首页 > 最新文献

Journal of Energy Resources Technology-transactions of The Asme最新文献

英文 中文
Investigation on the long term stability of multiple salt caverns underground gas storage with interlayers 带夹层的多盐洞地下储气库长期稳定性研究
IF 3 3区 工程技术 Q1 Engineering Pub Date : 2023-02-17 DOI: 10.1115/1.4056938
Jinghong Peng, Jun Zhou, G. Liang, Cao Peng, Chengqiang Hu, Dingfei Guo
Salt cavern underground gas storage (UGS) has attracted more and more attention worldwide for high peak shaving efficiency and high short-term throughput. To ensure the safe operation of this type of UGS, it is necessary to evaluate and analyze its stability. This paper investigates the influences of interlayers and cavern interactions on salt cavern UGS' stability. A 3D geomechanical model of double salt caverns UGS with interlayers is established based on the geological data and creep constitutive relation of salt rock. Based on the long-term creep numerical simulation, the influences of interlayer number, interlayer thickness, interlayer dip angle, interlayer stiffness, cavern spacing, and cavern pressure difference on the deformation of caverns and stability performance of UGS are studied. The results show that the UGS with greater interlayer numbers have larger cavern deformation. The increase in interlayer thickness will improve the deformation resistance of caverns, but the effect is not obvious. The UGS with an interlayer dip angle of 12.5° has the best stability. Soft interlayer will decrease the deformation resistance of caverns, while hard interlayer has the opposite effect. In addition, the UGS stability can be enhanced by reducing the pressure difference between adjacent caverns. It is reasonable that the cavern spacing is twice the cavern diameter, which is beneficial to the UGS stability and will not cause a waste of salt rock resources. Finally, the corresponding production and construction control measures are discussed according to each factor's influence degree.
盐穴地下储气库以其调峰效率高、短期吞吐能力强等优点受到世界各国的广泛关注。为保证该型地下地质探测仪的安全运行,有必要对其稳定性进行评估和分析。研究了层间和洞室相互作用对盐洞UGS稳定性的影响。基于地质资料和盐岩蠕变本构关系,建立了带夹层的双盐洞UGS三维地质力学模型。在长期蠕变数值模拟的基础上,研究了夹层数、夹层厚度、夹层倾角、夹层刚度、洞室间距、洞室压差等因素对洞室变形及稳定性能的影响。结果表明:层间数越多,洞室变形越大;层间厚度的增加会提高洞室的抗变形能力,但效果不明显。层间倾角为12.5°的UGS稳定性最好。软夹层会降低洞室的变形抗力,而硬夹层则相反。另外,减小相邻洞室之间的压差可以提高UGS的稳定性。合理的洞室间距为洞室直径的2倍,有利于UGS的稳定,不会造成盐岩资源的浪费。最后,根据各因素的影响程度,探讨了相应的生产施工控制措施。
{"title":"Investigation on the long term stability of multiple salt caverns underground gas storage with interlayers","authors":"Jinghong Peng, Jun Zhou, G. Liang, Cao Peng, Chengqiang Hu, Dingfei Guo","doi":"10.1115/1.4056938","DOIUrl":"https://doi.org/10.1115/1.4056938","url":null,"abstract":"\u0000 Salt cavern underground gas storage (UGS) has attracted more and more attention worldwide for high peak shaving efficiency and high short-term throughput. To ensure the safe operation of this type of UGS, it is necessary to evaluate and analyze its stability. This paper investigates the influences of interlayers and cavern interactions on salt cavern UGS' stability. A 3D geomechanical model of double salt caverns UGS with interlayers is established based on the geological data and creep constitutive relation of salt rock. Based on the long-term creep numerical simulation, the influences of interlayer number, interlayer thickness, interlayer dip angle, interlayer stiffness, cavern spacing, and cavern pressure difference on the deformation of caverns and stability performance of UGS are studied. The results show that the UGS with greater interlayer numbers have larger cavern deformation. The increase in interlayer thickness will improve the deformation resistance of caverns, but the effect is not obvious. The UGS with an interlayer dip angle of 12.5° has the best stability. Soft interlayer will decrease the deformation resistance of caverns, while hard interlayer has the opposite effect. In addition, the UGS stability can be enhanced by reducing the pressure difference between adjacent caverns. It is reasonable that the cavern spacing is twice the cavern diameter, which is beneficial to the UGS stability and will not cause a waste of salt rock resources. Finally, the corresponding production and construction control measures are discussed according to each factor's influence degree.","PeriodicalId":15676,"journal":{"name":"Journal of Energy Resources Technology-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42992251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Water invasion into multi-layer and multi-pressure carbonate reservoir: A pore-scale simulation 多层多压力碳酸盐岩储层水侵:孔隙尺度模拟
IF 3 3区 工程技术 Q1 Engineering Pub Date : 2023-02-09 DOI: 10.1115/1.4056891
Shi Huang, Yu-long Zhao, Mingdi Zhang, Houjie Zhou, Langtao Zhu, Zhang Tao
Carbonate reservoirs contribute the highest proportion of natural gas production around the world, and commingled production is frequently used to increase production for the multilayer reservoirs. However, the complex pore structure including pore, fracture and cavity, and the presence of edge/bottom water increase the difficulties in evaluation its commingled production performances. In this work, three comingled patterns of digital rocks are reconstructed based on the CT scanning images, and the lattice Boltzmann method is used to investigate the commingled production with water invasion. The results show that the fracture and cavity commingled production pattern has the largest interlayer heterogeneity, and the production ratio between the two layers can reach 6.7. Commingled production for the system with different interlayer pressure may lead to backflow phenomenon. Especially, if the interlayer heterogeneity is large and the initial pressure of the low-permeability layer is lower, the backflow volume would be very large. The water invasion during commingled production can influence the flow capacity of the other gas layers even there is no pressure interference. In addition, if the water-invaded layer has larger pressure, the produced water will continuously flows backs to the gas layer until the pressure of the two layers becomes balanced. The coupled effects of pressure interference and water invasion significantly damage the commingled-production performance. This work revealed the gas-water two-phase flow behaviors during commingled production, which provide fundamental support for the scientific development of multilayer carbonated reservoir.
碳酸盐岩储层在全球天然气产量中所占的比例最高,混合开采常被用于多层储层的增产。然而,复杂的孔隙结构包括孔隙、裂缝和空腔,以及边底水的存在增加了评价其混合生产性能的难度。在CT扫描图像的基础上,重建了三种数字岩石混合模式,并采用晶格玻尔兹曼方法研究了含水混合生产。结果表明:裂缝-空腔混合生产模式层间非均质性最大,两层间生产比可达6.7;层间压力不同的系统混采可能导致回流现象。特别是当层间非均质性较大,低渗层初始压力较低时,回流体积会非常大。混采过程中,即使没有压力干扰,水侵也会影响其他气层的流动能力。此外,如果水侵层压力较大,采出水会不断回流到气层,直到两层压力平衡为止。压力干扰和水侵的耦合影响对混采效果影响较大。揭示了混采过程中气水两相流动特征,为多层碳酸盐岩油藏科学开发提供了基础支撑。
{"title":"Water invasion into multi-layer and multi-pressure carbonate reservoir: A pore-scale simulation","authors":"Shi Huang, Yu-long Zhao, Mingdi Zhang, Houjie Zhou, Langtao Zhu, Zhang Tao","doi":"10.1115/1.4056891","DOIUrl":"https://doi.org/10.1115/1.4056891","url":null,"abstract":"\u0000 Carbonate reservoirs contribute the highest proportion of natural gas production around the world, and commingled production is frequently used to increase production for the multilayer reservoirs. However, the complex pore structure including pore, fracture and cavity, and the presence of edge/bottom water increase the difficulties in evaluation its commingled production performances. In this work, three comingled patterns of digital rocks are reconstructed based on the CT scanning images, and the lattice Boltzmann method is used to investigate the commingled production with water invasion. The results show that the fracture and cavity commingled production pattern has the largest interlayer heterogeneity, and the production ratio between the two layers can reach 6.7. Commingled production for the system with different interlayer pressure may lead to backflow phenomenon. Especially, if the interlayer heterogeneity is large and the initial pressure of the low-permeability layer is lower, the backflow volume would be very large. The water invasion during commingled production can influence the flow capacity of the other gas layers even there is no pressure interference. In addition, if the water-invaded layer has larger pressure, the produced water will continuously flows backs to the gas layer until the pressure of the two layers becomes balanced. The coupled effects of pressure interference and water invasion significantly damage the commingled-production performance. This work revealed the gas-water two-phase flow behaviors during commingled production, which provide fundamental support for the scientific development of multilayer carbonated reservoir.","PeriodicalId":15676,"journal":{"name":"Journal of Energy Resources Technology-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45335671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Anisotropic Vibration Characteristics Analysis of Steam Turbine Rotor Influenced by Steam Flow Excited Force Coupling Thermal and Dynamic Loads 蒸汽流激动力热动力耦合作用下汽轮机转子各向异性振动特性分析
IF 3 3区 工程技术 Q1 Engineering Pub Date : 2023-02-09 DOI: 10.1115/1.4056887
Chuan Xue, Li-hua Cao, Heyong Si
In order to reveal the influence of thermal and dynamic loads coupling on vibration characteristic of steam turbine rotor, the high pressure cylinder anisotropic rotor of a 1000MW ultra-supercritical steam turbine was modeled by the lumped parameter method. The steam flow excited force of the front 8 stages obtained through the numerical simulation before and after the coupling was converted to the equivalent gas bearing and added on the rotor, and the influence of steam flow excited force on rotor vibration characteristics was obtained by the Riccati transfer matrix method. The results show that, considering the thermal and dynamic loads, the two ends of the ellipse trajectory are smaller and the middle is larger. Before and after coupling thermal and dynamic loads, the azimuth of ellipse trajectory increases with the increase of load and nodes. The greater the load, the greater the changing range of azimuth. As the load increases, the first-order natural speed of rotor increases and the second-order natural speed decreases, but the natural speed after the coupling is noticeably lower than that before the coupling. The change scope of the first-order amplitude shrinks with the load increasing. The first-order logarithmic decrement rate can be increased under the relatively higher load by coupling thermal and dynamic loads, but the stability margin of rotor is insufficient, which causes the instability.
为了揭示热负荷和动负荷耦合对汽轮机转子振动特性的影响,采用集总参数法对1000MW超超临界汽轮机高压缸各向异性转子进行了建模。通过耦合前后的数值模拟得到的前8级蒸汽流激振力转换为等效气体轴承并加到转子上,利用Riccati传递矩阵法得到蒸汽流激振力对转子振动特性的影响。结果表明,在考虑热载荷和动载荷的情况下,椭圆轨迹的两端较小,中间较大。在热载荷和动载荷耦合前后,椭圆轨迹的方位角随着载荷和节点的增加而增加。载荷越大,方位角的变化范围就越大。随着负荷的增加,转子的一阶固有转速增加,二阶固有转速降低,但耦合后的固有转速明显低于耦合前。一阶振幅的变化范围随着载荷的增加而缩小。在相对较高的载荷下,通过热载荷和动载荷的耦合,可以提高转子的一阶对数衰减率,但转子的稳定裕度不足,导致了不稳定。
{"title":"Anisotropic Vibration Characteristics Analysis of Steam Turbine Rotor Influenced by Steam Flow Excited Force Coupling Thermal and Dynamic Loads","authors":"Chuan Xue, Li-hua Cao, Heyong Si","doi":"10.1115/1.4056887","DOIUrl":"https://doi.org/10.1115/1.4056887","url":null,"abstract":"\u0000 In order to reveal the influence of thermal and dynamic loads coupling on vibration characteristic of steam turbine rotor, the high pressure cylinder anisotropic rotor of a 1000MW ultra-supercritical steam turbine was modeled by the lumped parameter method. The steam flow excited force of the front 8 stages obtained through the numerical simulation before and after the coupling was converted to the equivalent gas bearing and added on the rotor, and the influence of steam flow excited force on rotor vibration characteristics was obtained by the Riccati transfer matrix method. The results show that, considering the thermal and dynamic loads, the two ends of the ellipse trajectory are smaller and the middle is larger. Before and after coupling thermal and dynamic loads, the azimuth of ellipse trajectory increases with the increase of load and nodes. The greater the load, the greater the changing range of azimuth. As the load increases, the first-order natural speed of rotor increases and the second-order natural speed decreases, but the natural speed after the coupling is noticeably lower than that before the coupling. The change scope of the first-order amplitude shrinks with the load increasing. The first-order logarithmic decrement rate can be increased under the relatively higher load by coupling thermal and dynamic loads, but the stability margin of rotor is insufficient, which causes the instability.","PeriodicalId":15676,"journal":{"name":"Journal of Energy Resources Technology-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42147998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Pore permeability model based on fractal geometry theory and effective stress 基于分形几何理论和有效应力的孔隙渗透率模型
IF 3 3区 工程技术 Q1 Engineering Pub Date : 2023-02-09 DOI: 10.1115/1.4056890
Z. Ge, H. Zhang, Zhou Zhe, Yudong Hou, Maolin Ye, Chengtian Li
A reasonable coal seam permeability model should be established to accurately estimate the extraction effectiveness of coalbed methane (CBM). Existing permeability models typically ignore the influence of pore structure parameters on the permeability, leading to an overestimation of the measured permeability, and consequently, the CBM production cannot be effectively predicted. This paper presents a novel permeability model based on discrete pore structures at the micro–nano scale. The model considers the interaction between the pore fractal geometry parameters, coal deformation and CBM transport inside these pores. The contributions of key pore geometry parameters, including the maximum pore diameter max, minimum pore diameter min, porosity f0, and fractal dimensions Df and DTm, to the initial permeability were investigated. A numerical analysis showed that the influence of fractal dimension on the permeability can be demonstrated by three structural parameters max, min, and f0. The initial permeability increases exponentially as min in proportion to max and f0. In addition, min, f0, and max are positively correlated with the macroscopic permeability of the coal, with min having the most significant influence on the permeability evolution process. This research provides a theoretical foundation for revealing the gas flow mechanism within coal seams and enhancing the extraction effectiveness of CBM.
建立合理的煤层渗透率模型,才能准确评价煤层气开采效果。现有渗透率模型通常忽略孔隙结构参数对渗透率的影响,导致对实测渗透率的高估,无法有效预测煤层气产量。本文提出了一种基于微纳尺度离散孔隙结构的新型渗透率模型。该模型考虑了孔隙分形几何参数、煤体变形和孔隙内煤层气运移之间的相互作用。研究了最大孔径max、最小孔径min、孔隙度f0、分形维数Df和DTm等关键孔隙几何参数对初始渗透率的影响。数值分析表明,分形维数对渗透率的影响可以通过3个结构参数max、min和f0来体现。初始渗透率随min与max和f0成比例呈指数增长。min、f0、max与煤的宏观渗透率呈正相关,其中min对渗透率演化过程的影响最为显著。该研究为揭示煤层内瓦斯流动机理,提高煤层气抽采效果提供了理论基础。
{"title":"Pore permeability model based on fractal geometry theory and effective stress","authors":"Z. Ge, H. Zhang, Zhou Zhe, Yudong Hou, Maolin Ye, Chengtian Li","doi":"10.1115/1.4056890","DOIUrl":"https://doi.org/10.1115/1.4056890","url":null,"abstract":"\u0000 A reasonable coal seam permeability model should be established to accurately estimate the extraction effectiveness of coalbed methane (CBM). Existing permeability models typically ignore the influence of pore structure parameters on the permeability, leading to an overestimation of the measured permeability, and consequently, the CBM production cannot be effectively predicted. This paper presents a novel permeability model based on discrete pore structures at the micro–nano scale. The model considers the interaction between the pore fractal geometry parameters, coal deformation and CBM transport inside these pores. The contributions of key pore geometry parameters, including the maximum pore diameter max, minimum pore diameter min, porosity f0, and fractal dimensions Df and DTm, to the initial permeability were investigated. A numerical analysis showed that the influence of fractal dimension on the permeability can be demonstrated by three structural parameters max, min, and f0. The initial permeability increases exponentially as min in proportion to max and f0. In addition, min, f0, and max are positively correlated with the macroscopic permeability of the coal, with min having the most significant influence on the permeability evolution process. This research provides a theoretical foundation for revealing the gas flow mechanism within coal seams and enhancing the extraction effectiveness of CBM.","PeriodicalId":15676,"journal":{"name":"Journal of Energy Resources Technology-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41466412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of adiabatic flame temperature and oxygen concentration in CH4/N2/O2 non-swirl jet flames: Experimental and numerical study CH4/N2/O2非旋流射流火焰绝热火焰温度和氧浓度的影响:实验和数值研究
IF 3 3区 工程技术 Q1 Engineering Pub Date : 2023-02-09 DOI: 10.1115/1.4056892
M. Aliyu, M. Nemitallah, A. Abdelhafez, S. Said, P. Okonkwo, M. Habib
The combustion characteristics of oxygen-enriched air-methane (i.e., O2/N2/CH4) flames in a premixed mode are investigated using both experimentally and numerically under atmospheric conditions for emissions reduction purposes. The investigation is carried out using a gas turbine model combustor equipped with a multi-hole burner that mimics gas-turbine micromixer burners. The resulting flame is of jet type, and the velocity of the jet is kept at 5.2 m/s for all the considered flames. Models used in the numerical study include large eddy simulation, discrete ordinate, and partially premixed combustion for turbulence, radiation, and species models respectively. The numerical results are validated and a suitable agreement is achieved with experimental data. The results indicated that the temperature distribution, shape, and size of O2/N2/CH4 flames are predominantly controlled by adiabatic flame temperature (Tad). However, the oxygen fraction, rather than Tad, is responsible for the reaction progress. The emission of NO, CO, and CO2 increases with an increase in oxygen fraction, and the product formation in O2/N2/CH4 flames is less compared to their oxy-fuel (i.e., O2/CO2/CH4) counterparts, because N2 is mostly inert, compared to CO2. The latter participates significantly in flame reactions, which increases the rate of product formation in O2/CO2/CH4 flames.
为了减少排放,在大气条件下使用实验和数值方法研究了富氧空气甲烷(即O2/N2/CH4)火焰在预混合模式下的燃烧特性。该研究使用燃气轮机模型燃烧器进行,该燃烧器配备有模拟燃气轮机微混合器燃烧器的多孔燃烧器。产生的火焰是喷射型的,对于所有考虑的火焰,喷射速度保持在5.2m/s。数值研究中使用的模型包括分别用于湍流、辐射和物种模型的大涡模拟、离散纵坐标和部分预混燃烧。对数值结果进行了验证,并与实验数据取得了适当的一致性。结果表明,O2/N2/CH4火焰的温度分布、形状和大小主要受绝热火焰温度(Tad)的控制。然而,负责反应进程的是氧分数,而不是Tad。NO、CO和CO2的排放随着氧分数的增加而增加,并且与它们的氧燃料(即O2/CO2/CH4)对应物相比,O2/N2/CH4火焰中的产物形成较少,因为与CO2相比,N2大多是惰性的。后者显著参与火焰反应,这增加了O2/CO2/CH4火焰中产物的形成速率。
{"title":"Effects of adiabatic flame temperature and oxygen concentration in CH4/N2/O2 non-swirl jet flames: Experimental and numerical study","authors":"M. Aliyu, M. Nemitallah, A. Abdelhafez, S. Said, P. Okonkwo, M. Habib","doi":"10.1115/1.4056892","DOIUrl":"https://doi.org/10.1115/1.4056892","url":null,"abstract":"\u0000 The combustion characteristics of oxygen-enriched air-methane (i.e., O2/N2/CH4) flames in a premixed mode are investigated using both experimentally and numerically under atmospheric conditions for emissions reduction purposes. The investigation is carried out using a gas turbine model combustor equipped with a multi-hole burner that mimics gas-turbine micromixer burners. The resulting flame is of jet type, and the velocity of the jet is kept at 5.2 m/s for all the considered flames. Models used in the numerical study include large eddy simulation, discrete ordinate, and partially premixed combustion for turbulence, radiation, and species models respectively. The numerical results are validated and a suitable agreement is achieved with experimental data. The results indicated that the temperature distribution, shape, and size of O2/N2/CH4 flames are predominantly controlled by adiabatic flame temperature (Tad). However, the oxygen fraction, rather than Tad, is responsible for the reaction progress. The emission of NO, CO, and CO2 increases with an increase in oxygen fraction, and the product formation in O2/N2/CH4 flames is less compared to their oxy-fuel (i.e., O2/CO2/CH4) counterparts, because N2 is mostly inert, compared to CO2. The latter participates significantly in flame reactions, which increases the rate of product formation in O2/CO2/CH4 flames.","PeriodicalId":15676,"journal":{"name":"Journal of Energy Resources Technology-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46614969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis, comparison and discussion on the utilization of the existing slug liquid holdup models to predict the horizontal gas-liquid plug-to-slug flow transition 利用现有段塞流含液率模型预测水平段塞-段塞流过渡的分析、比较和讨论
IF 3 3区 工程技术 Q1 Engineering Pub Date : 2023-02-09 DOI: 10.1115/1.4056889
Ayoub Boutaghane, A. Arabi, N. Ibrahim-Rassoul, A. Al-sarkhi, A. Azzi
In horizontal configuration, the gas-liquid intermittent flow can be plug or slug flows. Different works have demonstrated that the two-phase flow pattern, despite their similarity, are different. Thus, it is important to differentiate between them in order to develop more robust predictive models. The limit of the existing model to predict the plug-to-slug flows transition were demonstrated firstly. After that, eleven existing slug liquid holdup (HLS) models were used in order to test their potential utilization for predicting the plug-to-slug flows transition. Using HLS = 0.9 as the criterion to distinguish between the two regimes, the relationship between the superficial velocities of the two phases was generated. The obtained transition lines were compared with visual observations collected from several published works in order to test the predictions of each model, and for different operating conditions. It was concluded in this paper that the slug liquid holdup models can be easily used for this purpose. Meanwhile, the prediction level of each model depends on the pipe diameter and the viscosity of the liquid phase.
在水平结构中,气液间歇流动可以是塞流或段塞流。不同的研究表明,尽管两相流型相似,但它们是不同的。因此,为了开发更健壮的预测模型,区分它们是很重要的。首先论证了现有模型在预测桥塞-段塞流过渡时的局限性。在此之后,研究人员使用了11个现有的段塞流含液率(HLS)模型,以测试它们在预测桥塞-段塞流过渡方面的应用潜力。以HLS = 0.9作为区分两种状态的判据,得到了两相表面速度之间的关系。将获得的过渡线与从几篇已发表的作品中收集的视觉观察结果进行比较,以测试每个模型的预测结果,以及不同的操作条件。本文的结论是,段塞流含液率模型可以很容易地用于这一目的。同时,各模型的预测水平取决于管径和液相粘度。
{"title":"Analysis, comparison and discussion on the utilization of the existing slug liquid holdup models to predict the horizontal gas-liquid plug-to-slug flow transition","authors":"Ayoub Boutaghane, A. Arabi, N. Ibrahim-Rassoul, A. Al-sarkhi, A. Azzi","doi":"10.1115/1.4056889","DOIUrl":"https://doi.org/10.1115/1.4056889","url":null,"abstract":"\u0000 In horizontal configuration, the gas-liquid intermittent flow can be plug or slug flows. Different works have demonstrated that the two-phase flow pattern, despite their similarity, are different. Thus, it is important to differentiate between them in order to develop more robust predictive models. The limit of the existing model to predict the plug-to-slug flows transition were demonstrated firstly. After that, eleven existing slug liquid holdup (HLS) models were used in order to test their potential utilization for predicting the plug-to-slug flows transition. Using HLS = 0.9 as the criterion to distinguish between the two regimes, the relationship between the superficial velocities of the two phases was generated. The obtained transition lines were compared with visual observations collected from several published works in order to test the predictions of each model, and for different operating conditions. It was concluded in this paper that the slug liquid holdup models can be easily used for this purpose. Meanwhile, the prediction level of each model depends on the pipe diameter and the viscosity of the liquid phase.","PeriodicalId":15676,"journal":{"name":"Journal of Energy Resources Technology-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47123805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Reverse circulation displacement of miscible fluids for primary cementing 初次固井混相流体反循环驱替
IF 3 3区 工程技术 Q1 Engineering Pub Date : 2023-02-06 DOI: 10.1115/1.4056843
M. Ghorbani, Arsalan Royaei, H. J. Skadsem
Primary cementing is the well construction operation where drilling fluid is displaced from the annular space behind the casing string, and replaced by a cement slurry. The annular cement sheath is a critical barrier element that should provide zonal isolation along the well and prevent uncontrolled flow of formation fluids to the environment. We present a combined experimental and computational study of reverse circulation displacement of the annulus, corresponding to operations where cementing fluids are pumped down the annulus from the surface. We focus on iso-viscous displacements in a vertical and concentric annulus, and vary the density hierarchy among the fluids to study both stable and density-unstable displacement conditions. While the interface between the two fluids is advected according to the laminar annular velocity profile for density-stable and iso-dense displacements, considerable secondary flows and fluid mixing is observed for density-unstable cases. Increasing the imposed velocity from the top is seen to provide a certain stabilizing effect by suppressing backflow of the lighter fluid and reduce the magnitude of azimuthal fluctuations. Computational results are in qualitative agreement with the experiments, and support the categorization of the displacement flows as either inertial or diffusive, in accordance with previous work on buoyant pipe displacements.
一次固井是指将钻井液从套管柱后面的环形空间中排出,并用水泥浆代替的井施工作业。环形水泥环是一个关键的屏障元件,应沿井提供区域隔离,并防止地层流体不受控制地流向环境。我们提出了环空反循环位移的实验和计算相结合的研究,对应于从地面向环空泵送固井液的操作。我们关注垂直和同心环空中的等粘性位移,并改变流体之间的密度层次,以研究稳定和密度不稳定的位移条件。虽然对于密度稳定和等密度位移,两种流体之间的界面根据层流环形速度剖面是平的,但对于密度不稳定的情况,观察到相当大的二次流和流体混合。从顶部增加施加的速度可以看出,通过抑制较轻流体的回流并降低方位角波动的幅度来提供一定的稳定效果。计算结果与实验在质量上一致,并支持根据先前关于浮力管位移的工作将位移流分类为惯性或扩散。
{"title":"Reverse circulation displacement of miscible fluids for primary cementing","authors":"M. Ghorbani, Arsalan Royaei, H. J. Skadsem","doi":"10.1115/1.4056843","DOIUrl":"https://doi.org/10.1115/1.4056843","url":null,"abstract":"\u0000 Primary cementing is the well construction operation where drilling fluid is displaced from the annular space behind the casing string, and replaced by a cement slurry. The annular cement sheath is a critical barrier element that should provide zonal isolation along the well and prevent uncontrolled flow of formation fluids to the environment. We present a combined experimental and computational study of reverse circulation displacement of the annulus, corresponding to operations where cementing fluids are pumped down the annulus from the surface. We focus on iso-viscous displacements in a vertical and concentric annulus, and vary the density hierarchy among the fluids to study both stable and density-unstable displacement conditions. While the interface between the two fluids is advected according to the laminar annular velocity profile for density-stable and iso-dense displacements, considerable secondary flows and fluid mixing is observed for density-unstable cases. Increasing the imposed velocity from the top is seen to provide a certain stabilizing effect by suppressing backflow of the lighter fluid and reduce the magnitude of azimuthal fluctuations. Computational results are in qualitative agreement with the experiments, and support the categorization of the displacement flows as either inertial or diffusive, in accordance with previous work on buoyant pipe displacements.","PeriodicalId":15676,"journal":{"name":"Journal of Energy Resources Technology-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44119173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of vibration and pressure on the air-bioCNG mixture inside the manifolds of dual-fuel diesel engines 振动和压力对双燃料柴油机歧管内空气-生物柴油混合气的影响
IF 3 3区 工程技术 Q1 Engineering Pub Date : 2023-02-06 DOI: 10.1115/1.4056842
Akash Chandrabhan Chandekar, B. Debnath
The vibration generated by diesel engines may influence air and gaseous fuel mixing in dual-fuel mode. This study is performed on the manifolds of single and twin-cylinder engines in diesel-bioCNG dual-fuel mode. It examines the effect of the engine vibration and variable manifold pressure on the flow behaviour of the air-bioCNG mixture. The objective is to observe the flow inside the manifolds and mixture quality at the outlet. The mentioned work has found little attention till date. The computational comparison of the flow characteristics inside the intake manifold of the single-cylinder engine is done for an F-shape manifold of the twin-cylinder engine during suction stroke. The experiments are conducted to record both the engines' vibration signature and cycle data. For this, the same operating parameters are maintained: compression ratio of 16.5, engine speed of 1500 rpm, engine load range (0 Nm to 34 Nm) and 80% bioCNG substitution. It employs the boundary conditions, such as the vibration amplitude along three axes, variable manifold pressure, and the mass flow rates of air and bioCNG. The parameters to analyse the mixture flow are pressure, velocity, turbulence, helicity and mass fraction of CH4. The mixture at the manifold outlet of the single-cylinder engine improved to average uniformity index of 0.9924, indicating better homogeneity. Further, the manifold of twin-cylinder engine attained the indexes of 0.1484 and 0.2401 for its two cylinders, showing non-homogeneity.
柴油机在双燃料模式下产生的振动会影响空气和气体燃料的混合。在柴油-生物燃料双燃料模式下,对单缸和双缸发动机的歧管进行了研究。它考察了发动机振动和可变歧管压力对空气-生物燃料混合气体流动特性的影响。目的是观察歧管内的流动和出口的混合物质量。到目前为止,上述工作还没有得到多少关注。以双缸发动机f形歧管为研究对象,对单缸发动机进气歧管吸入行程内的流动特性进行了计算比较。实验记录了发动机的振动特征和循环数据。为此,保持相同的运行参数:压缩比为16.5,发动机转速为1500转/分,发动机负载范围(0 Nm至34 Nm), 80%的生物燃料替代。它采用了沿三轴振动幅值、可变流形压力、空气和生物燃料的质量流量等边界条件。分析混合物流动的参数有压力、速度、湍流度、螺旋度和CH4质量分数。单缸发动机歧管出口混合气均匀性指数平均提高到0.9924,均匀性较好。此外,双缸发动机歧管的两缸指标分别为0.1484和0.2401,表现出非均匀性。
{"title":"Effect of vibration and pressure on the air-bioCNG mixture inside the manifolds of dual-fuel diesel engines","authors":"Akash Chandrabhan Chandekar, B. Debnath","doi":"10.1115/1.4056842","DOIUrl":"https://doi.org/10.1115/1.4056842","url":null,"abstract":"\u0000 The vibration generated by diesel engines may influence air and gaseous fuel mixing in dual-fuel mode. This study is performed on the manifolds of single and twin-cylinder engines in diesel-bioCNG dual-fuel mode. It examines the effect of the engine vibration and variable manifold pressure on the flow behaviour of the air-bioCNG mixture. The objective is to observe the flow inside the manifolds and mixture quality at the outlet. The mentioned work has found little attention till date. The computational comparison of the flow characteristics inside the intake manifold of the single-cylinder engine is done for an F-shape manifold of the twin-cylinder engine during suction stroke. The experiments are conducted to record both the engines' vibration signature and cycle data. For this, the same operating parameters are maintained: compression ratio of 16.5, engine speed of 1500 rpm, engine load range (0 Nm to 34 Nm) and 80% bioCNG substitution. It employs the boundary conditions, such as the vibration amplitude along three axes, variable manifold pressure, and the mass flow rates of air and bioCNG. The parameters to analyse the mixture flow are pressure, velocity, turbulence, helicity and mass fraction of CH4. The mixture at the manifold outlet of the single-cylinder engine improved to average uniformity index of 0.9924, indicating better homogeneity. Further, the manifold of twin-cylinder engine attained the indexes of 0.1484 and 0.2401 for its two cylinders, showing non-homogeneity.","PeriodicalId":15676,"journal":{"name":"Journal of Energy Resources Technology-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"63503529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How do microalgae biodiesel blends affect the acoustic and vibration characteristics of the direct injection engine: An experimental examination 微藻生物柴油混合物如何影响直喷发动机的声学和振动特性:一项实验研究
IF 3 3区 工程技术 Q1 Engineering Pub Date : 2023-01-31 DOI: 10.1115/1.4056797
Prabhu L, D. K., T. Alahmadi, Sulaiman Ali Alharbi, Gaweł Sołowski, Dhinakaran Veeman
The noise and vibration characteristics play a vital role in the effectiveness of engine operations and performance of internal combustion engines. Accumulation of the higher amplitude of both noise and vibration affects the comfort of the engine. So far most of the research done on the performance, combustion and emission characteristics only. The less importance is shown in the form engine vibration and sounds created by the engine operation. This paper presents and explores the importance and experimental results of noise and vibration by the compression ignition diesel engine with the fuels of diesel and microalgae biodiesel. The produced microalgae biodiesel blends were SMB10%, SMB20% and SMB30%. The experimental results were conducted at different engine loads varying across 25%, 50%, 75% and 100%. The inline, 4 cylinders, water cooled and naturally aspirated DI diesel engine was used as an experimental setup. From the comparative results between the diesel and microalgae biodiesel, it is found that the use of microalgae blended biodiesel reduced the noise and vibration. The higher the percentage of blends, the greater the reduction in sound and vibration will be. Apart from possessing the performance and emission qualities, the microalgae biodiesel blends proved to be the efficient fuel in reduced vibration and noise qualities too. In three directions, the vibrations were measured as lateral, longitudinal and vertical vibrations. The vibration in lateral direction was significantly reduced. Compelling the results, it is understood that use of the microalgae blends can be sustainable in the perspective of the engine wear and tear.
噪声和振动特性对发动机运行的有效性和内燃机的性能起着至关重要的作用。噪声和振动的较高振幅的积累会影响发动机的舒适性。到目前为止,大多数的研究都只对性能、燃烧和排放特性进行了研究。不太重要的表现在发动机振动和发动机运行产生的声音的形式上。本文介绍并探讨了以柴油和微藻生物柴油为燃料的压燃式柴油机噪声和振动的重要性及其实验结果。生产的微藻生物柴油共混物分别为SMB10%、SMB20%和SMB30%。实验结果是在25%、50%、75%和100%的不同发动机负载下进行的。采用直列四缸水冷自然吸气直喷柴油机作为实验装置。从柴油和微藻生物柴油的比较结果来看,微藻混合生物柴油的使用降低了噪音和振动。混合物的百分比越高,声音和振动的降低就越大。微藻生物柴油混合物除了具有性能和排放质量外,还被证明是降低振动和噪音的有效燃料。在三个方向上,振动被测量为横向、纵向和垂直振动。横向振动明显减小。令人信服的结果是,从发动机磨损的角度来看,微藻混合物的使用是可持续的。
{"title":"How do microalgae biodiesel blends affect the acoustic and vibration characteristics of the direct injection engine: An experimental examination","authors":"Prabhu L, D. K., T. Alahmadi, Sulaiman Ali Alharbi, Gaweł Sołowski, Dhinakaran Veeman","doi":"10.1115/1.4056797","DOIUrl":"https://doi.org/10.1115/1.4056797","url":null,"abstract":"\u0000 The noise and vibration characteristics play a vital role in the effectiveness of engine operations and performance of internal combustion engines. Accumulation of the higher amplitude of both noise and vibration affects the comfort of the engine. So far most of the research done on the performance, combustion and emission characteristics only. The less importance is shown in the form engine vibration and sounds created by the engine operation. This paper presents and explores the importance and experimental results of noise and vibration by the compression ignition diesel engine with the fuels of diesel and microalgae biodiesel. The produced microalgae biodiesel blends were SMB10%, SMB20% and SMB30%. The experimental results were conducted at different engine loads varying across 25%, 50%, 75% and 100%. The inline, 4 cylinders, water cooled and naturally aspirated DI diesel engine was used as an experimental setup. From the comparative results between the diesel and microalgae biodiesel, it is found that the use of microalgae blended biodiesel reduced the noise and vibration. The higher the percentage of blends, the greater the reduction in sound and vibration will be. Apart from possessing the performance and emission qualities, the microalgae biodiesel blends proved to be the efficient fuel in reduced vibration and noise qualities too. In three directions, the vibrations were measured as lateral, longitudinal and vertical vibrations. The vibration in lateral direction was significantly reduced. Compelling the results, it is understood that use of the microalgae blends can be sustainable in the perspective of the engine wear and tear.","PeriodicalId":15676,"journal":{"name":"Journal of Energy Resources Technology-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44249029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Influence of overburden pressure on imbibition behavior in tight sandstones using nuclear magnetic resonance technique 利用核磁共振技术研究上覆压力对致密砂岩渗吸行为的影响
IF 3 3区 工程技术 Q1 Engineering Pub Date : 2023-01-23 DOI: 10.1115/1.4056728
M. Meng, Longlong Li, Bao Yuan, Qianyou Wang, Xiaohui Sun, Ye Zhang, Dahua Li
Imbibition under overburden pressure can simulate the imbibition behavior in reservoir conditions during hydraulic fracturing, about which the mechanism is still unclear. This study investigated the imbibition with overburden pressure using a nuclear magnetic resonance displacement design. The main contribution of this study is that the initial imbibition rate under confining pressure can reflect the pore connectivity of reservoirs under overburden pressure and a method for appraising the pore connectivity under confining pressure was established. The tight sandstone samples were collected from the Upper Paleozoic Taiyuan and Shihezi Formations in Ordos Basin. The Taiyuan Formation presents apparent double-peak structure from nuclear magnetic resonance (NMR) spectra, and liquid fills into small pore preferentially as a whole. When the imbibition time is on a square root scale, the cumulative imbibition height at the initial imbibition period is not stable, which deviates from the linear principle, and the initial imbibition rate ranges from 0.077 to 0.1145. The Shihezi Formation shows a dominant peak structure from NMR spectra, and the liquid has no obvious filling order as a whole. When the imbibition time is on a square root scale, the cumulative imbibition height at the initial imbibition period also deviates from the linear principle, and the initial imbibition rate ranges from 0.0641 to 0.1619.
覆盖层压力下的吸胀可以模拟水力压裂过程中储层条件下的吸渗行为,其机理尚不清楚。本研究采用核磁共振位移设计研究了覆岩压力下的渗吸。本研究的主要贡献在于,围压下的初始吸渗速率可以反映覆压下储层的孔隙连通性,并建立了一种评价围压下孔隙连通性的方法。采集了鄂尔多斯盆地上古生界太原组和石河子组致密砂岩样品。从核磁共振(NMR)谱来看,太原组表现出明显的双峰结构,液体总体上优先填充在小孔中。当自吸时间在平方根尺度上时,初始自吸期的累积自吸高度不稳定,这偏离了线性原理,并且初始自吸速率在0.077到0.1145之间。核磁共振波谱显示石河子组为主峰结构,液体整体上没有明显的填充顺序。当自吸时间在平方根尺度上时,初始自吸期的累积自吸高度也偏离线性原理,初始自吸收速率在0.0641至0.1619之间。
{"title":"Influence of overburden pressure on imbibition behavior in tight sandstones using nuclear magnetic resonance technique","authors":"M. Meng, Longlong Li, Bao Yuan, Qianyou Wang, Xiaohui Sun, Ye Zhang, Dahua Li","doi":"10.1115/1.4056728","DOIUrl":"https://doi.org/10.1115/1.4056728","url":null,"abstract":"\u0000 Imbibition under overburden pressure can simulate the imbibition behavior in reservoir conditions during hydraulic fracturing, about which the mechanism is still unclear. This study investigated the imbibition with overburden pressure using a nuclear magnetic resonance displacement design. The main contribution of this study is that the initial imbibition rate under confining pressure can reflect the pore connectivity of reservoirs under overburden pressure and a method for appraising the pore connectivity under confining pressure was established. The tight sandstone samples were collected from the Upper Paleozoic Taiyuan and Shihezi Formations in Ordos Basin. The Taiyuan Formation presents apparent double-peak structure from nuclear magnetic resonance (NMR) spectra, and liquid fills into small pore preferentially as a whole. When the imbibition time is on a square root scale, the cumulative imbibition height at the initial imbibition period is not stable, which deviates from the linear principle, and the initial imbibition rate ranges from 0.077 to 0.1145. The Shihezi Formation shows a dominant peak structure from NMR spectra, and the liquid has no obvious filling order as a whole. When the imbibition time is on a square root scale, the cumulative imbibition height at the initial imbibition period also deviates from the linear principle, and the initial imbibition rate ranges from 0.0641 to 0.1619.","PeriodicalId":15676,"journal":{"name":"Journal of Energy Resources Technology-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47353543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Journal of Energy Resources Technology-transactions of The Asme
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1