Phase Change Material (SSBDPCM) is pitted against a CSS, with continuous monitoring of water and absorber temperatures alongside distillate production. The findings illustrate that SSBDPCM achieves a 16% upsurge in water temperature and a 10% elevation in absorber temperature compared to CSS. Impressively, SSBDPCM achieves a staggering 63% increase in distillate production, yielding 3.6 and 3.4 liters per square meter, in sharp contrast to CSS, which only manages 2.2 and 2.1 liters per square meter over a two-day test period.Furthermore, a comprehensive cost analysis showcases the economic superiority of SSBDPCM over CSS. SSBDPCM demonstrates a compelling 29.2% reduction in cost per liter and a significant 25.9% decrease in payback period in comparison to CSS. These compelling outcomes underscore the substantial potential of the SSBDPCM approach in delivering heightened efficiency and cost-effectiveness, paving the way for a promising advancement in solar stills.","PeriodicalId":15676,"journal":{"name":"Journal of Energy Resources Technology-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42052043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
EFFECT OF CH4 ADDITION ON SOOT FORMATION IN C2H4 DIFFUSION FLAME ch4对c2h4扩散火焰中烟灰形成的影响
IF 3 3区 工程技术 Q1 Engineering Pub Date : 2023-08-25 DOI: 10.1115/1.4063254
Bing Liu, Chengjing Wang, Yindi Zhang, Mengting Si, Guang Luo
Studying the effect of co-combustion of multiple fuels on the soot formation has become a hot spot in the investigation of soot particles. In this paper, the influence of methane blending on soot formation in ethylene flame combustion is studied experimentally and numerically. The visible spectrum of flame image processing technology was used to in situ measurement of laminar flame temperature and carbon smoke volume points in the experiment. The effects of different methane blending ratios on particle nucleation, coalescence, surface growth and oxidation process of soot were analyzed based on the piecewise particle dynamics soot model of polycyclic aromatic hydrocarbons (PAHs) by using CoFlame Code. Results indicate that the synergistic effect promoted the increasing rate of nucleation and addition reaction of hydrogen extraction at low methane blending ratio, and the increase of the total mass of soot was mainly due to PAH condensation rate. The total amount of soot generation gradually decreases with increasing blending ratio. The overall trend of condensation, surface growth rate and soot nucleation in the flame decreases with increasing blending ratio. And the nucleation rate gradually shifts from a single peak to a double peak and increases slightly at the initial stage of the flame combustion reaction. It is worth mentioning that the change of three PAH precursor (BAPYRS, BAPYR and BGHIF) and the temperature explains the change of nucleation rate from unimodal to bimodal.
研究多种燃料的共燃对烟灰形成的影响已成为烟灰颗粒研究的热点。本文通过实验和数值模拟研究了甲烷掺混对乙烯火焰燃烧烟尘形成的影响。实验中采用可见光谱火焰图像处理技术对层流火焰温度和碳烟体积点进行了原位测量。基于多环芳烃(PAHs)的分段颗粒动力学煤烟模型,利用CoFlame Code分析了不同甲烷配比对煤烟颗粒成核、聚结、表面生长和氧化过程的影响。结果表明,在低甲烷混合比下,协同效应促进了氢提取的成核和加成反应速率的提高,烟灰总质量的增加主要是由于PAH的缩合速率。随着混合比的增加,烟灰的产生总量逐渐减少。火焰中的冷凝、表面生长速率和烟灰成核的总体趋势随着混合比的增加而减小。在火焰燃烧反应的初始阶段,成核速率从单峰逐渐转变为双峰,并略有增加。值得一提的是,三种PAH前体(BAPYRS、BAPYR和BGHIF)和温度的变化解释了成核速率从单峰到双峰的变化。
{"title":"EFFECT OF CH4 ADDITION ON SOOT FORMATION IN C2H4 DIFFUSION FLAME","authors":"Bing Liu, Chengjing Wang, Yindi Zhang, Mengting Si, Guang Luo","doi":"10.1115/1.4063254","DOIUrl":"https://doi.org/10.1115/1.4063254","url":null,"abstract":"\u0000 Studying the effect of co-combustion of multiple fuels on the soot formation has become a hot spot in the investigation of soot particles. In this paper, the influence of methane blending on soot formation in ethylene flame combustion is studied experimentally and numerically. The visible spectrum of flame image processing technology was used to in situ measurement of laminar flame temperature and carbon smoke volume points in the experiment. The effects of different methane blending ratios on particle nucleation, coalescence, surface growth and oxidation process of soot were analyzed based on the piecewise particle dynamics soot model of polycyclic aromatic hydrocarbons (PAHs) by using CoFlame Code. Results indicate that the synergistic effect promoted the increasing rate of nucleation and addition reaction of hydrogen extraction at low methane blending ratio, and the increase of the total mass of soot was mainly due to PAH condensation rate. The total amount of soot generation gradually decreases with increasing blending ratio. The overall trend of condensation, surface growth rate and soot nucleation in the flame decreases with increasing blending ratio. And the nucleation rate gradually shifts from a single peak to a double peak and increases slightly at the initial stage of the flame combustion reaction. It is worth mentioning that the change of three PAH precursor (BAPYRS, BAPYR and BGHIF) and the temperature explains the change of nucleation rate from unimodal to bimodal.","PeriodicalId":15676,"journal":{"name":"Journal of Energy Resources Technology-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48286158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Special Section on ASME 16th International Conference on Energy Sustainability (ES 2022) ASME第16届能源可持续性国际会议(ES 2022)专题
3区 工程技术 Q1 Engineering Pub Date : 2023-08-18 DOI: 10.1115/1.4063128
Hamidreza Najafi, Heejin Cho, Ben Xu
{"title":"Special Section on ASME 16th International Conference on Energy Sustainability (ES 2022)","authors":"Hamidreza Najafi, Heejin Cho, Ben Xu","doi":"10.1115/1.4063128","DOIUrl":"https://doi.org/10.1115/1.4063128","url":null,"abstract":"","PeriodicalId":15676,"journal":{"name":"Journal of Energy Resources Technology-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135971647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Energy Resources Technology-transactions of The Asme
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1